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Diabetes mellitus (DM) represents a complex metabolic disorder posing urgent

diagnostic and therapeutic challenges worldwide. Traditional biomarkers such as

HbA1c and OGTT fail to capture the dynamic nature of metabolic remodeling

underlying DM pathophysiology. Metabolomics, by offering real-time, systems-

level insights into small-molecule dynamics, has emerged as a promising strategy

for both early disease detection and therapeutic target discovery. Recent studies

have highlighted the diagnostic and prognostic value of metabolites, including

branched-chain amino acids, lipid derivatives, and bile acids. Despite its immense

potential, the clinical application of metabolomics remains hindered by technical

limitations, such as cross-cohort standardization and data interpretation

complexity. Future advances integrating artificial intelligence and multi-omics

strategies may transform metabolomics from an exploratory tool to a clinical

mainstay in diabetes management. This review offers a comprehensive synthesis

of recent advances in metabolomics-driven diabetes research, with a particular

focus on elucidating key metabolic pathways, identifying emerging biomarkers,

and exploring translational opportunities. To fully realize the clinical potential of

metabolomics, further efforts toward analytical standardization, cross-cohort

validation, and the integration of artificial intelligence–powered tools will be

essential to bridge the gap from bench to bedside in diabetes care.
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1 Introduction

Diabetes mellitus (DM) is an escalating global health crisis,

currently affecting over 537 million people worldwide, with

projections indicating an increase to 643 million by 2030 and 783

million by 2045, according to the International Diabetes Federation

(1). As a leading cause of morbidity and mortality, DM imposes a

substantial socioeconomic burden due to its diverse complications,

including cardiovascular disease, nephropathy, neuropathy, and

retinopathy (2). Despite notable advances in diagnostics and

treatment, the global prevalence of diabetes continues to rise,

underscoring the urgent need for more effective and personalized

disease management strategies (3).

Despite the widespread use of traditional diagnostic markers

such as hemoglobin A1c (HbA1c), the oral glucose tolerance test

(OGTT), and fasting plasma glucose (FPG), these methods have

inherent limitations in capturing the dynamic and multifactorial

nature of diabetes pathogenesis. HbA1c levels, for instance, are

influenced by variations in erythrocyte lifespan, potentially leading

to inaccuracies in individuals with anemia or hemoglobinopathies

(4). Similarly, although OGTT is the gold standard for diabetes

diagnosis, it reflects only a single time point of glucose metabolism

and fails to account for fluctuations in insulin sensitivity and

metabolic adaptations (5). FPG remains widely used due to its

accessibility, low cost, and standardized protocols (6). However, it

has several inherent limitations: requiring prolonged fasting (≥8

hours), representing only a single metabolic snapshot, and

exhibiting sample stability concerns (7). Furthermore, while

genome-wide association studies (GWAS) have identified

numerous genetic loci associated with diabetes susceptibility,

genetic predisposition alone cannot fully explain the disease’s

heterogeneity (8).

In diabetes treatment, the molecular mechanisms underlying b-
cell dysfunction and tissue-specific insulin resistance remain

incompletely understood, hindering the development of targeted

therapies (9). Furthermore, a subset of patients demonstrates

suboptimal responses to first-line treatments such as metformin,

highlighting the need for personalized therapeutic strategies (10).

The absence of reliable early-stage biomarkers and individualized

treatment targets underscores the urgent need for innovative

approaches capable of comprehensively mapping metabolic

perturbations in diabetes.

Metabolomics is the large-scale study of small molecules within

biological systems such as cells, biofluids, tissues, or entire organisms

(11). As a rapidly evolving discipline following genomics and

proteomics, metabolomics provides a comprehensive snapshot of

an organism’s metabolic composition (12). Since the launch of the

Human Metabolome Database (HMDB) in 2007, metabolomics has

advanced significantly and has been widely applied across multiple

domains, including disease diagnostics, drug discovery, nutritional

science, toxicology, environmental research, and plant biology (13–

17). Analytical platforms such as mass spectrometry (MS), nuclear

magnetic resonance (NMR), and various chromatography methods

(e.g., HPLC, GC) enable precise quantification of thousands of

metabolites (11). Recent innovations, such as spatial and single-cell
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metabolomics, are further enhancing its potential in precision

medicine (18, 19). Compared with other omics technologies,

metabolomics offers distinct translational advantages. While

genomics and transcriptomics capture static or upstream regulatory

information, and proteomics is limited by protein coverage and

complexity, metabolomics reflects the integrated outcomes of

biological processes and environmental exposures (20). This

capacity to detect real-time functional changes makes

metabolomics particularly valuable for monitoring disease states,

identifying therapeutic targets, and enabling individualized

interventions in diabetes.

One of the most powerful applications of metabolomics in

diabetes lies in its capacity to decode metabolic reprogramming, a

hallmark of disease pathogenesis marked by disrupted nutrient

sensing, energy metabolism, and hormonal signaling (21). At the

tissue level, skeletal muscle in individuals with diabetes exhibits

mitochondrial dysfunction, shifting from efficient oxidative

phosphorylation to incomplete fatty acid oxidation and the

accumulation of lipotoxic intermediates, such as long-chain

acylcarnitine, which impair insulin signaling (22). Concurrently,

inflamed and insulin-resistant adipose tissue secretes pro-

inflammatory cytokines that exacerbate hepatic gluconeogenesis

and contribute to systemic insulin resistance (23). These systemic

perturbations ultimately lead to pancreatic b-cell dedifferentiation,
wherein chronic hyperglycemia induces epigenetic silencing of key

metabolic regulators (e.g., PDX1 and MAFA). This blunts glucose-

stimulated insulin secretion, perpetuating a vicious cycle of

metabolic deterioration. Through high-resolution metabolic

profiling, metabolomics enables the detection of these

maladaptive changes, offering new opportunities for early

diagnosis, patient stratification, and development of targeted

therapeutics tailored to specific metabolic subtypes of diabetes.

However, significant challenges remain in translating

metabolomic findings into clinical practice, including the

standardization of analytical protocols, cross-population validation,

and the biological interpretation of complex datasets. Consequently, a

comprehensive overview of the role of metabolomics in decoding the

metabolic network of diabetes is urgently needed. This review

therefore aims to (1) summarize recent advances in metabolomics

technologies relevant to diabetes, (2) elucidate key mechanisms of

metabolic reprogramming, (3) highlight promising biomarkers and

patient stratification strategies, and (4) discuss translational

applications and future challenges. Through this synthesis, we aim

to delineate the potential of metabolomics in advancing precision

medicine in diabetes management.
2 Metabolomics technologies

2.1 Analytical platforms

Metabolomics has emerged as a foundational discipline in

contemporary biomedical research, offering a systems-level

approach to characterize metabolic perturbations in complex
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diseases such as diabetes. The field employs diverse analytical

platforms, each with distinct advantages and technical limitations.

Mass spectrometry (MS) is regarded as the gold standard in

metabolomic investigations, owing to its exceptional sensitivity, mass

resolution, and metabolite coverage (Table 1). Current MS-based

metabolomics primarily employs two complementary strategies:

untargeted and targeted approaches (12). Untargeted metabolomics

relies on high-resolution mass spectrometers (HRMS), including

Fourier transform ion cyclotron resonance (FT-ICR), time-of-flight

(TOF), and Orbitrap instruments, to achieve comprehensive

metabolic profiling (24, 25). These platforms offer sub-ppm mass

accuracy, enabling confident metabolite identification. For example, a

UHPLC-Q Exactive HF-X MS-based platform provides sub-ppm

mass accuracy (± 10 ppm) and can detect over 2,000 metabolite ions

in untargeted metabolomics, highlighting its superior performance in

high-throughput metabolite profiling (26). In contrast, targeted

metabolomics focuses on the accurate quantification of predefined

metabolites or pathways, typically employing triple quadrupole

(QQQ) mass spectrometers operated in multiple reaction

monitoring (MRM) mode to enhance sensitivity and specificity

(24, 27).

The coupling of MS with liquid chromatography (LC) or gas

chromatography (GC) significantly improves metabolite separation

and identification. LC-MS is particularly well-suited for analyzing

both polar and non-polar metabolites, whereas GC-MS is primarily

employed for volatile and thermally stable compounds. LC-MS

demonstrates exceptional versatility in separating a wide range of

compound classes across a broad polarity spectrum (28). This

technique achieves a mass accuracy of 5–10 ppm in quantifying

polar metabolites such as branched-chain amino acids, enabling the

precise identification of type 2 diabetes mellitus (T2DM)
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progression biomarkers in large-scale cohort studies like the

Framingham Heart Study (29). The predominant use of soft-

ionization techniques in LC-MS facilitates molecular ion

formation with minimal fragmentation, thereby enhancing the

identification of unknown compounds (30). A key advantage of

LC-MS over GC-MS is that it typically eliminates the need for

chemical derivatization, as it does not require high temperatures or

compound volatility. Additionally, LC-MS offers superior

sensitivity across a broad molecular weight range (from <600 Da

to larger molecules), including phospholipids, conjugated bile acids,

glycosides, and sugars (31). GC-MS remains the gold standard for

analyzing volatile and thermally stable metabolites, is capable of

separating naturally volatile compounds (e.g., ketones, aldehydes)

as well as non-volatile compounds rendered volatile through

derivatization (e.g., sugars, amino acids) (32). This technique

shows particular efficacy in fatty acid analysis and has proven

invaluable for clinical research on metabolic disorders (33).

However, GC–MS is limited by relatively poor reproducibility,

due to potential structural alterations during derivatization (34).

Nuclear magnetic resonance (NMR) spectroscopy is another

cornerstone technology in metabolomics, offering non-destructive,

highly reproducible, and quantitative analysis of metabolites. NMR is

particularly well-suited for studying complex biofluids and tissues, as

it requires minimal sample preparation while offering detailed

structural insights into metabolites. Additionally, NMR can be

applied to in vivo tissues and living samples, enabling real-time

metabolic profiling and dynamic flux analysis (35). NMR-based

metabolomics has proven valuable in identifying metabolic

signatures associated with diabetes progression and complications.

For example, it has revealed dysregulation of branched-chain amino

acids (BCAAs) and lipid metabolism in patients with T2DM (29).
TABLE 1 Comparison of metabolomics technologies.

Technology Detection Principle Main Advantages Main Disadvantages Applicable Scenarios

NMR Nuclear magnetic resonance
Non-destructive, high
reproducibility, quantitative

Low sensitivity, limited to
specific metabolites

Biofluid metabolomics,
metabolic pathway studies

MS Mass spectrometry ion detection
High sensitivity, capable of detecting
low-abundance metabolites

Requires complex
sample preparation

Large-scale
metabolomic screening

GC-MS
Gas chromatography-
mass spectrometry

Suitable for volatile metabolites Requires derivatization
Small molecule analysis, such
as fatty acids and sugars

LC-MS
Liquid chromatography-
mass spectrometry

Suitable for both polar and non-
polar metabolites

Complex data processing
is required

Drug metabolism, lipidomics

CE-MS
Capillary electrophoresis-
mass spectrometry

High resolution, ideal for charged
small molecules

Influenced by buffer
composition,
lower reproducibility

Neuro-metabolism, energy
metabolism research

FT-ICR-MS
Fourier transform ion cyclotron
resonance mass spectrometry

Ultra-high resolution, precise
mass accuracy

Expensive instrumentation,
high maintenance cost

Lipidomics,
environmental metabolomics

IMS-MS
Ion mobility spectrometry-
mass spectrometry

Separates structural isomers,
improves metabolite identification

Requires advanced
data interpretation

Lipidomics,
biomarker discovery

MALDI-MSI
Matrix-assisted laser desorption/
ionization mass spectrometry imaging

High spatial resolution, direct
tissue imaging

Requires specialized
sample preparation

Cancer metabolomics,
neurodegenerative
disease studies

Raman
Spectroscopy

Light scattering-based
metabolite detection

Non-invasive, label-free, real-
time analysis

Lower sensitivity compared
to MS

Single-cell metabolism, live-
cell monitoring
frontiersin.org

https://doi.org/10.3389/fendo.2025.1624878
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu et al. 10.3389/fendo.2025.1624878
However, NMR’s relatively lower sensitivity compared to MS limits

its ability to detect low-abundance metabolites. Recent advancements

in high-resolution two-dimensional NMR spectroscopy may help

overcome this limitation and broaden the applicability of NMR in

metabolomics research (36).

In recent years, metabolomics technology has been continuously

developing. In addition to traditional NMR and MS analysis

methods, a variety of emerging technologies have shown unique

advantages in the detection and quantification of specific metabolites.

Among them, capillary electrophoresis-mass spectrometry (CE-MS)

combines the high resolution of capillary electrophoresis with the

high sensitivity of mass spectrometry (37). It is particularly suitable

for the quantitative analysis of small molecule polar metabolites (such

as organic acids, nucleotides, and amino acids) and has been widely

used in the study of neural metabolism and energy metabolism.

Fourier transform ion cyclotron resonance mass spectrometry (FT-

ICR-MS) has unique advantages in the accurate identification of

complex metabolites with its ultra-high resolution and extremely low

mass error, especially in lipidomic and environmental metabolomics

research (38). On the other hand, ion mobility spectrometry-mass

spectrometry (IMS-MS) can distinguish metabolites with similar

structures (such as isomers) by combining gas phase ion separation

andmass spectrometry analysis, and has important value in lipidomic

and biomarker screening research (39). This innovation has been

particularly impactful in lipidomics, as evidenced by the successful

resolution of ceramide isomers (e.g., C26:0) in clinical studies, thereby

improving lipid profiling accuracy in metabolic diseases (40).

Notably, matrix-assisted laser desorption/ionization mass

spectrometry imaging (MALDI-MSI) is a high-spatial-resolution

metabolomics imaging technique that can directly detect metabolite

distribution on tissue sections (41). For example, MALDI-MSI has

been used for spatial imaging of the metabolic profile of brain tissue

in patients with Alzheimer’s disease, revealing changes in key

metabolic pathways during disease progression (42). As reported by

Prentice et al., MALDI-MSI has successfully mapped the in situ

spatial distribution of hormones such as insulin, glucagon, and their

protein variants in human and mouse islets with high spatial

resolution. Their study revealed distinct hormone distribution

patterns between the core region (b cells) and the peripheral region

(a cells) of the islets, confirmed through serial section co-localization

immunofluorescence and mass spectrometry imaging (43). In

addition, Raman spectroscopy, as a non-invasive, label-free

metabolomics detection method, has been gradually applied to in

vivo single-cell metabolic monitoring and cancer diagnosis (44).

Combined with surface-enhanced Raman scattering (SERS)

technology, this method can significantly improve the sensitivity of

metabolite detection and show great potential in the fields of stem cell

metabolism and personalized medicine (45). Nevertheless, MS-based

metabolomics continues to face challenges, including data

complexity, metabolite identification difficulties, and the

requirement for advanced bioinformatics solutions.

The continuous development of these technologies has not only

broadened the scope of metabolite detection but also improved the

accuracy of metabolomics data analysis. In the future, the combined

application of multiple technologies will become an important
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trend in metabolomics research, providing more powerful

technical support for precision medicine, disease mechanism

research, and biomarker discovery.
2.2 Data analysis workflow in
metabolomics

Metabolomics data analysis is a complex, multi-stage process

that demands a methodical and rigorous approach to convert raw

spectral data into biologically interpretable results. A critical step

after sample acquisition is data preprocessing, including noise

reduction, peak detection, and spectral alignment (Figure 1),

typically performed using specialized software such as MS-DIAL

and XCMS (46). Noise reduction filters out random signal

fluctuations, while peak detection and alignment standardize data

across samples to ensure reproducibility. Normalization is then

applied to minimize technical variability (e.g., batch effects) and

improve cross-dataset comparability (47). Subsequently, an

exploratory data assessment is conducted using visualization tools

(e.g., histograms, boxplots) to detect outliers and validate data

quality before further statistical analysis.

Metabolomics data analysis can be broadly classified into

hypothesis-driven and hypothesis-free approaches. In hypothesis-

driven analyses, parametric (e.g., Student’s t-test) or non-

parametric tests (e.g., Mann–Whitney U test) are applied to

compare metabolite concentrations between defined groups—such

as diabetic patients versus healthy controls—depending on data

distribution (48). For hypothesis-free (exploratory) analyses,

multivariate statistical methods are employed to reveal hidden

metabolic patterns. Principal Component Analysis (PCA), an

unsupervised approach, reduces data dimensionality while

highlighting major sources of metabolic variation (49). Supervised

methods, including Partial Least Squares Discriminant Analysis

(PLS-DA) and Orthogonal Partial Least Squares (OPLS), further

refine interpretations by suppressing noise and maximizing group

separation (50). These are frequently integrated with PCA to isolate

biologically relevant metabolic changes from confounding

variation (51).

Accurate metabolite annotation and identification are critical

for deriving biological insights from metabolomics data. This

process entails matching experimental spectral features against

curated reference databases (e.g., METLIN), which house

extensive collections of standardized metabolite spectra (52). For

uncharacterized or novel compounds, advanced computational

pipelines such as SIRIUS coupled with CSI: FingerID enable de

novo structural elucidation by analyzing mass spectral patterns and

fragmentation signatures (53). This dual-strategy framework

facilitates comprehensive metabolite characterization, bridging the

gap between known biochemical entities and novel metabolic

discoveries, thereby significantly enhancing the depth of

metabolomic investigations.

To elucidate the biological relevance of identified metabolites,

systematic pathway analysis is conducted to integrate metabolites

into established metabolic networks. Widely utilized platforms such
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as MetaboAnalyst and the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database facilitate this process (54, 55).

MetaboAnalyst provides an intuitive interface for metabolite set

enrichment analysis and pathway visualization, whereas KEGG

offers curated, species-specific metabolic pathway references.

Through this functional mapping, researchers can pinpoint

dysregulated metabolic pathways associated with specific

conditions, yielding mechanistic insights into disease pathogenesis

and revealing potential intervention targets (56).

The integration of machine learning (ML) in metabolomics has

transformed the field by facilitating high-dimensional pattern

recognition and the development of predictive metabolic models.

Advanced algorithms, including random forest and support vector

machines (SVM), are routinely employed for feature selection and

classification model construction (57). For instance, a large-scale

prospective cohort study leveraging NMR-based metabolomics

combined with ML approaches identified a nine-metabolite panel

that significantly enhanced the prediction of T2DM progression in

prediabetic individuals (58). A primary goal of metabolomics research is

the discovery and validation of biomarkers. The diagnostic potential of

candidate biomarkers is rigorously assessed through receiver operating

characteristic (ROC) curve analysis, with the area under the curve

(AUC) serving as a key metric for predictive performance evaluation

(59). Promising biomarkers undergo multi-stage validation, including

in vivo studies using animal models or independent clinical cohorts, to

verify their biological relevance and translational applicability (60, 61).

To elucidate the complexity of biological systems, integrated

multi-omics approaches have emerged as a powerful strategy. The

synergistic combination of metabolomics with complementary

omics layers (e.g., transcriptomics, proteomics) enables systematic

reconstruction of molecular interactions and regulatory networks
Frontiers in Endocrinology 05
(62). Advanced computational frameworks, including Multi-Omics

Factor Analysis (MOFA) and Weighted Gene Co-Expression

Network Analysis (WGCNA), provide robust solutions for data

integration and biological interpretation, offering holistic insights

into disease pathogenesis and potential intervention strategies (63,

64). This systems biology paradigm significantly enhances the

discovery of mechanistic biomarkers and druggable targets,

advancing both basic research and translational applications.
3 Metabolic reprogramming and
biomarker discovery

The pathogenesis of diabetes involves complex metabolic

reprogramming, characterized by eventual insulin resistance and b-
cell dysfunction (65). Insulin resistance, a defining feature of T2DM, is

strongly associated with impaired mitochondrial function in skeletal

muscle (66). b-cell dysfunction represents a fundamental pathological

mechanism common to both T1DM and T2DM, characterized by

progressive insulin secretory failure and consequent hyperglycemia

(67, 68). Understanding the abnormalities of key metabolic pathways

in the development of diabetes and making timely early diagnosis are

crucial for mitigating disease progression and preventing

complications (69).
3.1 Amino acid metabolites

As shown in Figure 2, branched-chain amino acids (BCAAs)

and lipid intermediates play a pivotal role in metabolic

reprogramming. The Framingham Heart Study established a
FIGURE 1

Integrated workflow of metabolomics application in diabetes. The six-step pipeline starts with (1) sample collection and pretreatment from various
biological fluids or tissues (e.g., plasma, urine, feces); (2) metabolite extraction and detection using LC-MS, GC-MS, or NMR platforms; (3) data
preprocessing, including peak alignment, denoising, and batch correction; (4) statistical analysis including dimensionality reduction, differential
testing, network inference, and machine learning models (e.g., SVM, random forest); (5) biomarker discovery and pathway interpretation, guided by
ROC curve analysis and enrichment tools such as KEGG and MetaboAnalyst; and (6) clinical translation, encompassing early screening, disease
stratification, prediction of complications, and treatment response monitoring.
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seminal association between elevated BCAAs and aromatic amino

acids (e.g., tyrosine, phenylalanine) with increased T2DM risk over

a 12-year follow-up period (29). This finding has been consistently

validated across multi-ethnic cohorts (70, 71), solidifying BCAAs as

robust predictive biomarkers for early-stage T2DM through their

demonstrated role in insulin resistance and dysregulated

glucose metabolism.

Aromatic amino acids (AAAs) have similarly emerged as key

metabolic regulators in diabetes progression. The METSIM study

identified 3-(4-hydroxyphenyl) lactate, a phenylalanine catabolite,

as significantly correlated with impaired b-cell function and

elevated diabetes risk (72). Notably, ethnic-specific metabolic

patterns have been observed, with tyrosine demonstrating

stronger diabetogenic associations in South Asian populations

compared to Europeans (73), suggesting population-specific

metabolic vulnerabilities may underlie disparate T2DM

incidence rates.

In addition, the imbalance of the ratio of glutamate and

glutamine (Gln/Glu) is one of the key metabolic abnormalities in

the development of T2DM, and its mechanism involves b-cell
damage, insulin resistance, and systemic metabolic disorders.

Glutamate is the main excitatory neurotransmitter in the central

nervous system, which mediates neuroexcitotoxicity by activating

NMDA receptors (NMDARs). Long-term NMDA treatment

inhibits b-cell viability, reduces ATP synthesis, and impairs

glucose-stimulated insulin secretion (GSIS) (74). Glutamine is one

of the most abundant non-essential amino acids and is involved in
Frontiers in Endocrinology 06
regulating pancreatic b-cell function and insulin secretion. A case-

cohort study showed that higher baseline plasma glutamate levels

were associated with a significantly increased risk of T2DM, while

higher glutamine levels were associated with a lower risk of T2DM,

and higher Gln/Glu (glutamine-to-glutamate ratio) was associated

with a significantly reduced risk of T2DM (75). This suggests that

plasma glutamate and the Gln/Glu ratio can be used as predictive

markers for T2DM risk.
3.2 Lipid metabolites

Lipid metabolism is critically involved in the pathogenesis of

T2DM. Patients with T2DM often display elevated triglycerides and

small, dense low-density lipoprotein (LDL) particles, as well as

decreased high-density lipoprotein (HDL) cholesterol, even when

their LDL cholesterol levels remain normal or near-normal (76).

Certain lipid markers, such as diacylglycerols (DAGs), have been

identified as early predictors of T2DM risk. Specifically, DAGs

demonstrate a positive correlation with insulin resistance, as

assessed by the Homeostatic Model Assessment for Insulin

Resistance (HOMA-IR) (77). These findings indicate that DAGs

may serve as useful biomarkers for the early detection of individuals

at risk for T2DM.

A critical mediator of insulin resistance involves crosstalk between

adipose tissue and hepatic metabolism, termed the “fat-liver axis”

(78). Fatty acid-binding protein 4 (FABP4), an adipokine secreted by
FIGURE 2

Visual summary of metabolic reprogramming in diabetes. This schematic illustrates six key metabolic subsystems that undergo characteristic shifts
during the development of diabetes: amino acids, lipids, organic acids, bile acids, gut microbiota–derived metabolites, and sphingolipids. These
metabolic alterations contribute to two central pathological processes: insulin resistance and b-cell dysfunction. Red arrows (↑) indicate metabolites
consistently upregulated in diabetes, such as BCAAs, AAAs, DAGs, and lactate, which are associated with increased disease risk. Green arrows (↓)
represent downregulated, typically protective metabolites, such as HDL, butyrate, and S1P, suggesting impaired metabolic regulation. The diagram
highlights metabolic crosstalk and mechanistic interdependencies, emphasizing metabolomics-based opportunities for biomarker discovery and
targeted intervention in diabetes.
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adipocytes, activates hepatic toll-like receptor 4 (TLR4) signaling,

thereby promoting inflammatory responses and stimulating excessive

gluconeogenesis (79). This maladaptive pathway worsens

hyperglycemia and perpetuates insulin resistance. The FABP4-TLR4

signaling axis has consequently emerged as a promising therapeutic

target for improving insulin sensitivity in T2DM.

Targeted metabolomics studies have further underscored the

significance of acylcarnitine, key intermediates in fatty acid

metabolism, as predictors of T2DM risk. Diminished mitochondrial

oxidative capacity results in the accumulation of long-chain

acylcarnitine, which interferes with insulin signaling pathways and

impairs glucose uptake (80). These metabolites, produced during

incomplete fatty acid b-oxidation, serve as sensitive biomarkers of

mitochondrial dysfunction. A study has found that circulating long-

chain acylcarnitine concentrations are significantly elevated in

patients with T2DM (81). Elevated concentrations of specific

acylcarnitine, particularly C3 and C5, correlate strongly with

impaired insulin sensitivity and dysregulated glucose metabolism

(66), reinforcing their potential utility in early disease detection.
3.3 Organic acids

Organic acids are key products of energy metabolism and

intermediary metabolism (82). Alterations in their concentrations

may indicate metabolic pathway dysregulation, particularly in

early-stage diabetes. Variations in levels of organic acids, such as

citric acid, lactic acid, and a-ketoglutaric acid, are strongly

associated with insulin resistance, mitochondrial dysfunction, and

impaired glucose metabolism, suggesting their potential as early

diagnostic biomarkers for diabetes (83).

Citric acid, a central intermediate in the tricarboxylic acid (TCA)

cycle, has demonstrated glucose-lowering effects in animal studies,

significantly reducing blood glucose and insulin resistance while

enhancing insulin sensitivity (84). This implies that diminished

citrate levels may signal aberrant glucose metabolism and elevated

diabetes risk. A clinical trial in obese, insulin-resistant children

revealed that citric acid exhibited the most pronounced metabolic

changes during weight loss and correlated positively with homeostasis

model assessment of insulin resistance (HOMA-IR) scores (85).

a-Ketoglutarate, another pivotal TCA cycle intermediate,

participates in amino acid metabolism and redox homeostasis.

Depleted a-ketoglutarate levels are linked to oxidative stress and

disrupted energy metabolism, potentially serving as an early marker

of diabetic metabolic dysfunction (86). Blood lactate is an indicator of

the gap between energy expenditure and oxidative capacity, and is

clinically used to indicate energy imbalance associated with strenuous

exercise, hypoxia, and ischemia (87). Insufficient oxidative capacity

can lead to the development of insulin resistance and type 2 diabetes

(88). Elevated fasting plasma lactate levels are observed in diabetic

patients compared to non-diabetic individuals (89), with further

increases noted in poorly controlled T1DM and glycogenic liver
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disease (90). These findings position lactate as a predictive biomarker

for diabetes progression. Additionally, longitudinal lactate

monitoring may aid in evaluating metabolic status and therapeutic

efficacy in diabetic patients (91).
3.4 Bile acids

Bile acids (BAs) are not only key mediators of fat digestion and

absorption, but also important signaling molecules that regulate

glucose and lipid metabolism by activating nuclear receptors and

membrane receptors (92). In T2DM and obesity, the synthesis,

composition, and signal transduction of bile acids are significantly

changed, directly involved in the process of insulin resistance (IR)

and b-cell dysfunction. Bile acids are natural ligands of Farnesoid X

Receptor (FXR). FXR can regulate the synthesis of bile acids itself

and affect glucose metabolism (inhibit hepatic gluconeogenesis,

promote glycogen synthesis, and enhance insulin sensitivity).

Secondary bile acids are high-affinity ligands of TGR5. After

activation, TGR5 stimulates intestinal L cells to secrete glucagon-

like peptide-1 (GLP-1), promote insulin secretion, and improve

blood sugar control (93).
3.5 Gut microbiome and its metabolic
products

The gut microbiome and its metabolic products constitute

another critical modulator of b-cell function. The microbial

metabolite trimethylamine N-oxide (TMAO) disrupts b-cell
physiology by attenuating intracellular calcium signaling, thereby

compromising insulin exocytosis while simultaneously promoting

endoplasmic reticulum stress and apoptotic pathways (94). TMAO

concentrations are elevated in diabetic patients since TMAO can

directly reduce glucose-stimulated insulin secretion (GSIS) in MIN6

cells and mouse or human pancreatic islets (95). Inhibition of

TMAO production can improve b-cell GSIS, b-cell ratio, and

glucose tolerance in diabetic mouse models.

In contrast, beneficial microbiota-derived short-chain fatty

acids (SCFAs) like butyrate exert protective effects by suppressing

pro-inflammatory cytokine signaling and maintaining normal

insulin secretory capacity in b-cells (96). Compared with healthy

controls, patients with type 2 diabetes have reduced intestinal flora

diversity, fewer butyrate-producing bacteria, and lower fecal SCFA

concentrations (97). Fecal microbiota transplantation (FMT) from

healthy donors has been shown to enhance insulin sensitivity in

individuals with metabolic syndrome, accompanied by increased

abundance of SCFAs-producing bacteria and favorable shifts in

microbial metabolites (98). These findings highlight the complex

interplay between metabolic and microbial factors in b-
cell dysfunction.
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3.6 Dysregulated sphingolipid metabolism

Increasing evidence indicates that abnormal sphingolipid

metabolism is deeply involved in the metabolic reprogramming of

diabetes (especially T2DM) by interfering with insulin signaling,

inducing chronic inflammation, destroying mitochondrial function,

and promoting b-cell apoptosis (99). Mechanistically, ceramide

accumulation activates pro-inflammatory signaling through the

CD36/NF-kB pathway, upregulating thioredoxin-interacting

protein (TXNIP) expression and inducing mitochondrial

oxidative stress, which collectively impair b-cell insulin secretion

and viability (100). Other sphingolipid metabolites, such as

sphingosine-1-phosphate (S1P), are significantly negatively

correlated with the progression of diabetes (101). S1P has anti-

inflammatory and anti-apoptotic effects, and promotes b-cell
survival and insulin secretion. Low S1P can be used as a

biomarker to predict the severity of diabetes and provide a new

target for future precision treatment.
4 Personalized treatment strategies in
diabetes

The well-established heterogeneity of diabetes pathogenesis

underscores the critical need for precision medicine approaches

to achieve optimal therapeutic outcomes. Contemporary advances

in high-throughput metabolomics and next-generation microbiome

profiling have facilitated the discovery of novel metabolic signatures

and dysregulated pathways that can inform tailored therapeutic

strategies. These technological innovations enable stratification of

patient populations based on distinct metabolic phenotypes,

thereby paving the way for truly personalized diabetes management.
4.1 Drug response stratification

Patient stratification based on pharmacological response

represents a cornerstone of personalized diabetes management,

particularly for metformin as first-line therapy in T2DM. Despite

its clinical ubiquity, metformin demonstrates marked interpatient

variability in therapeutic efficacy (102). Approximately 30% of

patients failing to achieve adequate glycemic control on

monotherapy (103), highlights the imperative to elucidate the

biological determinants of treatment heterogeneity.

Emerging evidence implicates the gut microbiome as a key

modulator of metformin pharmacodynamics. Mechanistic studies

reveal that microbial processing of glutamine and related amino

acids, along with purine metabolism byproducts, may condition

metformin activity through microbiome-mediated metabolic

reprogramming (104). Specific commensal organisms enhance

therapeutic efficacy via production of guanidine derivatives

(e.g., agmatine) that synergize with metformin to suppress hepatic

gluconeogenesis and modulate intestinal glucose absorption.

Clinically, patients possessing microbiota with enriched

biosynthetic capacity for these metabolites exhibit superior
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glycemic responses, positioning microbiome profiling as a

promising predictive biomarker for treatment stratification.

Concurrently, pharmacogenomic investigations have identified

functional polymorphisms in metformin transporter genes as

critical determinants of interindividual variability. Single-

nucleotide polymorphisms (SNPs) in organic cation transporters

(OCT1/SLC22A1, OCT2/SLC22A2, OCT3/SLC22A3) significantly

impact drug pharmacokinetics through altered intestinal

absorption, hepatic distribution, and renal clearance (105).

Notably, the rs622342 (A>C) and rs72552763 (C>A) variants in

SLC22A1 correlate with differential HbA1c reduction and plasma

drug concentrations. Complementary evidence links OCT2/OCT3

regulatory SNPs (rs7757336, rs2481030) to impaired bioavailability

and diminished therapeutic response, as demonstrated through

integrated pharmacogenetic and pharmacokinetic analyses (106).

Therapeutic response to glucagon-like peptide-1 (GLP-1)

receptor agonists exhibits significant interindividual variability that

can be stratified using metabolomic profiling. Among emerging

biomarkers, lysophosphatidic acid (LPA) - a bioactive phospholipid

with pro-inflammatory properties - has been identified as a clinically

relevant predictor of pharmacological response. Mechanistically, LPA

contributes to insulin resistance through dual pathways: (1)

activation of inflammatory cascades via LPAR1–6 receptors, and

(2) direct impairment of insulin receptor substrate (IRS)

phosphorylation. Elevated circulating LPA concentrations may

attenuate GLP-1 efficacy by disrupting receptor-mediated

insulinotropic signaling pathways (107). Beyond its glucoregulatory

effects, liraglutide demonstrates significant antioxidant properties as

evidenced by clinical trial data. Treatment with liraglutide results in

substantial reductions in established oxidative stress markers,

including thiobarbituric acid reactive substances (TBARS) and

malondialdehyde (MDA), particularly in patients exhibiting

favorable baseline antioxidant capacity as measured by superoxide

dismutase (SOD) and glutathione peroxidase (GPx) activity (108).

These findings suggest that pretreatment antioxidant status may serve

as a predictive biomarker for liraglutide’s pleiotropic effects.

In addition, fibroblast growth factor 21 (FGF21) analogs exhibit

variable therapeutic efficacy that correlates with baseline metabolic

profiles. Preclinical and early-phase clinical studies demonstrate

that patients with elevated BCAAs and reduced adiponectin

concentrations show attenuated responses to FGF21 therapy,

likely reflecting impaired metabolic flexibility characterized by

mitochondrial dysfunction and adipose tissue inflammation.

These metabolic signatures may serve as stratification biomarkers

for FGF21 treatment selection.

Similarly, response heterogeneity to sodium-glucose

cotransporter-2 (SGLT2) inhibitors is associated with distinct pre-

treatment metabolic states. Metabolomic analyses reveal that patients

with lower circulating 3-hydroxyisobutyric acid (3-HIB) - a valine

catabolite indicative of mitochondrial stress - achieve superior glycemic

control and cardiovascular risk reduction following SGLT2 inhibition.

This association positions 3-HIB as both a pathophysiological marker

of metabolic inflexibility and a potential predictor of therapeutic

response, with mechanistic studies suggesting its role in impairing

endothelial function and promoting cardiac lipotoxicity.
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4.2 Optimization of nutritional
interventions

Nutritional strategies are integral to diabetes management.

Time-restricted eating (TRE), for example, has been shown to

reprogram hepatic lipid metabolism by aligning feeding patterns

with circadian rhythms (109). TRE reduces hepatic steatosis and

improves insulin sensitivity by enhancing the expression of lipid-

oxidizing enzymes during fasting periods. This approach leverages

metabolic rhythms to maximize therapeutic benefits. Prebiotics,

such as inulin, modulate gut microbiota by promoting the growth of

beneficial bacteria (e.g., Bifidobacteria), which may enhance

butyrate production and exert anti-inflammatory effects. Clinical

trials demonstrate that inulin supplementation improves insulin

sensitivity in overweight individuals, likely through these

microbiota-mediated mechanisms (110).

Nutritional strategies can be further optimized based on

individual metabolic responses. For instance, omega-3 can

prevent and reverse insulin resistance (IR) induced by a high-fat

diet, improve glucose metabolism in patients with prediabetes (such

as obese children or adults with metabolic syndrome), reduce

systemic inflammation, and enhance metabolic flexibility (111).

Omega-3 fatty acids competitively inhibit the cyclooxygenase

(COX) and lipoxygenase (LOX) pathways, reduce the production

of pro-inflammatory eicosanoids (such as prostaglandins and

leukotrienes), and the pro-resolution mediators derived from

them (such as resolving and protecting) can actively relieve

inflammation. Additionally, foods rich in polyphenols (such as

coffee, green tea, red wine, olive oil, cocoa, etc.) can reduce

fasting blood glucose and HbA1c, reduce insulin resistance, and

inhibit inflammation and oxidative stress. In clinical trials, they

have shown the potential to improve blood glucose metabolism,

insulin sensitivity, and vascular function in patients with

T2DM (112).
5 Technical challenges and cutting-
edge breakthroughs

5.1 Existing technical bottlenecks

5.1.1 Technical limitations in sampling and pre-
analytical handling

Temporal standardization of biological sampling represents a

fundamental challenge in diabetes metabolomics research (113).

Metabolite concentrations exhibit substantial diurnal variation and

physiological state-dependent fluctuations, particularly between

fasting and postprandial conditions. Li et al. demonstrated that

postprandial concentrations of BCAAs (valine, leucine, isoleucine)

and short-chain acylcarnitine (C3-C5) undergo significant changes,

with diabetes patients showing particularly pronounced

postprandial increases in specific metabolites (e.g., C16:1

acylcarnitine concentrations rising by 30% compared to fasting

levels) (114). Such dynamic variations may obscure genuine
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metabolic signatures, potentially yielding false-positive

associations or masking fasting-state pathophysiological patterns.

Pre-analytical factors such as anticoagulant type, centrifugation

protocol, and storage temperature also significantly impact

metabolite stability and measurement accuracy. Jobard et al.

showed that EDTA versus heparin selection leads to measurable

differences in amino acid concentrations, while prolonged

room temperature storage degrades short-chain fatty acids

and nucleotides, introducing technical bias into metabolic

profiling (115).

5.1.2 Biological confounders in metabolomic
profiling

In parallel, biological variables contribute additional layers of

complexity to diabetes metabolomics. These include diet, physical

activity, medication use, and comorbidities, each of which can

significantly reshape the metabolic landscape. A systematic review

by Kim demonstrated that metformin treatment alters the plasma

and urine metabolomes by modulating gut microbiota and energy

metabolism, while high-fat diets further exacerbate metabolic

imbalances (116). These biological factors, if unaccounted for,

may confound disease-specific metabolic signatures and

complicate downstream analyses.

5.1.3 Pharmacologic and demographic sources of
variation

Disease states (such as cancer or diabetes) themselves can also

lead to significant changes in branched-chain amino acid and lipid

metabolites. In the context of diabetes, pharmacological

interventions can modulate metabolic pathways independently of

disease mechanisms. For example, metformin therapy significantly

modifies serum phosphatidylcholine profiles (notably acyl-alkyl PC

species) in T2DM (117), potentially confounding the interpretation

of insulin resistance-associated metabolic signatures.

Population-scale metabolomic studies must additionally account

for substantial interindividual variability stemming from

demographic, anthropometric (e.g., BMI effects), and lifestyle

factors that collectively influence baseline metabolic set points. The

inherent biological complexity of metabolites, functioning not merely

as passive biomarkers but as dynamic regulators interacting with

genomic, epigenetic, and proteomic networks (118), poses unique

challenges for establishing clinically relevant reference ranges. This

complexity is compounded by the multitude of influencing factors,

including nutritional status, hydration state, and physical activity

patterns, necessitating rigorous standardization protocols for

meaningful metabolomic investigation in diabetes research.

5.1.4 Metabolite annotation bottlenecks
Accurately annotating unknown metabolites remains one of the

most persistent and complex challenges in metabolomics research.

Despite continuous advancements in analytical technology,

including high-resolution mass spectrometry, only approximately

10% of detected metabolites can be identified through mass spectral

library matching, leaving the remaining 90% unknown (119). These
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unidentified signals often correspond to low-abundance or novel

metabolites that may serve as critical biomarkers, particularly in

diseases such as diabetes (120). However, the absence of

comprehensive reference libraries, spectral databases, and

standardized annotation pipelines hinders their biological

interpretation (121). For example, Tan et al. identified only 1,088

endogenous compounds using high-resolution mass spectrometry,

while a significant number of lipids remain insufficiently annotated

due to structural complexity and limited spectral coverage,

potentially introducing bias in downstream pathway analyses

(122). This issue is especially pronounced for lipid subclasses

such as ceramides, which play a crucial role in driving insulin

resistance via the Akt signaling pathway but are challenging to

interpret due to their structural heterogeneity and inadequate mass

spectrometric coverage (123).

5.1.5 Data preprocessing and quality control
Furthermore, data preprocessing remains a major technical

bottleneck due to the high dimensionality and inherent variability

of metabolomic datasets. Key preprocessing steps such as peak

filtering, imputation of missing values, and normalization can

profoundly influence analytical outcomes (124). Even when

standardized acquisition protocols are employed, technical

variation can obscure true biological signals. Abiotic factors,

including instrumental errors, can contribute substantially to

variability in untargeted metabolomics studies, necessitating

rigorous quality control measures (125).
5.2 Innovative technological breakthroughs

5.2.1 Metabolic flux analysis and stable isotope
tracing

Dynamic metabolic flux analysis, particularly utilizing 13C-

labeled glucose tracers, has become an indispensable technique

for investigating hepatic gluconeogenesis in diabetes. Unlike

traditional static metabolomics, which provides only a snapshot

of metabolite concentrations, this approach allows for real-time

quantification of carbon flux through specific metabolic pathways,

offering dynamic insights into altered hepatic metabolism. For

instance, a study employed global 13C tracing and non-targeted

mass spectrometry to analyze intact human liver tissue ex vivo

(126). This research provided a comprehensive overview of hepatic

metabolic fluxes, enhancing our understanding of liver metabolism

in the context of metabolic diseases, including diabetes.

Furthermore, a study utilized multi-tissue 2H/13C flux analysis to

reveal compensatory upregulation of renal gluconeogenesis in

hepatic PEPCK-C-knockout mice, highlighting the complexity of

gluconeogenic regulation in diabetic conditions (127). 13C

magnetic resonance spectroscopy (13C-MRS) has emerged as a

powerful noninvasive tool for quantifying hepatic mitochondrial

oxidative and anaplerotic fluxes in humans. Befroy et al. applied

dynamic 13C-MRS to healthy individuals, demonstrating the

feasibility of directly measuring hepatic TCA cycle and pyruvate

carboxylase–mediated cataplerotic fluxes in vivo, providing a
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in metabolic disorders (128). Similarly, as demonstrated by

Hasenour et al., the choice of isotopic tracers (e.g., 13C-

propionate vs. 13C-lactate) and modeling assumptions

significantly impact hepatic flux estimates, highlighting the need

for rigorous experimental design in metabolic studies (129).

Moreover, Kim et al. provided a detailed methodological

framework for integrating 13C-based metabolic flux analysis

(MFA) in metabolic studies (130). They emphasized that precise

control of infusion protocols, compartmental modeling, and

integration of multi-precursor data are crucial for accurately

quantifying pathways such as glycogenolysis and gluconeogenesis.

13C-MFA has been used to track hepatic TCA cycle fluxes and

gluconeogenesis, offering insights into metabolic dysregulation in

diabetes-associated conditions. Young et al. summarized how in

vivo 13C and 2H tracing can capture whole-body flux alterations,

including the role of lactate as a key carbon shuttle between tissues

(131). However, the relative contribution of recycled lactate to

diabetic hyperglycemia remains an active area of research.

5.2.2 Artificial intelligence for predictive
metabolomics

The integration of artificial intelligence (AI), particularly deep

learning algorithms, has profoundly expanded the analytical capacity

of metabolomics in diabetes research. Unlike conventional statistical

methods, AI models can efficiently process high-dimensional,

nonlinear, and heterogeneous metabolomics data, thereby

uncovering hidden associations between metabolic profiles and

disease phenotypes. A recent study demonstrated that combining

untargeted plasma metabolomics with machine learning algorithms

can effectively identify metabolite signatures predictive of glycemic

deterioration and progression from prediabetes to T2DM (58). This

approach not only enhanced risk stratification beyond classical

clinical markers but also revealed novel metabolic features with

potential relevance as therapeutic targets, many of which were not

captured through traditional enrichment or univariate analyses. A

notable example of clinical application is the study by Huang et al.,

who used machine learning approaches to identify metabolic

signatures of incident chronic kidney disease (CKD) in individuals

with prediabetes and type 2 diabetes (132). Through targeted

metabolomics and machine learning methods, the study identified

sphingomyelin C18:1 and phosphatidylcholine diacyl C38:0 as

candidate metabolite biomarkers of incident CKD specifically in

hyperglycemic individuals. The developed prediction models

outperformed the currently established clinical algorithm for CKD,

demonstrating the power of machine learning in improving risk

prediction for diabetes-related complications. Additionally, based on

the Bagged CART integrated algorithm and metabolomics features,

diabetic retinopathy subtypes (NDR/NPDR/PDR) can be effectively

classified with an accuracy of 72% and a sensitivity of 91.9%, proving

that artificial intelligence models can assist in the early detection and

accurate classification of diabetic complications. A convolutional

neural network (CNN)-based deep learning model trained on

untargeted plasma metabolomics could accurately identify

predictive metabolite signatures linked to glycemic control and
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complications in type 2 diabetes patients. The model also suggested

potential drug targets and stratification markers that were not

apparent through classical pathway enrichment analysis. As

described by Kirtipal et al., by integrating intestinal metagenome,

metabolome, and host data, machine learning algorithms can predict

individual glycemic responses and reveal that microbiota metabolites

(such as SCFAs) affect diabetes progression by regulating insulin

sensitivity, providing a new strategy for precision nutrition (133).

Based on the Bagged CART integrated algorithm and metabolomics

features, diabetic retinopathy subtypes (NDR/NPDR/PDR) can be

effectively classified with an accuracy of 72% and a sensitivity of

91.9%, proving that artificial intelligence models can assist in the early

detection and accurate classification of diabetic complications (134).

Despite these advancements, AI-driven metabolomics models

still face challenges in reproducibility and interpretability. Differences

in data preprocessing and cohort characteristics can affect model

stability, while the “black box” nature of deep learning algorithms

limits clinical acceptance. Incorporating interpretability tools such as

Shapley Additive Explanations (SHAP) and ensuring cross-cohort

validation are essential steps for clinical translation (135).
6 Clinical transformation and
prospects

6.1 Diagnostic reagent development

Especially in the early diagnosis and risk assessment of diabetes,

metabolomics technology has shown great potential in the field of

diagnostic reagent development, and its application has gradually

entered the clinical transformation stage. In recent years, the

development of diagnostic reagents based on metabolomics has

made significant progress, among which NMR and LC-MS

technologies have become mainstream tools. For instance, a study

utilizing ultra-high-performance liquid chromatography coupled

with tandem mass spectrometry (UHPLC-MS/MS) analyzed serum

samples to identify metabolites associated with diabetes risk (136).

This targeted metabolomics approach demonstrated the potential to

detect metabolic alterations preceding diabetes onset, suggesting its

utility in early diagnosis and risk assessment. Furthermore,

UHPLC-MS/MS has been employed to quantify amino acids and

acylcarnitine in plasma, providing insights into metabolic

disturbances linked to insulin resistance and diabetes (137). Such

analyses contribute to the development of diagnostic tools aimed at

early intervention strategies for at-risk individuals. In addition to

UHPLC-MS/MS, other advanced mass spectrometry techniques

have been instrumental in diabetes research. For example, LC-

MS/MS and GC-MS have significantly broadened the spectrum of

detectable metabolites, even at lower concentrations (138).

These technologies have enabled the identification and

quantification of potential biomarkers associated with diabetes

and its complications, providing new avenues for clinical

diagnostics and metabolic studies.

With the advancement of technology, the platform for

metabolomics detection has gradually moved from large
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laboratories to clinical sites. The development of microfluidic chip

technology provides new possibilities for point-of-care testing

(POCT) of metabolomics. Microfluidic chips can achieve rapid

analysis of complex metabolites in small devices by integrating

sample processing, separation, and detection functions (139). In

recent years, the coupling of microfluidic chips and mass

spectrometry detection has become a research hotspot, greatly

improving the sensitivity and efficiency of detection. The research

team has developed a metabolomics detection platform based on

microfluidic chips, which can separate 16 amino acids in less than

two minutes without extensive sample preparation (140). This

device is not only portable, but also can monitor the metabolic

status of patients in real time, providing clinicians with a rapid basis

for diagnosis. In the future, with the further optimization of

microfluidic technology, metabolomics detection is expected to

play a greater role in family medical care and community

health management.

However, the development and clinical application of

metabolomics diagnostic reagents still face some challenges. First,

the biomarker combination of metabolite profiles needs to be

further verified for its clinical value. At present, although

metabolomics has identified numerous disease-associated

metabolites, their translational potential requires further

validation in diverse clinical cohorts (118). Despite the growing

literature on metabolomics in diabetes, a comparative

understanding of cohort designs, biomarker patterns, and

analytical strategies remains limited. To provide a synthesized

perspective, we compiled a representative set of metabolomics

studies (Table 2) that have advanced the field toward clinical

translation. These studies vary in sample size, biospecimen types,

and analytical platforms (e.g., LC-MS, NMR, GC-MS), yet converge

on key biomarker trends such as elevated BCAAs, ceramides, and

a-hydroxybutyrate in diabetic or insulin-resistant populations.

Secondly, the technical standardization and quality control of

the detection platform are the key to ensuring the reliability of the

test results (146). The U.S. Food and Drug Administration (FDA)

has set strict requirements for the validation of biomarkers,

including sensitivity, specificity, and repeatability (147). In

addition, the analysis and interpretation of metabolomics data

also require more intelligent tools. In recent years, machine

learning-based metabolomics data analysis methods have

gradually emerged, which can mine potential biomarker

combinations from massive data and predict the risk and

prognosis of diseases (148). A recent study developed a deep

learning framework trained on plasma metabolite spectra to

predict the risk of progression from prediabetes to T2DM. This

model identified a panel of nine circulating metabolites that

significantly improved predictive performance and provided a

robust basis for early identification and intervention in high-risk

individuals (58).

In the future, the development of metabolomics diagnostic

reagents will move towards high precision, instant, and intelligent

directions. On the one hand, with the continuous advancement of

detection technology, the sensitivity and throughput of

metabolomics detection will be further improved, which can more
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comprehensively reflect the metabolic status of patients. On the

other hand, the popularization of POCT equipment will make

metabolomics detection more convenient and enable rapid

transformation from laboratory to the clinical site. The

introduction of artificial intelligence technology will greatly

improve the analysis ability of metabolomics data and provide

more accurate support for diagnosis and personalized treatment.

Overall, the development of metabolomics diagnostic reagents will

not only promote the early diagnosis and precise treatment of

diabetes but also provide new tools and methods for the clinical

management of other metabolic diseases.
6.2 Therapeutic target mining

Metabolomics-driven analyses have increasingly facilitated the

discovery of novel therapeutic targets in diabetes. For instance,

targeted lipidomic profiling has identified ceramide species as

correlates of insulin resistance, which led to the investigation of

CerS6 as a driver of mitochondrial dysfunction and adipose

inflammation (149). Similarly, metabolite profiling of bile acid

derivatives highlighted TGR5 as a key receptor modulating GLP-1

secretion and energy expenditure (150). Metabolomics has also

supported the identification of FFAR2, a short-chain fatty acid

receptor, through correlation with plasma SCFA levels and

metabolic phenotypes (151, 152). These findings underscore how

metabolomics can inform precision pharmacology by linking

endogenous metabolic shifts with actionable molecular targets.
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6.3 Future development directions

The future development direction of metabolomics technology

will focus on three core areas: multi-omics integration, real-time

monitoring technology, and ethics and norms, to promote the

application of metabolomics in precision medicine and

personalized medicine.

Combining metabolomics with other omics data, such as

genomics, proteomics, and transcriptomics, offers a comprehensive

understanding of diabetes pathophysiology. This integrative

approach is particularly powerful for dissecting the molecular basis

of diabetic complications and for identifying context-specific

biomarkers across tissues and comorbid conditions (153). It also

facilitates the discovery of novel biomarkers and therapeutic targets.

For instance, a multi-omics study integrating epigenomics, whole-

genome sequencing, and metabolomics uncovered previously

unrecognized pathways implicated in T2DM, underscoring the

value of systems-level strategies in unraveling complex disease

mechanisms (154). At the same time, AI and ML algorithms are

increasingly applied to metabolomics data to predict disease

progression and personalize treatment strategies. For example,

integrating ML approaches with metabolomics panels has

improved the prediction of T2DM, enabling early intervention

(155). A recent study employed ML models on quantitative

metabolomics data to accurately predict the 4-year risk of

developing T2DM, demonstrating the strong potential of

metabolomics-based models for early detection and prevention

(156). In addition, a study in Diabetes integrated ML techniques
TABLE 2 Representative metabolomics studies highlighting key biomarkers and platforms for diabetes risk prediction.

Study Cohort/Sample Size Biofluid Platform
Key

Metabolites
Clinical Application

Wang et al.
(2011) (29)

Framingham: 189 T2D + 189 controls Plasma LC-MS/MS
BCAAs,
Aromatic AAs

Prediction of future T2D risk

Floegel et al.
(2013) (141)

EPIC-Potsdam: 849 incident T2D cases
KORA: 876 participants, 91 incident T2D
cases
TüF: 76 individuals

Serum
(EPIC/
KORA)
Plasma
(TüF)

FIA-MS/MS
Hexose,
Phenylalanine,
Phosphatidylcholines

Improves T2D risk prediction

Wang-Sattler et al.
(2012) (81)

KORA Cohort: 4,261 participants in S4
(cross-sectional) and 1,010 in
F4 (prospective).

Serum LC-MS/MS
Glycine, LPC
(18:2), Acetylcarnitine

Early T2D prediction and
risk stratification

Yu et al.
(2015) (142)

976 Chinese adults (40–74 years) Plasma UHPLC & GC-MS
Hexoses, Valine,
3-Methoxytyrosine

Improves T2D risk prediction in
Chinese populations

Menni et al.
(2013) (143)

TwinsUK Cohort: 2,204 females
115 T2D cases, 192 IFG, 1,897 controls

Plasma
Metabolon
Nontargeted
Metabolomics

3-Methyl-2-
oxovalerate, BCAAs

Early detection of insulin
resistance (IFG)

Papandreou et al.
(2019) (144)

PREDIMED: 700 participants Plasma LC-MS/MS
Isoleucine,
Alanine, Glycine

Improves prediction of insulin
resistance (HOMA-IR) and future
T2D risk

Liu et al.
(2025) (145)

UK Biobank: 98,831 participants Plasma
NMR

(168 metabolites)
Triglycerides,
HDL, BCAAs

T2DM risk stratification
and prediction
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with metabolomics to identify metabolic signatures predictive of

CKD in individuals with T2DM or prediabetes, enabling early

identification of high-risk individuals for timely intervention (132).

The development of real-time monitoring technology will

promote metabolomics from the laboratory to clinical

application, and the development of wearable devices that can

monitor metabolic parameters in real time is changing diabetes

management (157). As non-invasive techniques for monitoring

metabolic changes gain traction, innovations such as a sweat-

based wearable sensor show potential for monitoring blood sugar

levels and other metabolites without the need for invasive surgery

(158). In addition, integrating CGM data with other wearable

technology, such as activity monitors, has been shown to improve

metabolic outcomes in individuals with T2DM (157).

Furthermore, advancements in wearable insulin biosensors that

combine real-time glucose monitoring with automated insulin

delivery are enhancing glycemic control and quality of life for

diabetes patients (159). These innovations underscore the

potential of wearable technology to revolutionize personalized

diabetes care.

The clinical implementation of metabolomics requires careful

consideration of data privacy, ethical standards, and regulatory

compliance. Given the sensitivity of metabolomics data, especially

when collected longitudinally, it is imperative that informed

consent protocols explicitly address critical issues such as data

reuse, participant re-identifiability, and the integration of data

across multiple platforms. Researchers should ensure that

participants are fully informed about the extent of data use, how

their data will be processed, and any potential risks associated with

cross-platform integration (160). In addition, researchers should

consider the adoption of robust data security measures, such as

encryption and de-identification, to protect the privacy of

participants’ data. The use of anonymized datasets, stored in

secure, open-access repositories, should be encouraged to

facilitate data sharing and enhance reproducibility, while ensuring

privacy and compliance with data protection laws. Furthermore,

data governance should be aligned with international standards,

such as the General Data Protection Regulation (GDPR) in Europe

and similar regulations in other regions, to ensure the ethical and

legal handling of metabolomics data. To facilitate ethical

translation, researchers are encouraged to adopt open-access

repositories with anonymized datasets and align data governance

with international standards such as the General Data Protection

Regulation (GDPR) (161). To further support clinical and

translational applications, researchers should engage with

established frameworks, such as those provided by the

Metabolomics Standards Initiative (MSI), which promote the

harmonization of reporting, data quality, and traceability (162).

These guidelines offer valuable resources for maintaining data

integrity, ensuring consistency across studies, and improving the

overall credibility of metabolomics research. By adopting these
Frontiers in Endocrinology 13
ethical and regulatory practices, researchers can help ensure

the responsible and impactful use of metabolomics in

clinical settings.
7 Conclusion

Metabolomics has emerged as a transformative pillar in

deciphering the complex metabolic landscape of diabetes, offering

unprecedented access to real-time biochemical states that underlie

disease onset, progression, and therapeutic response. In contrast to

traditional diagnostic approaches that typically capture static or

downstream manifestations of disease, metabolomics enables

dynamic profiling of metabolic fluxes, revealing subtle yet

clinically meaningful perturbations that precede overt

hyperglycemia or complications. By detecting disease-relevant

metabolites, such as branched-chain amino acids, lipid

intermediates, bile acids, and gut microbiota–derived compounds,

metabolomics facilitates early risk prediction, mechanistic

stratification, and precision-guided interventions.

Moreover, this systems-level perspective on metabolic

reprogramming has deepened our understanding of heterogeneous

disease trajectories, including subtypes of insulin resistance, patterns

of b-cell failure, and variations in drug responsiveness. As

emphasized in this review, the integration of advanced

computational tools, particularly machine learning and artificial

intelligence, has greatly enhanced the analytical power of

metabolomics, enabling the extraction of predictive biomarker

panels and individualized treatment profiles from high-dimensional

datasets. Likewise, the convergence of metabolomics with other omics

layers, such as transcriptomics, genomics, and macrobiomics, marks

a new era of integrated systems biology in diabetes research.

Nevertheless, the translation of metabolomic discoveries into

clinical practice remains incomplete. Key bottlenecks, including the

lack of standardized protocols, limited inter-laboratory

harmonization, insufficient regulatory frameworks for biomarker

validation, and challenges in biological interpretation, must be

systematically addressed. In parallel, ethical considerations

surrounding data privacy, informed consent, and the clinical

implementation of AI-driven metabolic models must be

carefully navigated.

Looking ahead, advances in point-of-care metabolomics

platforms, wearable biosensors, and minimally invasive

diagnostics may revolutionize diabetes management by enabling

continuous metabolic monitoring and real-time clinical decision-

making. Realizing this vision will require sustained interdisciplinary

collaboration, regulatory foresight, and a strong commitment to

patient-centered innovation. By meeting these imperatives,

metabolomics is well-positioned to redefine diabetes diagnostics

and usher in a new era of predictive, preventive, and personalized

metabolic medicine.
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Bechara MD, et al. Underlying mechanisms behind the brain–gut–liver axis and
metabolic-associated fatty liver disease (MAFLD): an update. Int J Mol Sci. (2024)
25:3694. doi: 10.3390/ijms25073694

79. Hu X, Zhou J, Song S, Kong W, Shi Y-C, Chen L-L, et al. TLR4/AP-1-targeted
anti-inflammatory intervention attenuates insulin sensitivity and liver steatosis.
Mediators Inflammation. (2020) 2020:2960517. doi: 10.1155/2020/2960517
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