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The association between type 2 diabetes mellitus (T2DM) and cognitive

impairment represents a critical public health concern, particularly against the

backdrop of the rising global prevalence of diabetes and aging populations.

Accumulating evidence indicates that T2DM is linked to declines in multiple

cognitive domains, which may progress to cognitive impairment or even

dementia. This cognitive impairment arises from complex interactions among

insulin resistance, chronic inflammatory responses, vascular injury and

microangiopathy and oxidative stress. Clinical studies suggest that strict

glycemic control combined with behavioral and lifestyle interventions may

delay cognitive decline, though their long-term efficacy requires further

evidence-based validation. Future research should leverage multi-omics

technologies to identify early biomarkers for T2DM-related cognitive

impairment, elucidate the underlying molecular mechanisms, identify specific

therapeutic targets, and develop personalized intervention strategies. This review

systematically examines the epidemiological correlations, pathophysiological

mechanisms, and advances in clinical management of T2DM-related cognitive

disorders, with the aim of providing a theoretical foundation for early prevention

and targeted treatment.
KEYWORDS
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1 Introduction

T2DM has emerged as a global epidemic and a major public health challenge. Global

prevalence of T2DM is expected to increase to 7,079 cases per 100,000 population by 2030,

reflecting a sustained upward trend across all regions (1). T2DM significantly elevates the

risk of microvascular complications (e.g., retinopathy, nephropathy, neuropathy) and

macrovascular diseases (e.g., coronary artery disease, stroke) (2). Cognitive impairment

is defined as a decline in one or more cognitive domains, including memory, attention,

orientation, judgment, and problem-solving abilities (3). Manifestations of impairment

may include slowed information processing, memory deficits, and challenges in learning or
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decision-making (4). Cognitive impairment severely impacts overall

well-being by compromising social engagement and functional

independence, increasing reliance on caregivers while reducing

autonomy, and posing safety risks, ultimately elevating morbidity

and mortality rates through diminished self-care capacity and

delayed medical intervention (3, 5). Given the escalating global

prevalence of T2DM and its profound implications for cognitive

health, elucidating the underlying pathophysiological pathways and

identifying preventive interventions are critical for mitigating dual

disease burdens. Research in this domain holds significant clinical

and societal relevance. Understanding how metabolic dysregulation

accelerates neurodegenerative processes could inform early

biomarkers for cognitive risk stratification and targeted therapies.

Ultimately, advancing this field may enhance patient outcomes and

quality of life.
2 Pathophysiology of T2DM and its
impact on cognitive function

2.1 Basic pathogenesis of T2DM

T2DM is characterized by two central pathophysiological

defects: pancreatic b-cell dysfunction and insulin resistance (IR).

b-cell dysfunction manifests as inadequate insulin secretion or

decompensation, ultimately resulting in hyperglycemia. IR refers

to diminished responsiveness of peripheral tissues (e.g., skeletal

muscle, adipose tissue, liver) to insulin signaling, glucose uptake

into these cells becomes inefficient, resulting in its accumulation in

the bloodstream and consequent hyperglycemia. To compensate,

pancreatic b-cells augment insulin secretion, leading to a state of

hyperinsulinemia. These defects mutually reinforce each other,

establishing a vicious cycle. Chronic inflammation, ectopic lipid

deposition, endoplasmic reticulum stress (ERS), and oxidative stress

further exacerbate metabolic dysregulation by impairing insulin

sensitivity and/or b-cell function, thereby driving the onset and

progression of T2DM and its target organ damage (TOD) (6).

b-cells integrate signals from glucose, free fatty acids (FFA),

hormones (e.g., incretins GLP-1/GIP), and neural inputs to

dynamically regulate insulin secretion (7). Factors contributing to

b-cell failure include: aging and genetic predisposition, incretin

resistance/deficiency (e.g., impaired glucagon-like peptide-1 [GLP-

1] and glucose-dependent insulinotropic polypeptide [GIP]

signaling), lipotoxicity (FFA-induced b-cell apoptosis) and

glucotoxicity (chronic hyperglycemia-induced oxidative stress),

insulin resistance-induced b-cell stress, islet amyloid deposition

(excessive islet amyloid polypeptide [IAPP] aggregation), reactive

oxygen species (ROS)-mediated damage and proinflammatory

signaling (8).

IR is a multifactorial metabolic disorder marked by reduced

responsiveness of insulin-target tissues (liver, adipose tissue, skeletal

muscle) to physiological insulin levels. It is closely linked to

metabolic syndrome (MS), where obesity, dyslipidemia, and

hypertension amplify IR through: proinflammatory cytokine

release (e.g., TNF-a, IL-6), ectopic lipid accumulation (hepatic
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and muscular lipotoxicity), oxidative stress-mediated inhibition of

insulin receptor signaling (e.g., PI3K/Akt pathway) (9).
2.2 Impact of diabetes-related
complications on cognitive function

2.2.1 Cerebrovascular complications
Diabetes-induced macrovascular pathologies, such as

atherosclerosis (AS), drive structural alterations in cerebral

vasculature, including stenosis, occlusion, and intima-media

thickening—hallmarks of AS (10). Chronic vascular occlusion

disrupts central hemodynamics, cerebral perfusion, and

cerebrovascular function. Key functional impairments include:

endothelial-dependent vasodilation deficits and impaired

cerebrovascular autoregulation (11, 12). These dysfunctions

directly manifest as abnormal cerebral blood flow (CBF) (13).

Evidence linking carotid AS to cerebral atrophy suggests that

sustained CBF reduction contributes to brain volume loss, a

recognized precursor to vascular dementia (VD). Moreover,

Chronic hypoperfusion exacerbates neuroinflammation by

activating microglia, leading to white matter lesions (WMLs) and

neurodegeneration. WMLs are strongly associated with progressive

cognitive decline and eventual VD onset.

2.2.2 Diabetic retinopathy
Diabetic retinopathy, a microvascular complication of diabetes,

may reflect systemic microvascular damage. Wu et al. reported that

DR is associated with psychomotor slowing and attentional deficits.

Electrophysiological studies in diabetic models demonstrate

reduced neuronal activity in the primary visual cortex, impairing

visual information processing (14). Meta-analytic evidence further

links retinal pathology to cognitive decline, any retinopathy was

significantly associated with the presence of dementia and cognitive

deficits, as well as with reduced processing speed (15).These

associations persist even in patients without overt retinopathy,

suggesting that retinal microvascular changes (e.g., altered vessel

caliber, fractal dimension) may serve as biomarkers of cerebral

microangiopathy and neurodegeneration. Additionally, diabetes

frequently induces visual system dysfunction, including impaired

motion detection, reduced contrast sensitivity, and defective color

discrimination, which may indirectly exacerbate cognitive load by

disrupting sensory input integration (14).

2.2.3 Diabetic kidney disease
Diabetic kidney disease (DKD), a diabetes-specific complication

characterized by progressive renal damage, exacerbates blood-brain

barrier (BBB) disruption and is increasingly recognized as a risk

factor for neurocognitive deficits. Clinical studies reveal a

bidirectional relationship between renal dysfunction and cognitive

impairment, where elevated urinary albumin excretion rate (UAER)

predicts poorer cognitive performance, while declining glomerular

filtration rate (GFR) is associated with worsening cognitive scores,

highlighting a dose-dependent link between renal impairment and

neurodegeneration (16). DKD contributes to cognitive impairment
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through interconnected pathophysiological pathways. Impaired

renal clearance of uremic toxins, such as indoxyl sulfate,

promotes neuroinflammation and oxidative stress, accelerating

BBB disruption and neuronal apoptosis (17). These mechanisms

synergistically disrupt neurovascular homeostasis, creating a self-

reinforcing cycle of neurodegeneration and cognitive decline in

diabetic patients. Serum creatinine, an indicator of renal

dysfunction, inversely correlates with cognitive performance in

elderly diabetic populations, suggesting its potential as a

prognostic marker for cognitive decline, while early detection of

DKD through measures like UAER monitoring can help stratify

dementia risk and guide interventions, such as renin-angiotensin

system inhibitors, to preserve both renal and cognitive

function (18).

2.2.4 Diabetic peripheral neuropathy
Diabetic peripheral neuropathy (DPN), a prevalent

complication of diabetes, is increasingly linked to cognitive

impairment. Evidence demonstrates that individuals with T2DM

and DPN exhibit lower global cognitive performance compared to

those without DPN, including deficits in memory, attention, and

psychomotor speed (19). In type 1 diabetes, cognitive impairment is

similarly pronounced, with DPN patients showing marked

impairments in attention, visuospatial/executive functions,

language, and abstract reasoning (20). Notably, painful DPN

correlates with more severe cognitive deficits than painless DPN

(21), particularly in domains of attention and memory. These

findings suggest that DPN severity and subtype may serve as

biomarkers for neurodegeneration risk in diabetic populations,

underscoring the need for integrated neurological and cognitive

assessments in diabetes care (22).

2.2.5 Diabetes-related foot complications
Emerging evidence highlights a significant association between

diabetes-related foot complications (DRFC) and cognitive

impairment. Studies demonstrate that individuals with DRFC

exhibit more pronounced cognitive deficits compared to diabetic

patients without foot complications, particularly in domains of

verbal memory, executive function, and inhibitory control (23).

Furthermore, diabetes-associated cognitive impairment

encompasses broader deficits, including impairments in attention,

memory, executive function, visuospatial abilities, and language.

The severity of DRFC-related cognitive decline underscores the

need for integrated care models addressing both metabolic and

neurological health in diabetic populations (24).
3 Mechanistic insights into T2DM and
cognitive impairment

3.1 Insulin resistance and cerebral
metabolism

Insulin acts on insulin receptors in the brain to promote

neurotransmitter synthesis, synaptic plasticity, and neuronal
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differentiation—processes critical for learning and memory.

Insulin signaling in the brain is essential for normal cognitive

function, particularly in key regions such as the hippocampus and

prefrontal cortex (25), where it regulates glucose utilization, energy

homeostasis, synaptogenesis and long-term potentiation (LTP). It

also governs appetite regulation and systemic metabolic balance

(26). Brain insulin resistance (BIR) is recognized as a key factor

linking metabolic disorders like obesity and T2DM to cognitive

decline. It disrupts normal insulin signaling pathways, leading to

mitochondrial structural and functional abnormalities, which in

turn result in impaired energy metabolism and increased oxidative

stress. This dysfunction triggers neuronal damage and cognitive

deterioration, ultimately contributing to cognitive impairment (27).

BIR reduces plasma levels of neurotrophic factors such as brain-

derived neurotrophic factor (BDNF) (28), which plays a critical role

in promoting structural and functional plasticity in the central

nervous system (CNS) (29). Additionally, BIR downregulates the

expression of neuronal glucose transporters (e.g., GLUT4),

impairing cerebral glucose uptake (30). This energy deficit results

in decreased brain glucose utilization, triggering neuronal metabolic

dysfunction. Such metabolic disturbances not only compromise

synaptic plasticity but may also threaten neuronal survival,

contributing to memory deficits and executive dysfunction.
3.2 Chronic inflammatory response

Diabetes mellitus, a chronic metabolic disorder, significantly

disrupts systemic and localized inflammatory responses, thereby

compromising brain health. The systemic inflammation associated

with diabetes promotes increased BBB permeabi l i ty ,

neuroinflammation, and subsequent neurodegenerative alterations.

These inflammatory processes are mechanistically linked to cognitive

impairment and an elevated risk of neurodegenerative disorders,

including Alzheimer’s disease and Parkinson’s disease.

Characterized by chronic low-grade inflammation, diabetes alters

the expression of key inflammatory mediators such as monocyte

chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and C-C

motif chemokine receptor 2 (CCR2), which collectively modulate

peripheral and central immune responses (31). Activation of

inflammatory pathways, particularly those mediated by NF-kB,
synergizes with oxidative stress and impaired autophagy to

exacerbate neuronal damage and accelerate cognitive decline (32).

Dysregulated inflammatory signaling in diabetic individuals amplifies

ischemic brain injury.
3.3 Vascular injury and microangiopathy

Diabetes exerts profound detrimental effects on cerebrovascular

health, precipitating vascular injury and microvascular pathologies

closely associated with cognitive impairment. The relationship

between diabetes and cerebrovascular pathology is multifaceted,

encompassing both macrovascular and microvascular abnormalities

that synergistically contribute to cognitive decline (33).
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Accumulating evidence indicates that diabetes independently

increases the incidence of cerebral infarctions and vascular brain

injuries, both of which are critical determinants of cognitive

deterioration (33). Diabetic-induced cerebrovascular damage

manifests as endothelial dysfunction, increased arterial stiffness,

and thickening of capillary basement membranes (34). These

pathological alterations compromise cerebrovascular elasticity and

integrity, leading to reduced cerebral blood flow and chronic

cerebral hypoperfusion, thereby exacerbating cognitive deficits.

As an established risk factor for cerebrovascular diseases,

diabetes is characterized by a higher prevalence of cerebral

infarctions, white matter hyperintensities (WMH), and cerebral

small vessel disease (CSVD) (33). These pathologies exhibit greater

severity in diabetic populations and correlate with an elevated risk

of accelerated cognitive decline. Preclinical studies utilizing diabetic

rodent models demonstrate that hyperglycemia exacerbates

cerebrovascular dysfunction, which parallels observed cognitive

impairments, highlighting diabetes-specific vulnerabilities in

neurovascular coupling (35).
3.4 Oxidative stress and neuronal injury

Chronic hyperglycemia drives oxidative stress, a pivotal

mechanism underlying neuronal injury in diabetes. Sustained

elevation of blood glucose promotes excessive generation of ROS

and reactive nitrogen species (RNS), overwhelming endogenous

antioxidant defenses. This redox imbalance critically contributes

multifaceted biochemical cascades and cellular dysfunction.

Prolonged hyperglycemia activates four major oxidative stress-

inducing pathways: the polyol pathway, advanced glycation end-

product (AGE) accumulation, protein kinase C (PKC) activation,

and dysregulation of the hexosamine pathway (36, 37). These

interconnected pathways work synergistically to amplify ROS

production, which directly damages neuronal membranes,

proteins, and DNA.

Moreover, oxidative stress activates redox-sensitive transcription

factors, such as NF-kB, leading to the upregulation of pro-

inflammatory cytokines (e.g., TNF-a, IL-1b, IL-6) (37, 38). These

cytokines exacerbate neuroinflammation, creating a vicious cycle in

which oxidative stress and inflammation synergistically drive

neurodegeneration. Diabetic rodents exhibit elevated oxidative

markers (8-OHdG, nitrotyrosine) and increased apoptosis in dorsal

root ganglion (DRG) neurons, confirming oxidative damage as a

driver of peripheral neuropathy (39).
3.5 The interplay between T2DM and
Alzheimer’s disease

Emerging evidence reveals significant pathophysiological

intersections between diabetes mellitus, particularly T2DM, and

neurodegenerative disorders, with Alzheimer’s disease (AD)

demonstrating particularly strong associations (40). T2DM has

been established as an independent risk factor for accelerated
Frontiers in Endocrinology 04
cognitive decline and neurodegeneration, potentially increasing AD

susceptibility through shared biological mechanisms. The disease

continuum appears driven by overlapping pathways including

chronic insulin resistance, systemic inflammation, and

mitochondrial dysfunction, which collectively create a

neurodegenerative milieu (41, 42). Notably, hallmark AD

pathologies – b-amyloid (Ab) plaque deposition and tau protein

hyperphosphorylation – are exacerbated by diabetic metabolic

disturbances. Sustained hyperglycemia and impaired insulin

signaling in T2DM patients potentiate amyloidogenic processing

while compromising tau protein homeostasis, thereby accelerating

the neuropathological cascade characteristic of AD progression (43).
3.6 T2DM-related cognitive impairment
and gut-brain axis disruption

The gut-brain axis is a bidirectional communication system

between the gastrointestinal tract and the central nervous system

that influences cognitive function through various mechanisms

(44). In T2DM, significant alterations occur in the composition of

the gut microbiota, which affect cognitive abilities. Specific genera

(e.g., Parabacteroides and Lactobacillus) have been shown to

modulate metabolites, thereby improving cognitive behavior in

diabetic models (45). Changes in the gut microbiome directly or

indirectly impact brain function through vagal, endocrine, and

immune pathways. Metabolites directly activate vagal afferent

nerves, transmitting signals to the brain via vagal pathways. In

the endocrine pathway, enteroendocrine L cells release gut

hormones such as GLP1, peptide YY (PYY), and cholecystokinin

(CCK), which subsequently influence learning, memory, and mood.

Within the immune pathway, immune cells including helper T cell

1 (Th1), helper T cell 17 (Th17), regulatory T cells (Treg),

neutrophils, and macrophages are stimulated (46). Fecal

microbiota transplantation has demonstrated potential in

alleviating diabetes-related cognitive decline by altering gut

microbiota composition and enhancing brain insulin signaling

pathways (45).

Although the gut-brain axis plays a significant role in T2DM-

related cognitive impairment, it is essential to consider other

contributing factors, such as genetic predisposition and lifestyle.

The interactions between these factors and the gut-brain axis are

complex and require further research to fully elucidate the

underlying mechanisms.
4 Sociodemographic moderators in
T2DM-related cognitive impairment

In recent years, an increasing number of studies have explored

the potential roles of gender, age, educational level, and social

determinants in the link between T2DM and cognitive function

from demographic and sociological perspectives, offering new

pathways for identifying vulnerable populations and developing

intervention strategies.
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Age is a key factor for cognitive impairment in T2DM patients.

Older age has consistently been associated with a higher risk of

cognitive impairment. Studies show that individuals aged 60 and

above with T2DM are particularly susceptible to cognitive decline,

with the risk increasing with advancing age (47, 48).

Research shows that, independent of diabetes status, women

generally perform better in certain cognitive domains (e.g., global

cognition and verbal abilities) (49). However, other studies suggest

that middle-aged men with T2D have a higher risk of mild cognitive

impairment (MCI) compared to women (50).

Education is widely recognized as a core component of

cognitive reserve and also plays a significant moderating role in

the association between T2DM and cognitive function. Research by

Reinke published in BMC Public Health indicates that higher

education is not only associated with better glycemic control but

can also slow diabetes-related cognitive decline (51). Peña-González

further points out that education can mitigate the negative effects of

the disease by building cognitive reserve, enhancing an individual’s

neuroplasticity and cognitive resilience in the face of hyperglycemia

or metabolic dysregulation (52).

Social determinants such as socioeconomic status, race/

ethnicity, and healthcare access also play crucial roles in T2DM-

related cognitive impairment (53). Studies comparing elderly

populations in the US and Mexico found that low socioeconomic

status is significantly associated with cognitive decline, and the level

of social support significantly influences the cognitive trajectory of

diabetes (54).

In summary, gender, age, education, and social determinants all

play complex and interacting roles in the link between T2DM and

cognitive function. Research indicates that individuals with early-

onset diabetes, those with lower educational attainment, and those

of low socioeconomic status face a higher risk of cognitive

impairment. Theories such as cognitive reserve, the accumulated

stress model, and research on health inequalities provide

multidimensional perspectives for understanding diabetes-

induced cognitive impairment. Future research should deepen

efforts in the following areas: First, strengthen stratified studies on

different population subgroups to precisely identify high-risk

groups. Second, integrate metabolic, physiological, psychological,

and social dimensions to construct multi-level assessment models.

Third, enhance educational interventions and social support within

community health promotion to mitigate the cognitive risks

stemming from structural health inequalities.
5 T2DM management and cognitive
impairment

5.1 Glycemic control and cognitive
function in T2DM

The relationship between glycemic control and cognitive

performance represents a critical focus in diabetes research,

particularly in the context of neurodegeneration. Accumulating

evidence indicates that suboptimal glycemic management is
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strongly associated with accelerated cognitive impairment,

whereas rigorous blood glucose regulation may attenuate

neurodegenerative progression. In patients with T2DM, chronic

hyperglycemia and elevated glycated hemoglobin (HbA1c) levels

correlate with measurable declines in global cognitive function.

Multiple studies have shown that improving blood sugar control

can enhance cognitive function. For example, a systematic review

found that antidiabetic treatment can significantly alleviate the

decline in cognitive ability in diabetic patients (55).
5.2 Potential effects of common glucose-
lowering drugs on cognitive function

The potential impact of glucose-lowering drugs on cognitive

function is multifaceted, encompassing both adverse effects

resulting from drug-induced hypoglycemia and possible cognitive

benefits associated with specific drugs. These effects are

systematically summarized in Table 1.

As a first-line oral hypoglycemic agent for T2DM, metformin

demonstrates bidirectional regulatory effects on cognition.

Accumulating evidence suggests its neuroprotective properties

through mechanisms including AMPK signaling pathway

activation and oxidative stress inhibition, with demonstrated

improvements in specific cognitive domains such as verbal

learning, working memory, and executive function in diabetic

patients (56). Notably, prolonged metformin therapy may induce

vitamin B12 deficiency, which has been established as a risk factor

for cognitive decline (57, 58). This dual mechanism indicates that

while metformin may mitigate diabetes-related neurodegenerative

processes, it could paradoxically impair cognitive health in

susceptible individuals through nutrit ional metabolic

disturbances. Clinical protocols should therefore incorporate

regular serum vitamin B12 monitoring and timely nutritional

supplementation to prevent associated complications (59).

5.2.1 GLP-1 receptor agonists
The neuroprotective effects of GLP-1RA are believed to be

mediated through multiple mechanisms, including the reduction

of neuroinflammation, enhancement of mitochondrial function,

antioxidant stress, prevention of b-amyloid and tau protein

aggregation, and improvement of synaptic function (60). A

systematic review and meta-analysis found that GLP-1RA did not

significantly affect overall cognitive function in patients with type 2

diabetes. However, subgroup analysis indicated potential benefits

for patients under 65 years of age or those without a history of

cardiovascular or cerebrovascular disease, suggesting that age and

comorbidities may influence cognitive outcomes with GLP-1

therapy (61). Another study reported that the GLP-1RA

liraglutide improved short-term memory and memory composite

scores in obese patients with prediabetes or early-stage type 2

diabetes, independent of weight loss effects. This suggests that

GLP-1RA provide direct cognitive benefits in early-stage diabetes

(62). In animal models, GLP-1RA have shown promising results in

improving cognitive function. For example, liraglutide improved
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memory retention and increased hippocampal neuron count in an

Alzheimer’s disease mouse model, indicating its potential

neuroprotective effects (63).

5.2.2 Sodium-glucose cotransporter 2 inhibitors
(SGLT2is) exerts beneficial effects on cognitive impairment

through multifaceted mechanisms involving metabolic regulation,

anti-inflammatory actions, antioxidant properties, and modulation

of neurotrophic factors (64). Preclinical studies demonstrate that

dapagliflozin ameliorates cognitive deficits in diabetic murine

models by restoring hippocampal mitochondrial dynamics - a

critical process for synaptic plasticity and memory formation

(65). Particularly in dual pathology models combining T2DM and

AD, SGLT2is not only enhance insulin sensitivity but also

significantly reduce b-amyloid deposition, addressing two

fundamental pathological hallmarks of AD.

Clinical investigations reveal substantial cognitive

improvements associated with SGLT2i therapy, especially in

populations with mild cognitive impairment or established

dementia. A meta-analysis quantifying cognitive outcomes

showed a standardized mean difference of 0.88 (95% CI: 0.32-

1.44) in cognitive assessment scores, indicating clinically

meaningful enhancement (66).

Notably, large-scale clinical data analysis demonstrates significant

dementia risk reduction with SGLT2i use. In a population-based

study of 331,908 T2DM patients, SGLT2i treatment was associated

with 23% lower dementia incidence (HR: 0.77; 95% CI: 0.71-0.84)

(67). The observed cerebroprotection may derive from synergistic

effects including blood pressure optimization, sodium homeostasis

regulation, and metabolic reprogramming, collectively preserving

neuronal integrity in chronic metabolic disorders (68).

5.2.3 DPP-4 inhibitors
DPP-4is improve glucose tolerance and insulin sensitivity,

which are critical for maintaining cognitive function in diabetic

patients. Improvements in metabolic parameters such as reduced

fasting blood glucose and HbA1c levels are consistently associated

with better cognitive outcomes (69, 70). Sitagliptin has been shown

to reduce oxidative stress and promote hippocampal neurogenesis,

both essential for cognitive health. These effects are further

supported by the upregulat ion of genes involved in

neuroprotection and synaptic plasticity (69).

At the molecular level, DPP-4is likely exert their benefits via the

AMPK/mTOR pathway, enhancing neuronal autophagy and

reducing tau protein phosphorylation—mechanisms that are

neuroprotective (71). A meta-analysis involving 5,583 participants

demonstrated that DPP-4is significantly reduce the incidence of

cognitive impairment in T2DM patients, with a standardized mean

difference (SMD) of 0.99. Additionally, clinical studies revealed that

these agents improve scores on the Mini-Mental State Examination

(MMSE) and Instrumental Activities of Daily Living (IADL),

indicating measurable cognitive benefits (70, 72). Notably, in

elderly patients with mild cognitive impairment, DPP-4is stabilize

cognitive function by reducing glycemic variability (73).
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Preclinical evidence further supports these findings: in insulin-

resistant rat models, DPP-4is such as sitagliptin and vildagliptin

improve cognitive behaviors and restore cerebral mitochondrial

function, demonstrating protective effects against diet-induced

cognitive decline (74).

5.2.4 Sulfonylureas
Sulfonylureas may exert dual effects on cognitive function in

diabetic populations. Preclinical studies indicate potential

neuroprotective properties: glimepiride ameliorated learning and

memory deficits in diabetic rodent models, potentially through

antioxidant mechanisms and upregulation of BDNF levels (75).

Similarly, glyburide prevented chronic stress-induced cognitive

impairment in murine models, possibly via modulation of the

hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid

receptor stabilization (76).

However, these potential benefits must be weighed against well-

documented adverse effects. Sulfonylureas are associated with

hypoglycemia episodes and progressive b-cell exhaustion, factors
that may exacerbate cognitive decline, particularly in elderly

patients with compromised cerebral autoregulation. Population-

based studies reveal concerning epidemiological patterns. A

retrospective cohort analysis (n = 45,632 T2DM patients)

comparing sulfonylureas with DPP-4is demonstrated increased

dementia risk with sulfonylurea use over 4.82 mean follow-up

years (77). Network meta-analyses further position sulfonylureas

as second-highest among antidiabetic agents for dementia risk

escalation (surface under cumulative ranking [SUCRA] score:

73.4), surpassed only by insulin analogs (78).
5.3 Behavioral and lifestyle interventions:
synergistic effects of diet, exercise, and
cognitive training

Accumulating evidence supports behavioral and lifestyle

interventions—including dietary modification, physical exercise,

and cognitive training—as promising non-pharmacological

strategies to mitigate diabetes-related cognitive decline. T2DM is

a well-established independent risk factor for mild cognitive

impairment and dementia progression. While current

pharmacological interventions remain suboptimal, multimodal

lifestyle approaches demonstrate clinically meaningful potential

for preserving neurocognitive function in T2DM populations.

5.3.1 Exercise and cognitive function
Controlled trials reveal differential cognitive benefits of

structured exercise regimens in T2DM patients. Both resistance

training and aerobic exercise protocols show efficacy (79), with

meta-analytic data indicating significant attenuation of cognitive

decline through multicomponent programs (sessions >40 minutes,

≥4 times weekly over 6 months; pooled effect size: 0.61, 95% CI:

0.40–0.82) (80). Notably, intervention heterogeneity exists, with

some studies reporting only moderate effects or null findings in
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single-modality approaches, underscoring the need for optimized

intensity-duration parameters (81, 82).

5.3.2 Cognitive training interventions
Domain-specific cognitive interventions yield measurable

neuropsychological improvements. Dual-task training and

targeted cognitive remediation significantly enhance memory

performance and executive function in T2DM cohorts. Although

mechanistic links to glycemic control remain inconclusive, these

interventions demonstrate synergistic benefits when combined with

lifestyle education, enhancing both cognitive capacity and diabetes

self-management skills (83).

5.3.3 Combined interventions
Integrating diet, exercise, and cognitive training—seem to offer

the most comprehensive benefits. Research indicates that

multimodal interventions can improve cognitive function and

overall health outcomes in patients with T2DM (80). The LIFE

study, which included physical activity interventions, reported

beneficial effects on global cognitive function and memory

slowing in elderly individuals with T2DM, highlighting the

potential of a combined approach (84).

Current evidence positions multimodal lifestyle interventions as

clinically actionable strategies for addressing diabetes-associated

cognitive impairment. The triad of dietary optimization, structured

exercise, and cognitive engagement demonstrates synergistic

neuroprotection, potentially delaying dementia onset while

improving metabolic health. Future research should prioritize

protocol standardization.
6 Biomarkers of cognitive impairment
in T2DM

Given the significantly increased risk of dementia and cognitive

decline in patients with T2DM, research on predictive biomarkers and

early detection technologies for cognitive impairment in this population
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has gained increasing attention in recent years, which is of great

significance for achieving early diagnosis and timely intervention.

Recent research advances have revealed several categories of

biomarkers with potential clinical applications, including but not

limited to Neuron-Derived Exosomes (NDEs) andmetabolic signatures.

NDEs are small extracellular vesicles that can cross the blood-

brain barrier and are enriched with neuron-specific proteins, RNAs,

and other biomolecules. These vesicles have emerged as promising

tools for early diagnosis of neurodegenerative diseases (85). Chi et al.

discovered that plasma NDEs from T2DM patients showed

significantly reduced levels of mitochondrial complex I protein

NDUFS3 and complex II protein SDHB. Lower SDHB levels were

positively correlated with progression from MCI to AD (86). Specific

miRNAs and proteins in NDEs, including but not limited to miR-185-

5p, miR-132-3p, and miR-34a-5p (87–89), have been linked to AD

and cognitive impairment, highlighting their biomarker potential.

Elevated myo-inositol (MI) concentrations coupled with

reduced glutamate (Glu), Glx (glutamate + glutamine), and NAA/

Cr (N-acetylaspartate/creatine) ratios within the hippocampus

represent sensitive metabolic biomarkers for monitoring diabetic

cognitive impairment progression (90). Additional metabolic

biomarkers under consideration include C-reactive protein, tau

protein, BDNF and AGEs (91).

The hippocampus, a brain region critically involved in learning

and memory processes, may serve as an early “warning indicator”

for diabetes-associated cognitive impairment through its volumetric

changes (92). High-resolution MRI segmentation analyses have

demonstrated significant volumetric reductions in memory-

critical hippocampal subfields (CA1, dentate gyrus [DG], and

subiculum) among middle-aged T2DM patients. These specific

subregions are known to be fundamentally involved in memory

encoding and consolidation processes. These structurally measured

hippocampal subfield atrophies not only directly correlated with

cognitive performance but may also reflect persistent neural

damage caused by glucose metabolic dysregulation. Importantly,

these findings provide neuroimaging evidence for early

identification of high-risk populations (93).
TABLE 1 Potential effects of common glucose-lowering drugs on cognitive function.

Medicine Glucose-lowering efficacy Core mechanisms of
glucose lowering

Cognitive outcomes

Metformin High Suppression of hepatic
gluconeogenesis and improvement of
peripheral insulin sensitivity

Activation of AMP-activated protein kinase (AMPK) signaling and
Attenuation of oxidative stress

GLP-1RA High to very high Stimulation of insulin secretion and
Suppression of glucagon secretion

Reduction of neuroinflammation, enhancement of mitochondrial
function, antioxidant stress, prevention of b-amyloid and tau
protein aggregation, and improvement of synaptic function

SGLT2is Intermediate to high Inhibition of renal
glucose reabsorption

Anti-inflammatory actions, antioxidant properties, and modulation
of neurotrophic factors

DPP-4i Intermediate Inhibition of dipeptidyl peptidase-4
(DPP-4) activity and Enhancement of
intact GLP-1 and GIP levels

Activation of AMPK signaling cascade and attenuation of tau
protein phosphorylation

Sulfonylureas High Potentiation of pancreatic b-cell
insulin secretion

Antioxidant stress and promotion of BDNF transcription
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In newly diagnosed T2DM patients, elevated venular tortuosity

shows significant association with cognitive impairment. This

correlation remained significant after adjustment for multiple

demographic and health factors, suggesting retinal vascular

tortuosity may serve as an early indicator of cognitive decline

(94). Retinal vascular metrics (RVMs) can function as imaging

biomarkers to predict cognitive impairment in T2DM, thereby

enhancing risk stratification (95). Furthermore, patients with

T2DM and mild cognitive impairment (MCI) exhibit significant

thinning of the macular retinal nerve fiber layer (RNFL) and

ganglion cell layer (GCL) (96). These structural changes can be

effectively quantified through in vivo optical coherence tomography

(OCT) imaging, highlighting the potential of retinal assessment for

predicting diabetes-related cognitive dysfunction (97).

The complexity of T2DM-related cognitive dysfunction

involves multiple pathways and contributing factors, necessitating

a multi-faceted approach to biomarker discovery. Future research

should prioritize validation of these biomarkers in larger

longitudinal cohorts and explore their potential for guiding

personalized therapeutic strategies.
7 Conclusion

In summary, a complex pathophysiological relationship exists

between T2DM and cognitive impairment. Mechanisms including

insulin resistance, chronic inflammation, vascular injury, and

oxidative stress collectively drive disease progression. Effective

glycemic control not only mitigates metabolic dysregulation but

also exerts protective effects on cognitive function. Concurrently,

factors such as age, educational attainment, and socioeconomic

determinants play pivotal roles in disease development, thereby

providing new perspectives for multidimensional intervention

strategies. Furthermore, the discovery of novel biomarkers and

early detection technologies offers promising avenues for early

screening and disease monitoring.

These findings hold significant implications for both clinical

practice and public health: On the one hand, they underscore the

necessity for early cognitive assessment and integrated management

in T2DM patients; On the other hand, they emphasize the

importance of establishing social support systems to reduce

cognitive risk in high-risk populations. However, current research

still has limitations, such as small sample sizes in longitudinal

cohort studies, incomplete understanding of mechanistic

differences across diverse ethnic groups, and the need for further

validation of newly identified biomarkers in clinical translation.
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Future research could focus on leveraging multi-omics

technologies to explore novel pathogenic mechanisms, conducting

long-term, multicenter, cross-cultural cohort studies to clarify the

universality of risk factors, and developing early warning models

based on emerging biomarkers. There is also an urgent need to

explore personalized comprehensive treatment strategies that

integrate metabolic regulation and social interventions, thereby

providing a more robust theoretical and practical foundation for

improving cognitive health in patients with T2DM.
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