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Effect of CFTR modulators on
glucose homeostasis in children
and young adults with cystic
fibrosis-related diabetes: a
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Maurizio Delvecchio2* and Giovanna Linguiti 1

1Department of Interdisciplinary Medicine, Pediatric Unit “B. Trambusti”, Cystic Fibrosis Regional
Reference Center, University of Bari “Aldo Moro”, Bari, Italy, 2Department of Biotechnological and
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Introduction: Cystic fibrosis (CF) is an autosomal recessive disorder caused by

mutations in the CFTR gene, leading to impaired chloride transport, thickened

mucus, and multiorgan dysfunction. Among its complications, cystic fibrosis-related

diabetes (CFRD) is a major concern, characterized by progressive b-cell dysfunction

and insulin deficiency. The advent of CFTR modulators, including ivacaftor,

lumacaftor/ivacaftor, and elexacaftor/tezacaftor/ivacaftor (ETI), has revolutionized CF

management by improving pulmonary function, nutritional status, and overall survival.

However, their effects on glucose metabolism remain under investigation.

Methods: This systematic review (systematic review registration: PROSPERO 2025

CRD420251021499) analyzes recent evidence on the impact of CFTR modulators

on CFRD in children and young adults. Results: Ivacaftor demonstrates potential

benefits in glucose regulation, enhancing insulin secretion and glucagon control,

particularly in patients with gating mutations. Conversely, lumacaftor/ivacaftor

exhibits inconsistent effects, with some studies indicating glucose tolerance

improvements while others report insulin sensitivity decline.

Discussion: ETI therapy shows modest but generally positive effects on glycemic

control, with reductions in HbA1c and fasting glucose, though without significant

changes in insulin secretion. While CFTR modulators improve systemic health,

their role in directly preventing or reversing CFRD remains unclear. Further

longitudinal studies are needed to optimize therapeutic strategies and

elucidate the long-term metabolic effects of CFTR modulation in CF patients.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier CRD420251021499.
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1 Introduction

Cystic fibrosis (CF) is the most prevalent life-limiting autosomal

recessive disorder among Caucasian populations, with an incidence

of approximately 1 in 2,500–3,500 live births in Europe and North

America (1). The disease results from mutations in the CFTR

(Cystic Fibrosis Transmembrane Conductance Regulator) gene,

located on chromosome 7q31.2, which encodes a chloride

channel crucial for ion and fluid homeostasis across epithelial

surfaces (2, 3). Dysfunctional CFTR activity disrupts ion

transport, leading to the production of thick, dehydrated mucus

that obstructs multiple organ systems, primarily affecting the

respiratory, gastrointestinal, and reproductive tracts. CF manifests

as a multisystemic disorder with highly variable phenotypic

expression (4). The predominant clinical features involve the

respiratory, gastrointestinal, endocrine, and reproductive systems.

Respiratory complications include persistent cough, bronchiectasis,

recurrent pulmonary infections (particularly with Pseudomonas

aeruginosa) progressive decline in lung function, and eventual

respiratory failure (5). Gastrointestinal involvement is

characterized by pancreatic exocrine insufficiency, malabsorption,

meconium ileus, distal intestinal obstruction syndrome (DIOS) (6),

and hepatobiliary disease. Moreover, male patients frequently

present with infertility due to congenital bilateral absence of the

vas deferens (7). The pancreas is one of the earliest organs affected,

with mucus accumulation leading to exocrine pancreatic

insufficiency (EPI) due to progressive ductal obstruction, chronic

inflammation, and acinar cell destruction. This results in fat

malabsorption and deficiencies in fat-soluble vitamins (8),

necessitating enzyme replacement therapy and dietary

supplementation. In addition to exocrine dysfunction, pancreatic

endocrine impairment progresses gradually, culminating in

defective insulin secretion. Endocrine dysfunction commonly

manifests as cystic fibrosis-related diabetes (CFRD) (7–9). CFRD

exhibits characteristics of both type 1 diabetes (b-cell dysfunction)
and type 2 diabetes (insulin resistance, particularly during

pulmonary exacerbations) (9, 10) (Table 1). However, CFRD is

marked by a progressive decline in insulin secretion with an

often-subtle onset, underscoring the importance of early

glucose monitoring.

CFRD primarily arises from insulin deficiency due to

progressive destruction of pancreatic islets within a fibrotic and

inflamed pancreas (11, 12). Over time, the inflammatory
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environment, compounded by fibrosis and ischemia, leads to islet

damage, reducing b-cell mass and impairing insulin production

(13). Even in preclinical stages, patients with cystic fibrosis

frequently exhibit delayed and diminished insulin secretion,

particularly in response to oral glucose intake. Although insulin

deficiency is the principal mechanism underlying CFRD (14),

insulin resistance also contributes (15), particularly during

pulmonary exacerbations. Chronic inflammation in cystic fibrosis

leads to elevated cytokine levels, such as TNF-a and IL-6, which

interfere with insulin signaling (16). Additionally, frequent

infections precipitate an increase in cortisol and catecholamines,

further antagonizing insulin action. Nutritional status also

modulates insulin sensitivity, as malnutrition reduces muscle

mass (17) (a primary site for insulin-mediated glucose uptake)

while corticosteroid use during exacerbations induces

transient hyperglycemia.

Glucagon dysregulation and impaired incretin responses

further contribute to CFRD pathophysiology. Some individuals

exhibit abnormal glucagon secretion, exacerbating postprandial

hyperglycemia. Additionally, deficiencies in incretin hormones,

such as GLP-1 and GIP, further compromise insulin secretion

and glucose homeostasis (18).

The prevalence of CFRD increases with age, affecting over 50%

of patients older than 30 years (19, 20). Its clinical impact is

profound, being associated with accelerated pulmonary decline,

heightened infection susceptibility, nutritional deterioration, and

increased mortality.A customized and individualized insulin

therapy remains the recommended treatment for children and

adolescents with CFRD (21), whereas there is only limited

evidence for use of oral hypoglycemic agents (22). Beyond

glycemic regulation, insulin therapy plays a pivotal role in

improving nutritional status and pulmonary function. Nutritional

support is crucial, with dietary recommendations emphasizing a

high-calorie, high-fat intake (22), supplemented with pancreatic

enzyme replacement therapy (PERT) (23) and fat-soluble vitamins

to optimize nutrient absorption. Regular physical activity further

enhances metabolic stability by improving insulin sensitivity,

increasing muscle mass (24), and promoting respiratory function.

The advent of CFTR modulators represents a landmark

advancement in cystic fibrosis therapy. They are administered

orally, typically twice daily with fat-containing meals to optimize

absorption. Treatment initiation necessitates genotypic

confirmation of CFTR mutations and vigilant monitoring for
TABLE 1 Main characteristics of the three types of diabetes.

FEATURE CFRD Type 1 Diabetes Type 2 Diabetes

PRIMARY DEFECT Insulin deficiency due to pancreatic fibrosis Autoimmune b-cell destruction Insulin resistance + b-cell dysfunction

AUTOANTIBODIES Absent Present Absent

INSULIN RESISTANCE Mild to moderate Absent Severe

KETOACIDOSIS RISK Rare High Low

MANAGEMENT Insulin therapy, nutritional support Insulin therapy Lifestyle, oral agents, insulin in
advanced stages
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potential adverse effects, including hepatotoxicity and drug

interactions. Given their profound impact on disease progression,

CFTR modulators are now considered standard therapy for eligible

patients. Unlike conventional treatments aimed at symptomatic

relief, these agents directly target the underlying molecular defect

caused by CFTR gene mutations.

CFTR modulators are categorized into 1. potentiators and 2.

correctors. The most advanced combination, elexacaftor/tezacaftor/

ivacaftor (ETI, marketed as Trikafta/Kaftrio), has demonstrated

substantial benefits, including improved lung function, reduced

exacerbation frequency, and enhanced nutritional status in

patients harboring at least one F508del allele (25–28). Their

introduction has significantly enhanced pulmonary function,

nutritional status, and life expectancy in eligible patients (29).

Notably, CFTR modulators have been associated with

improvements in pancreatic function, leading to enhanced fat and

vitamin absorption and a reduced reliance on dietary

supplementation (30). However, these benefits are not

universally experienced.

This literature review synthesizes recent findings on the efficacy

of CFTR modulators on metabolic control, nutritional outcomes

and the treatment of Children and Young Adults with CFRD.
2 Materials and methods

2.1 Search strategy

We searched electronic databases (Pubmed and Web of Science)

for studies published between 1st January 2010 (the year the first

study was published) and 31th December 2024. Search terms, or

“MESH” (MEdical Subject Headings) for this systematic review

included various combinations: “hyperglycemia” or “diabetes” or

“glucose disorder” AND “cystic fibrosis” AND “elexacaftor” OR

“Ivacaftor” OR “Tezacaftor”. To avoid missing any relevant studies,

we also screened the reference list of eligible studies. We formulated 5

questions related to the efficacy of the CFTR modulators and for each

one we established the outcomes listed below. The protocol was

registered with the International Prospective Register of Systematic

Reviews database (PROSPERO https://www.crd.york.ac.uk/

PROSPERO, number CRD420251021499).
2.2 Criteria for study selection

We conducted a systematic search of the literature based on the

PICOS model (Population, Intervention, Comparison, Outcomes,

Study design) (Table 2).

Inclusion criteria were as follows: i) Study population: Children

(birth to 18 years) and young adults (19 to 24 years) with

hyperglycemia or cystic fibrosis-related diabetes (CFRD) who

received CFTR modulator therapy, with available follow-up data;

ii) Study design: Observational studies (cohort, case-control),

exploratory studies, and experimental research; iii) Review articles
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were excluded, but their reference lists were screened for potentially

eligible studies; iv) Only full-text papers were included; abstracts

only were excluded; v) Data on therapy efficacy: Information on the

age at the start of therapy, duration of treatment, and outcomes; vi)

Publication date: Studies published in the last 15 years (2010–2024).

Exclusion criteria included: i) Studies with data available

without baseline status (cross-sectional studies); ii) Studies with

only baseline data, without follow-up; iii) Animal studies; iv) Full-

text not available; v) studies not yet published; vi) Studies not

reporting the selected outcomes; vii) Studies on CFRD without data

on CFTR modulator therapy; viii) Studies in which data concerning

the population of interest cannot be extracted; ix) Studies published

in languages other than English were not excluded a priori.
2.3 Data extraction and management

Two independent investigators (VG, GL) screened for inclusion

the title and abstract of all the studies identified using the search

strategy. Any discrepancies between them were resolved by

consensus. After abstract selection, the same two investigators

conducted the full paper analysis.

The following characteristics were evaluated for each study in the

full paper: i) reference details: authorship(s); published or

unpublished; year of publication; period in which the study was

conducted; other relevant cited papers; ii) study characteristics: study

design, topic, treatment period, follow up duration, region; iii)

population characteristics: number of participants, age and

demographic data; comparator characteristics; iv) methodology:

measures to assess the outcomes; v) main results: outcome measures.
2.4 Characteristics of included studies

After removal of duplicate, the titles and abstract of 503 unique

references were evaluated for eligibility. A total of 486 were excluded,

and 17 full-text articles were extracted and screened for eligibility. Of

these, 9 (31–39) original studies met eligibility criteria (Figure 1). Of

these studies, 4 were conducted in the United States of America, 1 in

Italy, 2 in Israel, 1 in France and 1 in Germany (Table 3).
TABLE 2 PICOS model.

Population Children (birth – 18 years) and young adults (19–24 years)
with cystic fibrosis-related diabetes (CFRD)

Intervention CFTR modulators (e.g., ivacaftor, lumacaftor/ivacaftor,
elexacaftor/tezacaftor/ivacaftor)

Comparison Standard CFRD management without CFTR modulators
or placebo

Outcomes Changes in glucose metabolism, insulin secretion, glycemic
control and progression of CFRD

Study design Randomized clinical trials (RCTs), observational studies
(cohort, case-control), and experimental research
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3 Results

3.1 Ivacafactor

Ivacaftor appears to exert a direct effect on insulin secretion.

More than 10 years ago, Bellin et al. (2013) (38) reported the first

data about this drug showing that it may improve insulin secretion

in a one-month study. Notably, one patient with impaired glucose

tolerance achieved normoglycemia, while the others exhibited

partial restoration of insulin secretion. Unfortunately, in patients

with established CFRD, no significant changes in blood glucose

levels were observed. This study suggested for the first time that

Ivacaftor may be effective in preventing diabetes progression if

initiated early, but not in reversing CFRD once it has developed.

Further, Tsabari et al. (2016) (36) investigated its effects in two

CF patients with glucose abnormalities and found that both

demonstrated improved insulin secretion, with one patient

transitioning from CFRD to an intermediate glycemic status.

These findings confirmed that Ivacaftor could contribute to b-cell
function restoration, suggesting that even in patients with CFRF

blood glucose can improce.

Dagan et al. (2017) (37) demonstrated that some patients

carrying the p.Ser549Arg mutation treated with Ivacaftor

experienced enhanced glucose metabolism, with transitions from

CFRD to impaired glucose tolerance and from impaired glucose

tolerance to normoglycemia.

Finally, Kelly et al. (2019) (39) confirmed that Ivacaftor

enhances b-cell function and glucagon regulation without

significantly altering glucose tolerance or incretin secretion. These

findings indicate that Ivacaftor may support pancreatic function but
Frontiers in Endocrinology 04
does not fully correct the metabolic abnormalities associated

with CF.
3.2 Lumacaftor/ivacaftor

The effects of Lumacaftor/Ivacaftor on glucose metabolism have

been explored in multiple studies, with inconsistent findings. On

one hand, Li et al. (2019) (33) observed an increase in HbA1c and

fasting glucose levels following treatment, with no significant

changes in continuous glucose monitoring (CGM) parameters.

Moreover, sex differences were identified, with male patients

exhibiting reduced glycemic variability, while female patients

showed no significant changes. This study suggests that

Lumacaftor/Ivacaftor does not effectively correct glycemic

abnormalities in CF patients and that individual factors may

influence metabolic responses to treatment.

In contrast, Misgault et al. (2020) (34) reported that 57.5% of CF

patients treated with Lumacaftor/Ivacaftor experienced an

improvement in glucose tolerance after one year of therapy.

Specifically, a greater proportion of patients achieved normal

glucose tolerance, while fewer persisted with CFRD. However,

this improvement was not associated with increased insulin

secretion, suggesting that the observed metabolic benefits were

likely secondary to enhancements in nutritional and respiratory

status rather than a direct effect on pancreatic b-cell function.
Thomassen et al. (2018) (35) did not observe significant

improvements in glucose regulation following Lumacaftor/Ivacaftor

treatment. However, some patients experienced weight gain and an

increase in BMI, suggesting a potential nutritional benefit.
FIGURE 1

Flow chart of study inclusion in systematic review.
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Author and year Country Age Sample Study Drug Measured Outcomes Conclusion
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ETI therapy led to better glycemic control in
insulin-dependent CFRD patients, shown by
reduced HbA1c.
Insulin requirements decreased in the first 6
months, but no further reduction was observed at
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Significant improvements in pulmonary function,
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can prevent or reverse CFRD. Further long-term
studies, especially in children, are needed to assess
the early impact of ETI on glucose metabolism.

and fasting
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GTT.
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Glycemic abnormalities persisted in CF patients
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a direct action on CFTR function in b-cells. Larger
and randomized trials are needed to further

(Continued)

G
io
rd
an

o
e
t
al.

10
.3
3
8
9
/fe

n
d
o
.2
0
2
5
.16

2
3
6
5
4

Fro
n
tie

rs
in

E
n
d
o
crin

o
lo
g
y

fro
n
tie

rsin
.o
rg

0
5

range size design molecule parameters

Bassi et al., 2024 (31) Italy 12-56 28 Retrospective
observational

Elaxacaftor-
Tezacaftor-
Ivacaftor

HbA1c, TDD,
FEV1, FVC,
BMI, number of
hospitalizations
and pulmonary
exacerbations,
CFQ-R
Data collected
at four
time points

Improved glycemic control: HbA1c
at all time points.
Reduced insulin requirement: TDD
and 6 months, but not significantly
Improved pulmonary function: FEV
significantly increased at 3, 6, and 1
Fewer hospitalizations and pulmon
Increased BMI, indicating improved
status.
Better quality of life.
No patients stopped insulin therapy
ETI.
in heterozygous F508del/other patie
requirements did not decrease, but

Chan et al., 2024 (32) USA ≥ 12 79 Prospective
observational
multicenter

Elaxacaftor-
Tezacaftor-
Ivacaftor

Fasting and
postprandial
glucose levels,
HbA1c, insulin
secretion rates,
insulin
sensitivity,
FEV1, BMI

After 24–30 months of ETI therapy
decreased slightly (from 94 mg/dL t
0.02) in patients not on insulin ther
HbA1c significantly decreased (from
p < 0.001), suggesting improved gly
Insulin sensitivity decreased over ti
insulin secretion remained stable.
Glucose tolerance varied among pa
showed improvements, others wors
remained stable.

Li et al., 2019 (33) USA ≥ 12 9 Observational Lumacaftor-
Ivacaftor

CGM, HbA1c,
glucose
tolerance, BMI,
FVC, FEV1

After treatment, increase in HbA1c
glucose were observed (p= 0.02). N
changes were detected in CGM par
glucose level at 1 and 2 hours post-
Sex differences: males exhibited red
variability post-treatment, while fem
significant changes.

Misgault et al., 2020 (34) France ≥ 12 40 Prospective
multicenter
observational

Lumacaftor-
Ivacaftor

Glucose
tolerance,
fasting glucose,
insulin, C-
peptide, BMI,
albumin levels,
FEV1, FVC

After 1 year of treatment glucose to
in 57.5% of patients (50% achieved
to 0% at baseline -, 40% had IGT –

baseline – only 10% remained CFR
baseline-).
Significant reduction in 2-hours OG
levels: from 171 mg/dl (baseline) to
treatment) (p < 0.001).
No significant changes in insulin or
BMI and albumin levels significantl
suggesting improved nutritional sta
a

H

,

c
m

t
e

o
a
O
u

l
N

D

y
t

https://doi.org/10.3389/fendo.2025.1623654
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


TABLE 3 Continued

Author and year Country Age Sample Study Drug Measured Outcomes Conclusion
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3.3 Elexacaftor-tezacaftor-ivacaftor

Conversely, Bassi et al. (2024) (31) reported that treatment with

ETI led to improved glycemic control, as evidenced by a reduction

in HbA1c levels across all study time points. Additionally, a

decrease in insulin requirements was observed during the first six

months of therapy, although no further reduction was noted at 12

months. Patients receiving ETI also exhibited significant

improvements in pulmonary function, a reduction in

hospitalizations and pulmonary exacerbations, increased BMI,

and an overall enhancement in quality of life. However, no

patient was able to discontinue insulin therapy, suggesting that

while ETI improves glycemic control, it is not sufficient to

normalize glucose metabolism in CFRD patients.

Chan et al. (2024) (32) investigated the effects of ETI over a

longer period (24–30 months). Their findings revealed a modest

decrease in fasting glucose levels and a significant reduction in

HbA1c, indicating improved glycemic control. However, insulin

sensitivity declined over time, and glucose tolerance exhibited

variable responses among patients—some showed improvement,

others worsened, and some remained stable. These data suggest that

ETI may help stabilize or slow the decline of b-cell function, but
whether it can prevent or reverse CFRD remains uncertain.
4 Discussion

CFTR modulators have revolutionized the treatment landscape

for cystic fibrosis CF by targeting specific genetic mutations and

restoring defective CFTR protein function. While these therapies

have significantly improved pulmonary function and nutritional

status, their effects on glucose metabolism and CFRD remain an

area of active investigation.

Ivacaftor has demonstrated significant metabolic benefits in

patients with gating mutations such as G551D and S549N (Table 4).

Clinical studies indicate improved glucose metabolism, with increased
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TABLE 4 Relationship between CFTR mutations and modulator efficacy.

Mutation
class

Example
mutations

Effective
modulator

Expected
response

I -
No synthesis

G542X,
W1282X

None (current
modulators
ineffective)

No response

II -
Trafficking

defect

F508del Lumacaftor/
Ivacaftor, ETI

Good response
with ETI

III -
Gating defect

G551D, S549N Ivacaftor Excellent
response

IV -
Conductance

defect

R117H Ivacaftor Moderate
improvement

V -
Reduced
expression

3849 +
10kb C→T

Ivacaftor (variable) Mild to
moderate
benefit
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insulin secretion and reduced postprandial glucose levels (36–39).

These effects likely stem from enhanced pancreatic duct function,

reducing exocrine pancreatic stress and creating a more favorable

endocrine environment. Ivacaftor has also been associated with

improved glucose tolerance, particularly in patients treated early in

disease progression (36–39). The direct role of CFTR in pancreatic b-
cell function has been suggested, given that Ivacaftor increases early-

phase insulin secretion and enhances glucagon suppression (38, 39),

which may slow CFRD progression.

In addition to metabolic benefits, Ivacaftor significantly enhances

pulmonary function, with FEV1 improvements exceeding those

observed with other modulators (37). FVC and BMI also increase,

likely due to improved nutrient absorption and overall better health

status. However, its efficacy is largely limited to patients with Class III

(gating) and some Class IV (conductance) mutations, with minimal

to no effect in Class I and II mutations, which involve defective CFTR

synthesis or trafficking (40). Lumacaftor/Ivacaftor has produced

mixed results regarding glucose metabolism. Some studies suggest

improvements in glucose tolerance (34), while others indicate no

significant changes or even worsening glycemic control (33, 41, 42).

Insulin secretion remains largely unchanged, suggesting that any

metabolic improvements are indirect, likely resulting from reduced

systemic inflammation and improved overall health rather than

direct b-cell restoration. Contrary to expectations, Piona et al.

demonstrated that insulin sensitivity worsened in CF patients

treated with lumacaftor/ivacaftor (43).

Pulmonary function benefits are moderate but less pronounced

than those observed with Ivacaftor or ETI. FEV1 increases are

modest, and FVC shows slight improvements. BMI also exhibits a

mild to moderate increase, likely secondary to improved pulmonary

status. However, the drug’s tolerability issues and its limited efficacy

in heterozygous F508del patients have restricted its widespread

adoption. ETI therapy has significantly expanded treatment options

for CF patients carrying at least one F508del allele. Its effects on

glucose metabolism appear modest but generally positive, with

reductions in HbA1c and slight decreases in fasting glucose (31,

32). While insulin secretion shows mild increases in some patients,

overall b-cell function remains largely unchanged. Notably, glucose

tolerance does not consistently improve, and CFRD progression does

not appear to be significantly altered. Beyond glucose metabolism,

ETI produces the most substantial improvements in pulmonary

function among all CFTR modulators, with FEV1 increases of 10–

15% and a reduction in pulmonary exacerbations. FVC improves,

particularly in patients with advanced respiratory impairment. BMI

increases considerably, reflecting enhanced nutrient absorption and

improved pulmonary status. According to Grancini et al. (44),

initiation of ETI therapy was linked to better glycaemic control in

insulin-treated CFRD patients. Similarly, Bassi et al. demonstrated an

improvement in glycaemic control accompanied by a significant

reduction in insulin requirements in a cohort of both pediatric and

adult patients with CFRD (31). Given its efficacy in patients with at

least one F508del allele, ETI represents the most versatile and broadly

effective CFTR modulator currently available. The effectiveness of

CFTR modulators is closely linked to the type of CFTR mutation

present. Ivacaftor is highly effective in Class III (gating) mutations,
Frontiers in Endocrinology 08
where it enhances CFTR channel opening, while it has minimal

impact on Class I and II mutations. Lumacaftor/Ivacaftor provides

moderate benefits to homozygous F508del patients by improving

CFTR protein trafficking, although its metabolic effects remain

inconsistent. ETI, by contrast, offers substantial clinical benefits to a

broader CF population, including those with at least one F508del

allele (Table 4).

While CFTR modulators have revolutionized CF care, their

metabolic effects, particularly in the context of CFRD, remain an

area requiring further research. Ivacaftor demonstrates the most

direct benefits on b-cell function, whereas Lumacaftor/Ivacaftor

and ETI appear to exert indirect metabolic effects, likely mediated

through systemic improvements in health. Future research should

focus on addressing treatment gaps, particularly for Class I

mutations, through emerging therapies such as gene editing and

read-through compounds.

CFTR modulators have transformed CF treatment, but their

impact on glucose metabolism and CFRD progression remains an

area of active investigation. While Ivacaftor appears to have a direct

positive impact on insulin secretion, Lumacaftor/Ivacaftor and ETI

seem to exert more indirect metabolic effects, likely mediated by

improvements in nutritional and respiratory status. The findings

remain heterogeneous, highlighting the need for further research to

fully elucidate the role of CFTR modulators in the prevention and

management of CFRD.

A deeper understanding of the interplay between CFTR

function and pancreatic endocrine regulation will be essential in

developing targeted therapies that not only improve pulmonary

health but also address metabolic dysfunction in CF patients.

The variability in metabolic responses highlights the complexity

of CFRD pathophysiology and the need for personalized treatment

approaches. Future research should focus on early intervention

strategies, particularly in young patients, to assess if CFTR

correction can delay b-cell deterioration. Next-generation CFTR

modulators and emerging genetic therapies, such as gene editing

and RNA-based approaches, may offer new avenues for more

effective CFRD management.
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