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Osteoporosis is a common age-related bone metabolic disorder that 
significantly affects skeletal health, especially in aging populations. With global 
demographic shifts, the rising prevalence and disability burden of osteoporosis 
has placed increasing pressure on healthcare systems, making it a key area of 
research. A crucial factor in osteoporotic progression is the aging of 
mesenchymal stem cells (MSCs), which weakens bone regeneration through 
multiple mechanisms, including reduced osteogenic differentiation, heightened 
oxidative stress, chronic inflammation, and disrupted bone homeostasis. This 
review explores the intricate relationship between MSCs aging and osteoporosis 
development, focusing on key processes such as cell cycle arrest, telomere 
shortening, epigenetic changes, and osteogenic marker expression 
dysregulation. We also examine potential therapeutic strategies aimed at 
alleviating MSCs aging, including stem cell-based treatments, senolytic agents, 
inhibitors targeting the senescence-associated secretory phenotype, and 
biomaterial-assisted approaches such as extracellular vesicles and stimuli-

responsive hydrogels. This review aims to provide insights into developing 
precise therapeutic strategies to restore MSCs function and slow bone loss. 
Furthermore, we discuss interdisciplinary approaches that link molecular 
mechanisms to practical applications, offering a broader perspective on 
addressing osteoporosis in aging societies. 
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1 Introduction 

Aging is an irreversible physiological process in living 
organisms, characterized by a gradual decline in physiological 
functions, which leads to tissue damage and dysfunction. Aging is 
not only a natural biological phenomenon but also a fundamental 
cause of many chronic degenerative diseases, including cancer, 
diabetes, osteoporosis, and Alzheimer’s disease  (1). At the 
macroscopic level, aging is characterized by a progressive decline 
in cellular proliferation and repair capacity, increasing susceptibility 
to disease and physiological deterioration. The mechanisms of aging 
are multifaceted, among which cellular senescence serves as a 
central contributor (2). Hallmark features of cellular senescence 
include reduced proliferative capacity, metabolic dysregulation, and 
heightened inflammatory responses. Notably, stem cell senescence, 
as a pivotal aspect of aging, exerts a more profound impact on the 
entire organism than other cell types. Stem cell senescence not only 
limits tissue regeneration and repair but also exacerbates multiple 
pathological changes associated with aging. Consequently, delaying 
stem cell senescence has emerged as a crucial research focus in the 
field of anti-aging. 

Cellular senescence is closely linked to various age-related 
diseases, particularly playing a key role in bone metabolic 
disorders such With the as osteoporosis. increasing age, 

of stem proliferative capacity mesenchymal cells (MSCs) 
declines, especially the osteogenic differentiation potential of 
bone marrow-derived mesenchymal stem cells (BMSCs), leading 
to  decreased  bone  and  deterioration  of  bone  density  
microarchitecture. MSCs results in The aging of directly 
impaired bone tissue regeneration, which constitutes one of the 
primary pathological mechanisms of primary osteoporosis (3, 4). 
Moreover, MSCs increased senescence is accompanied by an 
secretion of pro-inflammatory factors, further exacerbating 

the osteoporosis progression (5). Therefore, investigating 
relationship between MSCs senescence and osteoporosis not 
only provides deeper insights into the pathophysiology of 
osteoporosis but also offers a novel theoretical foundation for its 
prevention and treatment. This review comprehensively examines 
the relationship between MSCs senescence and osteoporosis, 
elaborates on the specific mechanisms underlying MSCs aging 
in osteoporosis pathogenesis, and summarizes current therapeutic 
strategies and the application of emerging pharmacological 
interventions. The aim is to provide a more comprehensive 
perspective and guidance for future research and therapeutic 
advancements in osteoporosis. 
Abbreviations: BMSCs, Bone marrow-derived mesenchymal stem cells; BMP, 

bone morphogenetic protein; BMD, bone mineral density; CDK, cyclin­

dependent kinase; EVs, extracellular vesicles; IL-6, interleukin-6; lncRNAs, 

long non-coding RNAs; MSCs, mesenchymal stem cells; miRNAs, MicroRNAs; 

ROS, reactive oxygen species; SASP, senescence-associated secretory phenotype; 

TNF-a, tumor necrosis factor-a; UPS, ubiquitin-proteasome system; VEGF, 

vascular endothelial growth factor. 
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2 The mechanism and influencing 
factors of stem cell aging 
exacerbating osteoporosis 

Stem cell senescence serves as a pivotal driver of osteoporotic 
pathogenesis. During cellular aging, the expression of osteogenic 
markers, such as Runx2 and Osterix, decreases (6, 7), and coincides 
with elevated oxidative stress (8), inflammatory microenvironment 
imbalance, and bone marrow microcirculatory dysfunction. These 
synergistic perturbations collectively suppress osteoblast 
differentiation and bone formation, thereby perturbing bone 
remodeling equilibrium and accelerating osteoporotic progression. 
2.1 Stem Cell Senescence Suppresses 
Osteogenic Markers and Accelerates 
Osteoporosis 

Stem cell senescence critically impairs osteogenic marker 
expression and directly drives osteoporotic progression. MSCs, a 
class of pluripotent progenitor cells, are widely distributed in bone 
marrow (9), adipose tissue (10), umbilical cord blood (11), and 
dental pulp (12), with the capacity to differentiate into osteoblasts, 
chondrocytes, and adipocytes, thereby holding significant potential 
in regenerative medicine and tissue engineering (13). Under the 
regulation of bone morphogenetic protein (BMP) and Wnt/b­
catenin  signaling,  MSCs  sequentially  differentiate  into  
osteoprogenitor cells (14, 15), mature osteoblasts, and ultimately 
functional osteocytes (16). Osteoblasts, the principal synthetic cells 
of the bone matrix, are regulated by core osteogenic markers 
including Runx2 (17), Osterix (7, 17), osteocalcin, and alkaline 
phosphatase (18, 19). However, senescent MSCs exhibit marked 
downregulation of these key factors, accompanied by diminished 
osteogenic differentiation capacity (18). Accumulating evidence 
demonstrates that both mRNA and protein levels of Runx2 and 
Osterix are reduced in senescent MSCs, correlating with alterations 
in intracellular signalling pathways (20). When the activity of BMP 
and Wnt/b-catenin signalling pathways is reduced, the production 
and quality of related proteins (e.g., Smad proteins, Wnt proteins) 
are reduced, which directly affects the activation of osteogenic 
genes, leading to insufficient synthesis and mineralisation of bone 
matrix, thus accelerating the development of osteoporosis. 
Collectively, MSCs senescence exacerbates osteoporosis via 
suppression of osteogenic differentiation, highlighting therapeutic 
opportunities to target this axis. 
2.2 The interaction between stem cell 
aging and oxidative stress exacerbates 
osteoporosis, and regulating antioxidants 
can improve the condition. 

The crosstalk between stem cell senescence and oxidative stress 
represents a pivotal contributor to osteoporotic pathogenesis. 
Oxidative stress arises from an imbalance between intracellular 
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reactive oxygen species (ROS) production and antioxidant defense 
systems, culminating in macromolecular damage and cellular 
dysfunction. Mechanistically, excessive ROS activate DNA repair 
mechanisms, upregulate senescence-associated molecules (e.g., p53, 
p21), and induce stem cell senescence by triggering DNA damage, 
protein denaturation, and cell membrane disruption, ultimately 
promoting apoptosis (21). Furthermore, ROS amplifies local 
inflammatory responses through enhanced secretion of pro-
inflammatory cytokines such as interleukin-6 (IL-6) and tumor 
necrosis factor-a (TNF-a), further promotion of stem cell 
senescence (22). Senescent stem cells exhibit markedly reduced 
antioxidant enzyme activity, with superoxide dismutase (23), 
catalase (24), and glutathione peroxidase (25) levels declining 
significantly compared to their non-senescent counterparts. This 
enzymatic impairment compromises ROS scavenging capacity, 
leading to intracellular oxidative stress accumulation, which 
exacerbates oxidative damage and functional degradation (25, 26). 
Moreover, recent studies suggest that in addition to MSCs, 
osteocyte senescence also contributes to bone homeostasis 
dysregulation. According to Frost’s mechanostat theory (27), 
osteocytes sense mechanical loading and regulate bone 
architecture to maintain mechanical integrity. However, aging 
l eads  to  os teocy te  senescence ,  which  impa i r s  the i r  
mechanosensitivity and downstream signaling pathways. This 
results in reduced bone adaptability to mechanical stress, 
decreased bone strength, and increased fracture risk (28). 
Consequently, in the pathological process of osteoporosis, a 
vicious circle is formed between oxidative stress and stem cell 
senescence: oxidative stress accelerates stem cell senescence by 
damaging key intracellular molecules and cellular structures; 
whereas senescent stem cells accelerate the senescence process by 
decreasing the antioxidant capacity and causing further 
accumulation of ROS. This vicious circle significantly reduces the 
self-renewal capacity and multidirectional differentiation potential 
of stem cells, affecting the regenerative capacity of tissues (29, 30). 
Therapeutic targeting of this axis demonstrates translational 
potential. By reducing ROS accumulation and restoring stem cell 
antioxidant capacity, cellular senescence can be attenuated, thereby 
promoting bone health. Current evidence indicates that antioxidant 
supplementation or specific antioxidant therapies significantly 
reduce  oxidative  stress  levels  and  ameliorate  clinical  
manifestations of osteoporosis. Thus, developing novel strategies 
to disrupt the senescence-oxidative stress interaction offers critical 
insights for osteoporosis prevention and treatment. 
2.3 Inflammatory microenvironment 
accelerates the aging of BMSCs, enhances 
the risk of osteoporosis, and regulating 
inflammation can slow down the 
condition. 

The relationship between the inflammatory microenvironment 
and the aging of BMSCs has become a prominent research focus in 
recent years. The inflammatory environment plays a pivotal role in 
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accelerating BMSCs senescence, thereby promoting the 
development of osteoporosis. Inflammatory factors, including 
cytokines (e.g., TNF-a, interleukin-1, IL-6), chemokines (e.g., 
monocyte  chemoat trac tant  prote in-1 ,  CXCL-8) ,  and  
prostaglandins (e.g., PGE2) (32–34, 216), contribute to the 
inflammatory response through distinct mechanisms. Cytokines 
regulate immune cell activity to amplify inflammation, chemokines 
recruit leukocytes to sustain inflammatory responses, and 
prostaglandins act as lipid signaling molecules involved in 
inflammation and nociception. Anti-inflammatory factors such as 
interleukin-10 and transforming growth factor-b counteract 
inflammation by suppressing pro-inflammatory cytokine 
production and maintaining inflammatory homeostasis. In aging 
or disease states, chronic inflammation accelerates BMSCs 
senescence, exacerbating osteoporosis. Senescent MSCs secrete 
pro-inflammatory factors (e.g., TNF-a, IL-6) that perpetuate local 
inflammation while suppressing their proliferative and osteogenic 
potential, thereby impairing bone repair and remodeling (36, 217). 
The inflammatory response promotes MSCs senescence through 
two primary mechanisms: on the one hand, persistent secretion of 
inflammatory factors elevates ROS levels, impairing stem cell 
function and promoting senescence (37); on the other hand, the 
inflammatory microenvironment inhibits osteogenesis and 
enhances bone resorption by modulating interactions between 
MSCs and osteoblasts, bone-resorbing cells (38). This process not 
only compromises bone health but also disrupts bone marrow 
microenvironment homeostasis, exacerbating osteoporotic 
manifestations (39). Additionally, senescent MSCs exhibit a 
senescence-associated secretory phenotype (SASP), characterized 
by increased inflammatory burden, reduced osteoblast function, 
and accelerated bone density loss (40, 41). Thus, the inflammatory 
microenvironment not only accelerates BMSCs aging but also 
directly elevates osteoporosis risk. 

Modulating the inflammatory response represents a promising 
therapeutic strategy. By inhibiting pro-inflammatory factors (e.g., 
TNF-a, IL-6) or activating anti-inflammatory pathways (e.g., 
Transforming Growth Factor-beta, interleukin-10), it is possible 
to attenuate MSCs senescence and restore their differentiation and 
self-renewal capacity (42, 43). Anti-inflammatory treatments 
reduce SASP production, suppress bone marrow inflammation, 
and improve bone mineral density (BMD) while lowering fracture 
risk (44, 45). These findings highlight the potential of targeting the 
inflammatory microenvironment to alleviate osteoporosis and delay 
BMSCs aging, providing a theoretical foundation and practical 
framework for clinical osteoporosis management. 
2.4 Impaired bone marrow 
microcirculation function is a key 
mechanism that promotes stem cell aging 
and the progression of osteoporosis. 

Alterations in bone marrow microcirculation, particularly 
reduced vascularization, are critical contributors to stem cell 
senescence and osteoporosis (46). Bone marrow microcirculation 
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comprises a network of microvessels, including micro arterioles, 
microbes, and capillaries, which supply oxygen and nutrients to 
bone marrow stem cells while removing metabolic waste, thereby 
maintaining local environmental stability (47). However, with aging 
or in osteoporotic conditions, both the quantity and quality of blood 
vessels decline, leading to diminished microcirculatory function, 
local hypoxia, insufficient nutrient supply, and reduced angiogenic 
capacity. These changes directly impair stem cell function, 
particularly in BMSCs (48). Specifically, senescent BMSCs exhibit 
reduced self-renewal and differentiation capacities and are more 
prone to entering a senescent state under hypoxic and nutrient-
deficient conditions (49). Vascular endothelial growth factor 
(VEGF) is a key regulator of bone marrow microcirculation and 
angiogenesis (50). VEGF promotes neovascularization by 
stimulating endothelial cell proliferation and migration, ensuring 
adequate nutrient and oxygen supply to BMSCs (51). However, 
VEGF levels decline with aging, accompanied by microcirculatory 
dysfunction, leading to BMSCs functional decline and exacerbating 
osteoporotic progression (52). Mechanistically, VEGF binds to its 
receptor VEGFR, activating downstream signaling pathways such as 
PI3K/Akt and MAPK, which regulate cell proliferation, survival, 
and angiogenesis (53, 54). For instance, PI3K/Akt activation 
promotes cell survival and inhibits apoptosis, while also 
enhancing cell proliferation through the regulation of cell cycle-
related factors (e.g., Cyclin D1) (55). Similarly, MAPK activation 
further modulates cell proliferation, migration, and angiogenesis. 
The decline in VEGF expression and function weakens anti­
apoptotic effects, reduces angiogenesis, and deteriorates 
microcirculation, thereby accelerating osteoporosis (56, 57). 
Therefore, maintaining bone marrow microcirculation function, 
enhancing angiogenesis, and improving microcirculatory efficiency 
represent promising strategies to mitigate stem cell senescence and 
osteoporotic progression, ultimately promoting bone health. 
3 Mechanisms and modulators of 
MSCs aging 

3.1 Intrinsic drivers of stem cell senescence 

3.1.1 Cell cycle dysregulation and stem cell 
senescence 

The stem cell cycle, encompassing the G1, S, G2, and M phases, 
is fundamental to cell proliferation, repair, and differentiation. 
Regulation of the stem cell cycle involves cyclins, cyclin­
dependent kinase (CDK), and CDK inhibitors (e.g., p21, p15, 
p53) (58, 59). Among these phases, G1 and G2 are particularly 
critical in cellular senescence, as DNA damage during these phases 
can induce cell cycle arrest and impair cellular function. 

During the G1 phase, cells synthesize proteins necessary for 
DNA replication and continued growth. Stem cell aging is often 
associated with G1 phase arrest, which inhibits cell proliferation 
(60). DNA damage accumulates in stem cells with age due to 
endogenous metabolic stress and exogenous factors (e.g., 
ultraviolet light, chemical toxins), and is detected and repaired 
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through the DNA damage response pathway (61). DNA damage 
response activation primarily depends on p53 (62), p21, and p15 
(59), which inhibit CDK activity or increase CDK inhibitor levels to 
arrest the cell cycle in the G1 phase (63). Specifically, p53 
upregulates p21 to prevent cells from entering the S phase, 
ensuring DNA repair; if repair fails, cells undergo senescence or 
apoptosis (64, 65). p15 restricts cell proliferation and promotes 
senescence by inhibiting CDK4/6 (66). Additionally, p21 maintains 
the non-phosphorylated state of Rb proteins, inhibits E2F activity, 
and impairs MSCs self-renewal and differentiation (59). These 
changes deplete the MSCs pool, reduce osteogenic capacity, and 
accelerate osteoporotic progression. 

In the G2 phase, cells ensure accurate genetic material transmission 
through DNA damage detection, a critical quality control checkpoint. 
Senescent MSCs exhibit impaired G2 phase regulation, preventing 
entry into the M phase and compromising regenerative capacity. 
Unrepaired DNA damage (e.g., double-strand breaks) triggers G2 
phase arrest, which typically occurs shortly after DNA damage and 
persists if repair fails. Activation of the p53 pathway induces p21 
expression and inhibits CDK1, preventing M phase entry and 
maintaining G2 phase arrest (67, 68). Chk1 and Chk2 further inhibit 
Cdc25 phosphatase activity, downregulating CDK1 and preventing M 
phase transition (69). Persistent DNA damage response activation due 
to DNA damage accumulation leads to permanent G2 phase arrest, 
reducing MSCs numbers and tissue repair capacity, ultimately 
contributing to osteoporosis (70, 71). 

The S phase involves DNA synthesis and replication, while the 
M phase encompasses cell division. During aging, the S phase is 
frequently disrupted by DNA damage or oxidative stress. When 
damage exceeds stem cell repair capacity, repair failure occurs, 
upregulating proteins such as p52 and p21. These proteins regulate 
cell cycle checkpoints, halting cells in the G1 or G2 phase to prevent 
replication of damaged DNA (72, 73). In the M phase, senescent 
stem cells often exhibit division errors (e.g., chromosomal 
abnormalities or unequal division) due to unrepaired DNA 
damage, resulting in M phase arrest or aberrant division (74, 75). 
In summary, the S and M phases regulate cell proliferation and 
differentiation through DNA damage and abnormal cell division, 
respectively. Therefore, cell cycle impairment is a central 
mechanism underlying stem cell senescence and osteoporosis. 
Strategies to repair DNA damage and modulate key regulators 
such as p53, p21, and p15 may offer novel approaches to slowing 
osteoporotic progression (57). Stem cell cycle dysregulation is 
presented in Figure 1. 

3.1.2 The impact of telomere alterations on 
cellular aging 

Telomeres are protective structures at chromosome ends, composed 
of TTAGGG repeat sequences and associated proteins that form t-loops 
to prevent chromosomal misrecognition or degradation (76, 77). 
Telomere shortening and dysfunction are critical contributors to 
cellular senescence and related diseases (78, 79). Due to the inherent 
limitations of DNA replication, tens of telomere base pairs are lost with 
each cell cycle (80, 81), leading to progressive telomere attrition. 
Although human embryonic stem cells and tumor cells can delay 
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aging through telomerase expression (82, 83), most human somatic cells 
lack active telomerase and cannot maintain telomere length (84). This 
results in critically short and dysfunctional telomeres in some cells (85). 
Extremely short telomeres trigger DNA damage signaling and telomere 
dysfunction (86, 87, 213), leading to cell cycle arrest and increased 
susceptibility to DNA damage as telomeres shorten (89, 90). 
Dysfunctional telomeres also induce cellular senescence, particularly 
affecting rapidly dividing or regenerating tissues. Additionally, SIRT1 
plays a key role in telomerase regulation, and its inhibition reduces 
telomerase activity, accelerating MSCs senescence and contributing to 
osteoporosis (91, 92). 

Telomere-associated disorders, which promote stem cell 
senescence, are classified into two categories: primary and 
secondary telomere diseases (86, 93). Primary telomere diseases 
result from mutations in telomerase maintenance genes (e.g., 
DKC1, hTERC, or hTERT), impairing telomerase activity, 
accelerating telomere shortening, and promoting MSCs 
senescence (89). This leads to a reduction in pre-osteoblast 
differentiation, contributing to osteoporosis. Secondary telomere 
diseases arise from mutations in DNA repair or structural proteins, 
with environmental factors and certain diseases also causing 
telomere damage (86, 94). Patients with these disorders exhibit 
premature cellular senescence, telomere aberrations, or random 
telomere loss (86, 95), reducing the number of differentiated 
osteoblasts and osteocytes, thereby promoting osteoporosis. 
Telomeric alterations drive stem cell senescence: From molecular 
erosion to functional decline (see Figure 1). 
3.2 Regulatory and Facilitating Mechanisms 
of MSCs Senescence 

3.2.1 Transcription and transcriptional regulation 
abnormalities in mscs senescence 

In MSCs senescence, transcription and its regulatory network 
become widely dysregulated, encompassing both upstream 
epigenetic modifications that influence transcriptional activity and 
downstream disturbances in mRNA processing and modifications. 
Together, these alterations disrupt the stability and plasticity of gene 
expression in MSCs, progressively driving them into a 
senescent state. 

During senescence, MSCs undergo epigenetic modifications, 
including histone modifications, DNA methylation, and chromatin 
remodeling, which are closely linked to transcriptional regulation 
(96, 97). Histone modifications regulate senescence by modulating 
the transcriptional activity of DNA regions associated with the cell 
cycle (98). Generally, histone acetylation and methylation promote 
transcription, while phosphorylation and ubiquitination tend to 
inhibit it (99). Defects in histone deacetylase upregulate the histone 
demethylase JMJD3 and indirectly downregulate polycomb group 
genes via the RB/E2F pathway, leading to p16^INK4A transcription 
activation and H3K27me3 demethylation, thereby promoting MSCs 
senescence (97, 100). Additionally, SIRT6 maintains genomic 
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integrity and prevents cellular senescence by deacetylating H3K9, 
H3K18, and H3K56, regulating transcription factor recruitment and 
promoting repressive heterochromatin structures (31, 101). DNA 
methylation profiles are also associated with MSCs senescence. 
DNA methyltransferase-catalyzed DNA methylation typically 
suppresses transcription (31). Age-associated methylation 
changes, particularly H3K9me-promoted hypermethylation of 
p16^INK4A, are key features of epigenetic senescence in MSCs 
(31, 102). Furthermore, hypermethylation of key osteogenic 
transcription factors, such as Hox and Runx2, reduces their 
expression, impairing osteogenesis and accelerating osteoporosis 
(103, 104). Chromatin remodeling also plays a critical role in 
transcriptional regulation during senescence. For example, Brg1­
mediated SWI/SNF chromatin remodeling maintains MSCs 
transcript ional  act ivi ty,  and  i ts  loss  faci l i tates  DNA  
methyltransferase recruitment to the Nanog promoter, repressing 
transcription and accelerating senescence (105). Notably, 
endogenous hormonal fluctuations—particularly the decline in 
estrogen levels during menopause—serve as important disruptors 
of the epigenetic regulatory network in MSCs (106). Studies have 
shown that estrogen, via its receptor ERa, interacts synergistically 
with the epigenetic regulator EZH2 to modulate the expression of 
adipogenic transcription factors in MSCs and to maintain 
H3K27me3 levels at their promoters (219). This interaction 
governs MSCs lineage commitment and functional homeostasis 
(219). In postmenopausal conditions, estrogen deficiency disrupts 
this regulation, contributing to senescence-associated phenotypic 
alterations in MSCs, impairing osteogenesis, and thereby 
accelerating osteoporosis progression (219). 

mRNA processing and modifications are closely linked to MSCs 
senescence. The transcription rate of RNA polymerase II increases 
with age, but proper exon splicing depends on optimal transcription 
rates. Excessive transcription rates may lead to exon skipping and 
intron retention (107, 108). Since RNA polymerase II elongation is 
regulated by factors such as SPT5, PAF1C, SPT6, and SEC, targeting 
these elongation factors or increasing histone gene expression may 
represent novel strategies to delay senescence (109). Transcription 
factors also contribute to MSCs senescence. For instance, NF-kB 
activation triggers the SASP, promoting inflammation and 
accelerating senescence (110, 111). Downregulation of FOXO1 
accelerates MSCs senescence and alters the transcriptome (112, 
214). mRNA modifications, particularly m6A methylation, are 
critical in MSCs senescence. Enhanced m6A levels in senescent 
MSCs are mitigated by ALKBH5 through its m6A demethylation 
activity (113, 115). METTL3, an RNA-modifying enzyme, stabilizes 
MIS12 transcripts via m6A modification, attenuating MSCs 
senescence (115, 116). RNA-binding proteins, such as HuR, 
regulate mRNA stability through selective splicing, 5’-end capping, 
and 3’-end polyadenylation. HuR delays MSCs senescence by 
stabilizing SIRT1 mRNA, but its levels decline with senescence, 
impairing cellular function (117). Despite these insights, the precise 
mechanisms by which transcriptional dysregulation drives MSCs 
senescence remain unclear and warrant further investigation. 
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3.2.2 Non-coding RNA-mediated post-
transcriptional regulation in mscs senescence 

Non-coding RNAs, including long non-coding RNAs 
(lncRNAs) and microRNAs (miRNAs) (2), play critical roles in 
cellular processes. During senescence, the miRNA expression 
profile of MSCs is markedly altered in response to oxidative 
s t r es s ,  in  flammatory  microenv i ronments ,  ep igenet i c  
modifications, and metabolic dysregulation, thereby affecting 
cellular function by targeting key senescence-associated genes. 
Among these, miRNAs regulate aging by selectively binding to 
the 3’-untranslated region of target mRNAs, inhibiting translation 
or promoting mRNA degradation (118, 119). For instance, miR­

504, miR-125b, miR-25, and miR-30d delay senescence by directly 
binding to p53 mRNA and suppressing p53 protein expression 
(120). Conversely, miR-192, miR-194 and miR-605 stabilize p53 by 
targeting MDM2, leading to cell cycle arrest and senescence 
induction (120). The cell cycle regulator p21 is targeted by 
multiple miRNAs, including the miR-106b family, miR-130b, and 
miR-302a, which inhibit p21 expression to maintain cell cycle 
progression and delay senescence (118). miR-195 promotes 
senescence by targeting SIRT1 and TERT, inhibiting telomere 
elongation and enhancing p53 signaling (121). Additionally, miR­

486-5p accelerates MSCs senescence by binding to the 3’­
untranslated region of the SIRT1 gene, suppressing osteogenic 
and adipogenic differentiation (30). In the context of p16^INK4a 
suppression, miR-24 inhibits its translation, maintaining cell cycle 
progression and delaying senescence (30, 122). Furthermore, miR­

26b, miR-181a, miR-210, and miR-424 target polycomb repressive 
complex proteins (e.g., CBX7, EED, EZH2, and Suz12), inducing 
p16 upregulation and accelerating senescence (123). lncRNAs also 
regulate cellular senescence by competitively binding to miRNAs, 
modulating the translational efficiency of target mRNAs (124). For 
example, Xist lncRNA competitively binds to miR-19a-3p, 
inhibiting its activity and thereby impairing osteogenic 
differentiation of BMSCs while accelerating senescence (125). 
Similarly, lincRNA-p21, induced by p53, increases ROS levels and 
accelerates MSCs senescence by regulating p21 transcription and 
inhibiting the Wnt pathway (126). Moreover, during menopause, 
declining estrogen levels lead to increased oxidative stress and 
elevated pro-inflammatory cytokines such as TNF-a and IL-6. 
These inflammatory signals influence transcription factors that 
markedly reshape miRNA expression profiles, disrupting the 
balance between osteoblasts and osteoclasts. This imbalance 
results in reduced bone formation and enhanced bone resorption. 
For instance, the accumulation of ROS has been shown to 
upregulate miR-141, which suppresses the expression of 
osteogenic proteins and thereby exacerbates osteoporosis 
progression (127). In summary, the regulation of senescence-
related genes such as p53, p21, SIRT1, and p16^INK4a by 
miRNAs and lncRNAs influences cell cycle progression, 
proliferation, differentiation, and senescence. Modulating the 
expression of these ncRNAs may provide novel strategies to delay 
MSCs senescence and enhance their therapeutic potential. 
Frontiers in Endocrinology 06
Transcriptional regulation in MSCs senescence: epigenetic 
programming and mRNA processing networks (see Figure 1). 

3.2.3 Protein homeostasis imbalance in MSCs 
senescence 

Protein homeostasis, the process of maintaining proper protein 
folding, function, and clearance of misfolded proteins, is critical for 
cellular health (128, 129). In MSCs, protein homeostasis imbalance is 
a key driver of aging. Protein homeostasis imbalance impairs MSCs 
function by promoting the accumulation of misfolded proteins and 
disrupting their degradation, which in turn triggers oxidative stress 
and inflammatory responses. These disturbances form a vicious cycle 
that ultimately accelerates cellular senescence. This imbalance arises 
from two major factors: diminished molecular chaperone function 
and impaired protein degradation systems. Molecular chaperones 
maintain protein homeostasis by assisting protein folding, preventing 
misfolding and aggregation, and promoting the degradation of 
damaged proteins (130). However, chaperone function declines 
with aging. For example, Hsp70 upregulation is regulated by HSF1, 
but reduced HSF1 activity in senescent cells limits chaperone protein 
expression (131, 132), leading to protein homeostasis imbalance 
(133). This imbalance compromises MSCs function and promotes 
senescence. The protein degradation systems, including the 
ubiquitin-proteasome system (UPS) and autophagy, also deteriorate 
with age. Senescence reduces UPS function, characterized by 
decreased proteasomal subunit expression, assembly defects, and 
reduced ubiquitination levels, primarily due to increased 
deubiquitinating enzyme activity and diminished ubiquitin­
conjugating enzyme activity (134). UPS dysfunction impairs the 
clearance of misfolded proteins, leading to protein aggregation and 
functional disruption, thereby accelerating MSCs senescence (135, 
136). Autophagy is significantly impaired in osteoporotic conditions 
(137). For instance, sustained activation of mTORC1, a major 
negative regulator of autophagy, inhibits autophagic activity and 
disrupts protein homeostasis (138, 139). Additionally, lysosomal 
pH, enzyme activity, and membrane fusion capacity decline with 
age, further impairing protein degradation and causing metabolic 
imbalance (140). In aged BMSCs, reduced expression of autophagy­
related proteins (e.g., Atg7, Beclin1, and P62) hinders the clearance of 
dysfunctional mitochondria and damaged proteins, elevating ROS 
levels and increasing DNA damage. These changes accelerate BMSCs 
senescence and promote osteoporosis (141). Furthermore, the age-
related decline in cellular antioxidant defenses increases ROS levels 
and reduces ATP synthesis (8). These factors not only damage 
protein structure and function but also inhibit protein degradation 
systems (142, 143), creating a vicious cycle of mitochondrial damage 
and ROS accumulation that further accelerates MSCs senescence (8). 
In summary, protein homeostasis imbalance drives MSCs senescence 
through multiple mechanisms, including impaired autophagy, UPS 
dysfunction, and oxidative stress, contributing to the development 
and progression of age-related diseases such as osteoporosis. 
Proteostatic control of aging: translational fidelity and protein 
quality surveillance (see Figure 1). 
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4 Innovative and effective therapies 
for osteoporosis 

4.1 Stem cell therapy in osteoporosis 
treatment 

Decreased osteogenic capacity triggered by senescence of 
BMSCs leads to decreased BMD (144, 145), and supplementation 
of MSCs and induction of bone tissue regeneration can effectively 
improve osteoporosis (146). Since Bab et al. first demonstrated the 
osteogenic potential of BMSCs in 1998 (147), stem cell therapy has 
shown promising results in various osteoporosis animal models. 
The therapeutic mechanisms include: 1. MSCs Nesting role: 
Adipose-derived stem cells injected via the tail vein can target 
bone tissues, and aspirin enhances this homing effect, improving 
bone loss in ovariectomized rats (148). CXCR4-transfected BMSCs 
increase vertebral bone density and biomechanical properties in rats 
(149), highlighting the role of MSCs homing in promoting 
osteogenesis. 2.Direct osteogenic differentiation: Overexpression 
of Mettl3 in BMSCs enhances osteogenic differentiation and 
prevents osteoporosis in ovariectomized mice, while its deficiency 
leads to reduced bone mass and bone marrow adiposity. Younger 
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MSCs exhibit greater osteogenic capacity (150). 3. Regulation of 
osteoclast function: MSCs inhibit osteoclast differentiation by 
secreting osteoprotegerin (151). Additionally, BMSCs suppress 
osteoclastogenesis through WNT-1 expression, maintaining bone 
mass balance (215). 4. BMSCs promote angiogenesis, enhancing 
osteogenesis and bone repair: Zhang et al. demonstrated that 
BMSCs improve osteogenesis and repair bone defects in rats 
(218). Similarly, Jia et al. found that local injection of exosomes 
in a rat tibial bone defect model enhances endothelial cell migration, 
accelerates angiogenesis, and facilitates bone repair (154). However, 
direct evidence of MSCs-mediated bone repair through 
angiogenesis in vivo remains lacking and requires further 
investigation. In addition, utilizing stem cells as a novel source of 
osteoblasts and guiding their differentiation through the creation or 
exploitation of appropriate mechanical environments to promote 
bone formation and restore skeletal mechanostasis may represent 
an emerging strategy in stem cell-based therapy (155). 

Despite advancements in clinical trials of stem cell therapies, 
limitations such as small sample sizes, short study durations, and 
inconclusive results persist. Therefore, additional clinical data are 
needed to confirm the efficacy of stem cell therapy in osteoporosis 
and optimize treatment protocols for clinical translation (see Figure 2). 
FIGURE 1 

The Aging Mechanism of Stem Cells (Created in https://BioRender.com). 
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4.2 Research progress on drug and small 
molecule therapies targeting the 
mechanism of MSCs senescence in the 
treatment of osteoporosis 

Modulating aging-related signaling pathways, restoring 
impaired cellular function, and selectively eliminating senescent 
cells through targeted drugs and small molecules have emerged as 
promising strategies to reverse MSCs senescence, representing a 
current research hotspot in the treatment of osteoporosis. Among 
these, SASP inhibitors mitigate the aging process of MSCs by 
reducing the secretion of inflammatory cytokines and SASP 
factors. Compounds such as rapamycin, melatonin, resveratrol, 
metformin, and ferulic acid have demonstrated notable SASP-
inhibitory effects, primarily through suppression of the mTOR 
signaling pathway or activation of AMPK signaling. These 
mechanisms help to attenuate chronic inflammation during MSCs 
senescence, thereby showing therapeutic potential in age-related 
osteoporosis (96, 141, 152). The targets and mechanisms of these 
SASP inhibitors are summarized in Table 1 (see Table 1). In addition 
to SASP inhibition, a group of emerging therapeutic strategies— 
including senolytic agents, small molecule-targeting compounds, 
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and antioxidants—have shown broad potential in delaying MSCs 
senescence and promoting bone regeneration. Senolytic agents, such 
as dasatinib and quercetin, can selectively eliminate senescent MSCs 
accumulated in tissues, thereby restoring regenerative capacity and 
slowing the progression of osteoporosis (96, 168, 169). Furthermore, 
small molecule-targeting compounds such as fibroblast growth 
factor 21 and insulin-like growth factor 1 can activate downstream 
signaling pathways to enhance MSCs proliferation, differentiation, 
and resistance to apoptosis. In parallel, antioxidant agents such as 
nicotinamide and its precursor nicotinamide adenine dinucleotide 
mitigate ROS generation and oxidative stress, thereby slowing MSCs 
aging and contributing positively to osteoporosis therapy (170, 171). 
Although some of these agents were identified decades ago, their 
potential in reversing MSCs senescence and treating osteoporosis 
has only recently been elucidated. A comprehensive summary of 
these interventions is presented in Table 2 (see Table 2). While many 
of the aforementioned agents remain in the preclinical or early 
research phase, accumulating evidence supports their therapeutic 
promise in managing osteoporosis. Future studies are warranted to 
further validate their efficacy and safety, with the aim of developing 
novel treatment options for patients with aging-related 
bone disorders. 
FIGURE 2 

Stem cell therapy promotes osteogenesis and treats osteoporosis (Created in https://BioRender.com). 
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TABLE 2 Advances in senolytics and other small molecule-targeting agents for reversing MSCs senescence and treating osteoporosis. 

Druss/small molecules Mechanism of action Impact on MSCs Aging Effect on osteoporosis References 

Senolytic Drugs 

Dasatinib, Quercetin, Fisetin 
Inhibits PI3K/Akt 
signaling pathway 

Selectively eliminates senescent 
cells;Attenuates 
chronic inflammation 

Enhances bone mineral density 
(96, 153, 169, 
172, 173, 216) 

Curcumin Upregulates TAZ expression 
Augments osteogenic potential of 
bone marrow-derived MSCs 

Enhances trabecular bone 
microarchitecture; 
Promotes MSCs 
osteolineage commitment 

(168) 

Small Molecule-Targeting Agents 

Human embryonic stem cell-
derived small EVs 

Activates Wnt/Sirtuin/AMPK/ 
PTEN signaling and other pro-
regenerative pathways 

Upregulates anti-aging 
genesrestore the function of 
aging MSCs 

Enhances bone microarchitecture 
Reduces osteoporosis severity 

(174, 175) 

Fibroblast growth factor 21 
Activates the AMPK 
signaling pathway 

Improves the quality and quantity 
of MSCs, delays the aging of MSCs 

Improves bone quality; 
Reduces osteoporosis. 

(175, 176) 

Insulin-like growth factor 1 Activates the p13k/Akt pathway 
Promotes the proliferation and 
osteogenic differentiation of MSCs 

Improves bone density (114, 177) 

Others 

Nicotinamide Reduces ROS production 
Reduces oxidative stress: Slows the 
aging of MSCs and DNA damage 

Improves bone quality; 
Reduces osteoporosis 

(88, 170) 

Ascorbic acid 
1. Inhibits AKT/mTOR signaling 
2. Reduces ROS production 

Reduces oxidative stress: Improves 
MSCs function 

Promotes bone formation (97, 171) 
F
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TABLE 1 Targets and mechanisms of SASP inhibitors in reversing MSCs aging and treating osteoporosis. 

Drug Mechanism of action Impact on MSCs Aging Effect on osteoporosis References 

Rapamycin 
1. Inhibits mTOR signaling 
2. Induces autophagy and reduces 
ROS levels 

Reduces SASP-related inflammation 
by decreasing SASP factor production; 
Enhances senescent 
MSCs functionality 

Increases bone density;Enhances 
osteogenesis; Suppresses adipocyte 
formation; Stimulates cell proliferation 

(96, 156, 157) 

Melatonin 

1.Clears p53/ERK/p38 pathway 
2. Reduces ROS accumulation 
3. Activates AMPK signaling, 
upregulating FOXO3a and Runx2 

Protects MSCs against oxidative stress: 
Decreases secretion of SASP factors; 
Enhances osteogenic/chondrogenic 
differentiation capacity 

Promotes bone formation; (158, 96) (159, 152) 

Metformin 

1. Activates AMPK signaling and 
downregulates miR-34a-3p 
2. Inhibits mTOR phosphorylation 
3. Decreases ROS levels 
4. Modulates miR-181a-5p/PAI axis 

Mitigates oxidative stress,delaying 
MSCs aging and reducing DNA 
damage; Suppresses SASP 
factors secretion 

Shows therapeutic potential 
for osteoporosis 

(160–164) 

Resveratrol 

1. Activates SIRT1 modulating 
oxidative stress and inflammation 
2. Modulates mitochondrial gene 
transcription 
3. Preserves telomere integrity 

Delays MSCs senescence Enhances bone microarchitecture (96, 165, 166) 

Ferulic Acid 
1. Inhibits NF-kB signaling pathway 
2. Decreases ROS generation 

Attenuates oxidative stress damage; 
Suppresses SASP factor secretion 

Stimulates osteoblast proliferation (167) 
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4.3 The application of novel therapies 
using hydrogels and extracellular vesicles 
in the treatment of osteoporosis 

The development of osteoporosis is closely linked to the 
disruption of bone tissue structure. Actively improving the 
microenvironment and tissue structure creates more favorable 
conditions for stem cell survival. In bone tissue engineering, 
hydrogels  have  been  employed  as  scaffolds  to  address  
osteoporotic bone defects, enhance the bone microenvironment, 
promote osteogenic differentiation of MSCs, and delay cellular 
aging. Notably, stimulus-responsive hydrogels, which can 
modulate mechanical properties, shape, and drug release in 
response to triggers such as temperature, pH, electromagnetic 
radiation, magnetic fields, or biological factors, have become a 
prominent focus in bone-enabling research (178–180). For 
example, Ye et al. developed a thermo-responsive injectable 
hydroge l  (MnO2@Pol /HA)  tha t  support s  osteogenic  
differentiation of BMSCs by scavenging ROS and modulating 
macrophage polarization (181). Tang et al. designed a dual-
network hydrogel (GelMA/ALN-OSA) that responds to pH 
changes to maintain stable drug concentrations and promote 
bone regeneration (182). Zhou et al. developed an electrochemical 
deposition-constructed hydrogel (Mg@PEG-PLGA) that scavenges 
ROS by releasing H2 through hydrolysis reactions, improves the 
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bone microenvironment, and promotes osteogenic differentiation of 
MSCs (183). However, further optimization of the hydrogel’s 
biocompatibility, mechanical properties, and biodegradability is 
necessary to ensure synergistic effects with the bone regeneration 
process (184). 

Recent studies have also highlighted the potential of EVs, 
including exosomes, due to their unique nanostructures, stable 
drug-carrying capacity, and excellent biocompatibility. EVs can 
improve the bone microenvironment, delay MSCs aging, and 
have become a key area of interest in osteoporosis research. Liu 
et al. used synthetic biology to integrate BMP-2 and CXCR4 onto 
the surface of bacterial EVs to deliver BMP-2, activating osteogenic 
signaling and significantly enhancing bone density and strength 
while inhibiting adipogenesis, thereby improving osteoporosis 
(112). EVs from various sources have demonstrated promising 
applications in osteoporosis treatment through multiple 
mechanisms (see Table 3). Additionally, the combination of EVs 
with hydrogels has shown significant potential in bone 
regeneration. Ding et al. developed a gelatin/ECM composite 
scaffold loaded with apoptotic vesicles derived from adipose-
derived MSCs under hypoxic conditions. This scaffold 
significantly promoted osteochondral defect repair in rat 
osteoarthritis by enhancing stem cell proliferation, migration, and 
cartilage-forming differentiation, as well as promoting macrophage 
M2 polarization (193). Guo et al. developed a GEL-OCS/MBGN 
TABLE 3 Treatment of osteoporosis with EVs from different sources. 

Cel Slource Mechanism Impact on MSCs Aging Effect on Osteoporosis 

BMSCs 
(35, 185) 

1. Contains microRNA-122-5p 
2. Regulates the USP7/YAP1/b-catenin 
axis 
3.Modulates Wnt/b-catenin, Hippo, and 
PI3K/Akt signaling pathways 
4. Enhances osteogenic protein expression 

Reduces senescence markers; 
Delays MSCs aging; 
Decreases oxidative stress 
and inflammation 

Reduces bone loss; 
Increases bone mass and strength 

Urine-Derived MSCs 
(186, 187) 

1. Enriched in CTHRC1 
2. Contains abundant osteoprotegerin 
protein 
3. Promotes angiogenesis 

Improves the microenvironment to 
promote bone differentiation 

Improves bone quality; 
Promotes bone formation 

Adipose-Derived MSCs 
(188) 

1. Targets genes related to the RANKL­
RANK pathway 
2. Enriched in osteoprotegerin 

Promotes the homing of MSCs and 
osteogenic differentiation 

Promotes bone remodeling 

Amniotic Fluid-Derived MSCs 
(189) 

1. Contains antioxidant enzymes 
2. Enhances the expression of 
osteogenesis-related proteins 
3. Activates SIRT1 and Nrf2 pathways 

Improves the slowdown of MSCs aging 
and DNA damage 

Promotes bone formation; 
Delays local bone loss 

Osteoclasts 
(190) 

1. Regulates RANKL-RANK signaling 
2. Targets ARHGAP1 

Promotes the osteogenic differentiation of 
MSCs and improves the 
bone microenvironment 

Promotes osteogenesis; 
Enhances bone quality 

Bacteria 
(191, 192) 

1. Regulates the activity of pro-
inflammatory cytokines and immune cells 
2. Regulates proteins related to calcium 
absorption pathways and alter the 
intestinal microenvironment 

Improves the bone microenvironment 
Prevents bone loss; 
Enhances bone quality 
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composite hydrogel loaded with EVs, which significantly promoted 
bone defect repair in rats by enhancing osteogenic differentiation of 
BMSCs through modulation of the miR-19b/WWP1 axis (194). 
Despite these advancements, further in-depth studies and clinical 
validation are needed to fully realize the potential of EVs and 
hydrogels in osteoporosis therapy. 
5 Conclusion and outlook 

5.1 The key connection and influence 
mechanism between MSCs aging and 
osteoporosis 

The aging of MSCs plays a critical role in the pathogenesis of 
osteoporosis. Studies have demonstrated that the osteogenic 
capacity and self-renewal potential of MSCs decline significantly 
with age, a phenomenon closely associated with reduced expression 
of osteogenic markers, elevated oxidative stress levels, and increased 
inflammatory responses (195–197). Specifically, DNA damage 
accumulated in MSCs during aging activates cell cycle regulatory 
pathways, particularly the p53-p21 pathway, leading to cell cycle 
arrest (198). This arrest not only impedes normal cell proliferation 
and differentiation but also directly affects the repair and 
regenerative capacity of bone tissue, thereby accelerating the 
progression  of  osteoporosis  (199). Therefore, a deeper 
understanding of the specific mechanisms underlying MSCs 
senescence  can  help  elucidate  the  pathophysiological  
characteristics of osteoporosis and provide more targeted 
intervention strategies (200). 
5.2 Prevention and treatment of 
osteoporosis caused by MSCs aging 

Given the strong link between MSCs aging and osteoporosis, 
interventions targeting the aging process of MSCs are of paramount 
importance. Existing studies have shown  that  lifestyle modifications 
(e.g., moderate exercise, a balanced diet, smoking cessation, and alcohol 
restriction) and the development of novel drugs can effectively delay 
MSCs aging, thereby reducing the risk of osteoporosis (201, 202). For 
instance, physical inactivity has been associated with a significant 
decline in BMD, and studies have found that older women who 
engage in regular exercise exhibit significantly higher BMD compared 
to  those who  are sedentary  (203). Additionally, smoking interferes with 
calcium absorption and increases oxidative stress, damaging bone cells 
and accelerating bone loss (204, 205). Excessive alcohol consumption 
not only inhibits osteoblast activity but may also indirectly affect bone 
metabolism through liver damage (206, 207). Thus, improving lifestyle 
habits not only helps delay MSCs aging but also promotes overall bone 
health and slows the progression of osteoporosis. Therapeutic strategies 
targeting oxidative stress and inflammation may also offer new avenues 
for osteoporosis prevention and treatment (127, 196, 208). 
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5.3 Directions for future research 

Future research should focus on exploring the mechanisms of 
MSCs aging and its role in osteoporosis at the cellular and 
molecular levels. In particular, in-depth studies on the 
interactions between cell cycle regulation, oxidative stress, and 
inflammatory responses are needed to identify potential 
intervention targets (209). Additionally, the development of novel 
drugs and intervention strategies, such as gene editing technologies 
or small molecule compounds, may become effective means to delay 
MSCs aging. In terms of clinical applications, the focus should be on 
evaluating the efficacy and safety of these interventions in diverse 
populations (e.g., the elderly and individuals at high risk for 
osteoporosis), aiming to provide more effective solutions for 
osteoporosis prevention and treatment (210–212). These studies 
will not only deepen our understanding of the impact of aging on 
bone health but also provide new theoretical foundations and 
practical guidance for the prevention and treatment of 
related diseases. 
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chemokines involved in osteoarthritis pathogenesis. Int J Mol Sci. (2021) 22:9208. 
doi: 10.3390/ijms22179208 

34. Wautier JL, Wautier MP. Pro- and anti-inflammatory prostaglandins and 
cytokines in humans: A mini review. Int J Mol Sci. (2023) 24:(11). doi: 10.3390/ 
ijms24119647 
frontiersin.org 

https://doi.org/10.3390/medicina58010061
https://doi.org/10.1016/j.cell.2022.11.001
https://doi.org/10.1038/s41368-024-00309-9
https://doi.org/10.1016/j.arr.2024.102235
https://doi.org/10.1016/j.arr.2024.102235
https://doi.org/10.3390/ijms242115772
https://doi.org/10.3390/ijms23105776
https://doi.org/10.1096/fj.202101106RR
https://doi.org/10.1186/s11658-023-00489-y
https://doi.org/10.3390/ijms18091852
https://doi.org/10.1002/advs.202207334
https://doi.org/10.1186/s13287-024-03707-2
https://doi.org/10.3390/biomedicines11020386
https://doi.org/10.1016/j.stem.2020.09.014
https://doi.org/10.1155/2021/4593322
https://doi.org/10.3390/ijms232416045
https://doi.org/10.1039/d1fo02755g
https://doi.org/10.1016/j.cell.2015.05.029
https://doi.org/10.1007/s11657-020-00715-6
https://doi.org/10.1016/j.bone.2021.115879
https://doi.org/10.7150/ijbs.2929
https://doi.org/10.1038/s41580-020-0230-3
https://doi.org/10.1038/s41580-020-0230-3
https://doi.org/10.1007/s10753-024-02014-5
https://doi.org/10.1039/d1tb00720c
https://doi.org/10.1016/j.freeradbiomed.2023.02.009
https://doi.org/10.1016/j.freeradbiomed.2023.02.009
https://doi.org/10.1016/j.freeradbiomed.2022.05.003
https://doi.org/10.1016/j.freeradbiomed.2022.05.003
https://doi.org/10.2106/jbjs.20.00989
https://doi.org/10.1016/j.bone.2025.117491
https://doi.org/10.1016/j.bone.2025.117491
https://doi.org/10.1016/j.arr.2022.101608
https://doi.org/10.1016/j.arr.2022.101608
https://doi.org/10.3390/ijms232113435
https://doi.org/10.1007/s12015-021-10317-5
https://doi.org/10.1155/2020/8836258
https://doi.org/10.1093/intimm/dxaa078
https://doi.org/10.3390/ijms22179208
https://doi.org/10.3390/ijms24119647
https://doi.org/10.3390/ijms24119647
https://doi.org/10.3389/fendo.2025.1625806
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tong et al. 10.3389/fendo.2025.1625806 

 

 

35. Wang X, Zou C, Hou C, Bian Z, Jiang W, Li M, et al. Extracellular vesicles from 
bone marrow mesenchymal stem cells alleviate osteoporosis in mice through USP7­
mediated YAP1 protein stability and the Wnt/b-catenin pathway. Biochem Pharmacol. 
(2023) 217:115829. doi: 10.1016/j.bcp.2023.115829 

36. Xu L, Wang Y, Wang J, Zhai J, Ren L, Zhu G. Radiation-induced osteocyte 
senescence alters bone marrow mesenchymal stem cell differentiation potential via 
paracrine signaling. Int J Mol Sci. (2021) 22:(17). doi: 10.3390/ijms22179323 

37. Almalki WH, Almujri SS. Aging, ROS, and cellular senescence: a trilogy in the 
progression of liver fibrosis. Biogerontology. (2024) 26:10. doi: 10.1007/s10522-024­
10153-3 

38. Kushioka J, Chow SK, Toya M, Tsubosaka M, Shen H, Gao Q, et al. Bone 
regeneration in inflammation with aging and cell-based immunomodulatory therapy. 
Inflammation Regener. (2023) 43:29. doi: 10.1186/s41232-023-00279-1 

39. Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong X, et al. Aged 
skeletal stem cells generate an inflammatory degenerative niche. Nature. (2021)
597:256–62. doi: 10.1038/s41586-021-03795-7 

40. Farr JN, Kaur J, Doolittle ML, Khosla S. Osteocyte cellular senescence. Curr 
Osteoporos Rep. (2020) 18:559–67. doi: 10.1007/s11914-020-00619-x 

41. Chandra A, Rajawat J. Skeletal aging and osteoporosis: mechanisms and 
therapeutics. Int J Mol Sci. (2021) 22:(7). doi: 10.3390/ijms22073553 

42. Widjaja AA, Lim WW, Viswanathan S, Chothani S, Corden B, Dasan CM, et al. 
Inhibition of IL-11 signalling extends mammalian healthspan and lifespan. Nature. 
(2024) 632:157–65. doi: 10.1038/s41586-024-07701-9 

43. Han D, Gong H, Wei Y, Xu Y, Zhou X, Wang Z, et al. Hesperidin inhibits lung 
fibroblast senescence via IL-6/STAT3 signaling pathway to suppress pulmonary 
fibrosis. Phytomedicine. (2023) 112:154680. doi: 10.1016/j.phymed.2023.154680 

44. Lagoumtzi SM, Chondrogianni N. Senolytics and senomorphics: Natural and 
synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic Biol 
Med. (2021) 171:169–90. doi: 10.1016/j.freeradbiomed.2021.05.003 

45. Khosla S, Farr JN, Tchkonia T, Kirkland JL. The role of cellular senescence in 
ageing and endocrine disease. Nat Rev Endocrinol. (2020) 16:263–75. doi: 10.1038/ 
s41574-020-0335-y 

46. Li Y, Hao W, Guan J, Li B, Meng L, Sun S, et al. Relationship between indices of 
circulating blood cells and bone homeostasis in osteoporosis. Front Endocrinol 
(Lausanne). (2022) 13:965290. doi: 10.3389/fendo.2022.965290 

47. Prisby RD. Bone marrow microvasculature. Compr Physiol. (2020) 10:1009–46. 
doi: 10.1002/cphy.c190009 

48. Neag G, Finlay M, Naylor AJ. The cellular choreography of osteoblast 
angiotropism in bone development and homeostasis. Int J Mol Sci. (2021) 22:(14). 
doi: 10.3390/ijms22147253 

49. Xu Y, Chang L, Chen Y, Dan Z, Zhou L, Tang J, et al. USP26 combats age-related 
declines in self-renewal and multipotent differentiation of BMSC by maintaining 
mitochondrial homeostasis. Adv Sci (Weinh). (2024) 11:e2406428. doi: 10.1002/ 
advs.202406428 

50. Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in 
pathological angiogenesis. J Cell Biochem. (2022) 123:1938–65. doi: 10.1002/jcb.30344 

51. Kang F, Yi Q, Gu P, Dong Y, Zhang Z, Zhang L, et al. Controlled growth factor 
delivery system with osteogenic-angiogenic coupling effect for bone regeneration. J 
Orthop Translat. (2021) 31:110–25. doi: 10.1016/j.jot.2021.11.004 

52. Keller-Baruch J, Forgetta V, Manousaki D, Zhou S, Richards JB. Genetically 
decreased circulating vascular endothelial growth factor and osteoporosis outcomes: A 
mendelian randomization study. J Bone Miner Res. (2020) 35:649–56. doi: 10.1002/ 
jbmr.3937 

53. Ning W, Li S, Yang W, Yang B, Xin C, Ping X, et al. Blocking exosomal miRNA­
153-3p derived from bone marrow mesenchymal stem cells ameliorates hypoxia­
induced myocardial and microvascular damage by targeting the ANGPT1-mediated 
VEGF/PI3k/Akt/eNOS pathway. Cell Signal. (2021) 77:109812. doi: 10.1016/ 
j.cellsig.2020.109812 

54. Liu H, Huang B, Xue S, Tsang LL, Zhang X, Li G, et al. Functional crosstalk 
between mTORC1/p70S6K pathway and heterochromatin organization in stress-
induced senescence of MSCs. Stem Cell Res Ther. (2020) 11:279. doi: 10.1186/ 
s13287-020-01798-1 

55. Sun K, Luo J, Guo J, Yao X, Jing X, Guo F. The PI3K/AKT/mTOR signaling 
pathway in osteoarthritis: a narrative review. Osteoarthritis Cartilage. (2020) 28:400–9. 
doi: 10.1016/j.joca.2020.02.027 

56. Grunewald M, Kumar S, Sharife H, Volinsky E, Gileles-Hillel A, Licht T, et al. 
Counteracting age-related VEGF signaling insufficiency promotes healthy aging and 
extends life span. Science. (2021) 373:(6554). doi: 10.1126/science.abc8479 

57. Siddiqui S, Mahdi AA, Arshad M. Genistein contributes to cell cycle progression 
and regulates oxidative stress in primary culture of osteoblasts along with osteoclasts 
attenuation. BMC Complement Med Ther. (2020) 20:277. doi: 10.1186/s12906-020­
03065-5 

58. Arora M, Moser J, Hoffman TE, Watts LP, Min M, Musteanu M, et al. Rapid 
adaptation to CDK2 inhibition exposes intrinsic cell-cycle plasticity. Cell. (2023) 
186:2628–2643.e21. doi: 10.1016/j.cell.2023.05.013 

59. Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 
(2022) 29:946–60. doi: 10.1038/s41418-022-00988-z 
Frontiers in Endocrinology 13 
60. Wang Z. Regulation of cell cycle progression by growth factor-induced cell 
signaling. Cells. (2021) 10:(12). doi: 10.3390/cells10123327 

61. Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and 
senescence associated secretory phenotype. Front Cell Dev Biol. (2021) 9:645593. 
doi: 10.3389/fcell.2021.645593 

62. Sheekey E, Narita M. p53 in senescence - it’s a marathon, not a sprint. FEBS J. 
(2023) 290:1212–20. doi: 10.1111/febs.16325 

63. Knudsen ES, Witkiewicz AK, Rubin SM. Cancer takes many paths through G1/S. 
Trends Cell Biol. (2024) 34:636–45. doi: 10.1016/j.tcb.2023.10.007 

64. He P, Li Z, Xu F, Ru G, Huang Y, Lin E, et al. AMPK Activity Contributes to G2 
Arrest and DNA Damage Decrease via p53/p21 Pathways in Oxidatively Damaged 
Mouse Zygotes. Front Cell Dev Biol. (2020) 8:539485. doi: 10.3389/fcell.2020.539485 

65. Li YL, Gan XL, Zhu RP, Wang X, Liao DF, Jin J, et al. Anticancer activity of 
platinum (II) complex with 2-benzoylpyridine by induction of DNA damage, S-phase 
arrest, and apoptosis. Anticancer Agents Med Chem. (2020) 20:504–17. doi: 10.2174/ 
1871520619666191112114340 

66. De Braekeleer M, Douet-Guilbert N, De Braekeleer E. Prognostic impact of p15 
gene aberrations in acute leukemia. Leuk Lymphoma. (2017) 58:257–65. doi: 10.1080/ 
10428194.2016.1201574 

67. Manohar S, Estrada ME, Uliana F, Vuina K, Alvarez PM, de Bruin RAM, et al. 
Genome homeostasis defects drive enlarged cells into senescence. Mol Cell. (2023) 
83:4032–4046.e6. doi: 10.1016/j.molcel.2023.10.018 

68. Tran AP, Tralie CJ, Reyes J, Moosmüller C, Belkhatir Z, Kevrekidis IG, et al. 
Long-term p21 and p53 dynamics regulate the frequency of mitosis events and cell 
cycle arrest following radiation damage. Cell Death Differ. (2023) 30:660–72. 
doi: 10.1038/s41418-022-01069-x 

69. Bulavin DV, Amundson SA, Fornace AJ. p38 and Chk1 kinases: different 
conductors for the G(2)/M checkpoint symphony. Curr Opin Genet Dev. (2002) 
12:92–7. doi: 10.1016/s0959-437x(01)00270-2 

70. Garyn CM, Bover O, Murray JW, Ma J, Salas-Briceno K, Ross SR, et al. G2 arrest 
primes hematopoietic stem cells for megakaryopoiesis. Cell Rep. (2024) 43:114388. 
doi: 10.1016/j.celrep.2024.114388 

71. Tian RC, Zhang RY, Ma CF. Rejuvenation of bone marrow mesenchymal stem 
cells: mechanisms and their application in senile osteoporosis treatment. Biomolecules. 
(2025) 15:(2). doi: 10.3390/biom15020276 

72. Mansilla SF, de la Vega MB, Calzetta NL, Siri SO, Gottifredi V. CDK-
independent and PCNA-dependent functions of p21 in DNA replication. Genes 
(Basel). (2020) 11:(6). doi: 10.3390/genes11060593 

73. Hume S, Grou CP, Lascaux P, D’Angiolella V, Legrand AJ, Ramadan K, et al. The 
NUCKS1-SKP2-p21/p27 axis controls S phase entry. Nat Commun. (2021) 12:6959. 
doi: 10.1038/s41467-021-27124-8 

74. Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev 
Mol Cell Biol. (2022) 23:74–88. doi: 10.1038/s41580-021-00404-3 

75. Zhu H, Rao Z, Yuan S, You J, Hong C, He Q, et al. One therapeutic approach for 
triple-negative breast cancer: Checkpoint kinase 1 inhibitor AZD7762 combination 
with neoadjuvant carboplatin. Eur J Pharmacol. (2021) 908:174366. doi: 10.1016/ 
j.ejphar.2021.174366 

76. Zanella E, Doksani Y. In the loop: unusual DNA structures at telomeric repeats 
and their impact on telomere function. Cold Spring Harb Perspect Biol. (2025). 
doi: 10.1101/cshperspect.a041694 

77. Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology 
disorders. Nat Rev Genet. (2023) 24:86–108. doi: 10.1038/s41576-022-00527-z 

78.  Gao X, Yu X, Zhang  C,  Wang  Y,  Sun Y, Sun  H,  et  al.  Telomeres  and
mitochondrial metabolism: implications for cellular senescence and age-
related diseases. Stem Cell Rev Rep. (2022) 18:2315–27. doi: 10.1007/s12015­
022-10370-8 

79. Eppard M, Passos JF, Victorelli S. Telomeres, cellular senescence, and aging: past 
and future. Biogerontology. (2024) 25:329–39. doi: 10.1007/s10522-023-10085-4 
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