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disease based on interpretable 
machine models in a Chinese 
T2DM population 
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and Guoqing Huang1* 

1Department of Endocrinology, The First Affiliated Hospital of Ningbo University, Ningbo, 
Zhejiang, China, 2Department of Endocrinology, Beilun People's Hospital, Ningbo, Zhejiang, China 
Background: Non-alcoholic fatty liver disease (NAFLD) is the most common 
chronic liver disease, seriously threatening the public health. Although the 
proportion of patients with lean NAFLD is lower than that of patients with 
obese NALFD, it should not be overlooked. This study aimed to construct 
interpretable machine learning models for predicting lean NAFLD risk in type 2 
diabetes mellitus (T2DM) patients. 

Methods: This study enrolled 1,553 T2DM individuals who received health care at 
the First Affiliated Hospital of Ningbo University, Ningbo, China, from November 
2019 to November 2024. Feature screening was performed using the Boruta 
algorithm and the Least Absolute Shrinkage and Selection Operator (LASSO). 
Linear discriminant analysis (LDA), logistic regression (LR), Naive Bayes (NB), 
random forest (RF), support vector machine (SVM), and extreme gradient 
boosting (XGboost) were used in constructing risk prediction models for lean 
NAFLD in T2DM patients. The area under the receiver operating characteristic 
curve (AUC) was used to assess the predictive capacity of the model. Additionally, 
we employed SHapley Additive exPlanations (SHAP) analysis to unveil the specific 
contributions of individual features in the machine learning model to the 
prediction results. 

Results: The prevalence of lean NAFLD in the study population was 20.3%. Eight 
variables, including age, body mass index (BMI), and alanine aminotransferase 
(ALT), were identified as independent risk factors for lean NAFLD. Ten predictive 
factors, including BMI, ALT, and aspartate aminotransferase (AST), were screened 
for the construction of risk prediction models. The random forest model 
demonstrated superior performance compared to alternative machine learning 
(ML) algorithms, achieving an AUC of 0.739 (95% confidence interval [CI]: 0.676– 
0.802) in the training set, and it also exhibited the best predictive value in the 
internal validation set with an AUC of 0.789 (95% CI: 0.722–0.856). In addition, 
the SHAP method identified TG, ALT, GGT, BMI, and UA as the top five variables 
influencing the predictions of the RF model. 

Conclusion: The construction of lean NAFLD risk models based on the Chinese 
T2DM population, particularly the RF model, facilitates its early prevention and 
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intervention, thereby reducing the risks of intrahepatic and extrahepatic 
adverse outcomes. 
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Introduction 

In recent years, type 2 diabetes mellitus (T2DM) and Non-
alcoholic fatty liver disease (NAFLD) have been the two most 
challenging public health issues worldwide. T2DM is a metabolic 
disease characterized by chronic elevated blood glucose caused by 
many factors, such as heredity and environment. Approximately 
537 million (10.5%) adults (aged 20–79) in the world have T2DM 
according to the latest research results of the International Diabetes 
Federation (IDF) (1). NAFLD refers to a clinicopathological 
syndrome primarily characterized by excessive intrahepatic fat 
deposition, excluding alcohol consumption and other well-defined 
liver-damaging factors (2). It is estimated that the global prevalence 
of NAFLD has increased from 25% in 2016 to over 30% at present 
and continues to rise (3, 4). It is well-known that there is a close 
relationship between T2DM and NAFLD. They not only share 
common risk factors but also frequently serve as comorbidities or 
target organ damages for each other. T2DM and NAFLD are known 
to frequently coexist and act synergistically to increase the risk of 
adverse clinical outcomes (5). A meta-analysis revealed that the 
prevalence rates of NAFLD in T2DM were 65.04% (95% 
CI:61.79%–68.15%), and the prevalence of NAFLD in the Chinese 
population with T2DM is 52.56% (6). Another study result showed 
that compared with T2DM patients without NAFLD, the risks of 
cardiovascular disease (CVD), chronic kidney disease (CKD) and 
proliferative retinopathy in T2DM patients with NAFLD are 1.96, 
1.87 and 1.75 times higher respectively (7). Furthermore, it has been 
demonstrated that patients with NAFLD exhibit a more than 
twofold increased risk of developing T2DM compared to the 
general population (5). 

Although NAFLD is commonly associated with obesity, around 
10%–20% of NAFLD cases occur in non-obese or non-overweight 
individuals, a condition often described as lean NAFLD (8). A Meta-

analysis encompassing 33 observational studies reported that the 
prevalence of lean NAFLD was the highest among Asian individuals 
(9). Compared to obese NAFLD, lean NAFLD has milder metabolic 
abnormalities but a higher incidence of advanced liver disease and all-
cause mortality (10, 11). Due to the absence of obesity phenotypes, 
lean NAFLD is prone to being overlooked in clinical diagnosis. 
Currently, there are no formal recommendations for the treatment 
of lean NAFLD (12), early lifestyle intervention remains the 
cornerstone of the management of lean NAFLD (13). Certain 
02 
relevant guidelines recommend that it is necessary to conduct 
screening for NAFLD in T2DM patients (14, 15). Therefore, it is 
particularly crucial to conduct early identification and effective 
management of lean NAFLD in a Chinese T2DM population. 

The approach for lean NAFLD diagnosis is identical to any 
NAFLD patient. Excluding excessive alcohol consumption and 
other causes of hepatic steatosis and damage, detection is carried 
out through ultrasound, computed tomography (CT), or magnetic 
resonance (MR), and pathological diagnosis is performed using 
liver biopsy when necessary. Serum indices (NFS score and FIB-4 
score) and imaging techniques (transient elastography and 
magnetic resonance elastography) can serve as alternative 
approaches to liver biopsy for fibrosis staging and patient follow-
up (16–18). However, the above-mentioned diagnostic methods 
inevitably lead to the waste of medical resources and an increase in 
time costs. Therefore, it is of great significance to establish an 
assessment tool that can screen out high-risk individuals with lean 
NAFLD at an early stage. 

With the development of technology, the utilization of artificial 
intelligence (AI) and machine learning (ML) technology in the 
healthcare sector has experienced significant growth in recent years 
(19). The analysis of extensive clinical data through ML algorithms 
can assist clinicians in identifying potential disease progression 
patterns and facilitating personalized treatment strategies (20). 
Currently, a substantial body of research has explored the 
utilization of various ML techniques for the prediction and 
diagnosis of diseases, such as T2DM, breast cancer, and heart 
disease (21–23). Pei-Yuan Su et al. developed ML models for the 
prediction of fatty liver disease in lean individuals. The results 
indicated that the ML model comprising a two-class neural network 
using 10 features had the highest area under the receiver operating 
characteristic curve (AUC) value (0.885) among all other 
algorithms (24). However, there are few studies on the risk 
prediction models for lean NAFLD in T2DM patients. The 
purpose of this study was to establish lean NAFLD risk prediction 
models based on interpretable machine learning algorithms, which 
would facilitate the early identification of lean NAFLD and guide 
appropriate preventive and intervention measures. 
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Materials and methods 

Study population 

This study enrolled 4,056 T2DM individuals who received health 
care through routine physical examinations, outpatient visits, and 
inpatient admissions at the First Affiliated Hospital of Ningbo 
University, Ningbo, China, from November 2019 to November 
2024. Demographic data, relevant complications, biochemical 
parameters, etc., were obtained through questionnaire surveys and 
laboratory examinations. Ultimately, 1,553 participants were 
included in the study. The specific exclusion criteria were as 
follows: (1) patients without liver ultrasound results; (2) patients 
with body mass index (BMI) ≤ 18 or BMI ≥ 24; (3) patients with 
heavy alcohol consumption (exceeding 140 grams per week for men 
and 70 grams per week for women); (4) diagnosis of liver disease, 
such as viral hepatitis, and autoimmune hepatitis. We used the 
multiple imputation method (linear regression, polynomial logistic 
regression, and five iterations to create an interpolation model) to 
process missing values, in order to reduce bias toward missing data 
(Supplementary Figure 1) (25). The study’s flow diagram is depicted 
in Figure 1. 
Definition 

The diagnostic criteria for DM were fasting blood glucose 
(FBG) levels of ≥ 7.0 mmol/L, 2-hour blood glucose levels of ≥ 
11.1 mmol/L, or a glycated hemoglobin level of ≥ 6.5% (26). 
Clinical baseline data 

Clinical baseline data encompassed the Participants’ general 
characteristics (gender, age, BMI, systolic blood pressure [SBP], 
diastolic blood pressure [DBP], and heart rate [HR]), lifestyle habits 
(history of smoking), blood cell counts (white blood cell count [WBC], 
red blood cell count [RBC], mean red blood cell volume [MCV], 
lymphocyte count [LYMPH], monocyte count[MONO], neutrophil 
count [NEUT], eosinophil count [EOS], basophil count [BASO], 
hemoglobin [HB], platelet count [PLT], mean platelet volume [MPV], 
and platelet distribution width [PDW]), biochemical indicators (alanine 
aminotransferase [ALT], aspartate aminotransferase [AST], gamma-

glutamyl transpeptidase [GGT], total bilirubin [TBIL], direct bilirubin 
[DBIL], indirect bilirubin [IBIL], albumin [ALB], globulin [GLO], total 
protein [TP], creatinine [CREA], uric acid [UA], total cholesterol [TC], 
triglycerides [TG], high-density lipoprotein cholesterol [HDL-C], low-
density lipoprotein cholesterol [LDL-C], and glucose [GLU]), and other 
laboratory value(glycosylated hemoglobin [HBA1C]). 
Statistical analysis 

The preliminary analysis of the dataset involves the application 
of descriptive statistics. The Kolmogorov-Smirnov (K-S) test was 
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used to test the normality of the continuous variables. Continuous 
variables with a normal distribution were expressed as means 
(standard deviations, SD), continuous variables with a skewed 
distribution were expressed as medians (interquartile ranges, 
IQR), and categorical variables were expressed as percentages 
(percentage, %). Independent-samples T test (continuous 
variables with a normal distribution), Mann-Whitney U test 
(continuous variables with a skewed distribution), and chi-square 
test (categorical variables) were used to evaluate the differences 
between groups, and the standardized mean difference (SMD) was 
used to evaluate balance between groups (27). 

We used multivariate logistic regression to identify independent 
risk factors for lean NAFLD. The Boruta algorithm and the Least 
Absolute Shrinkage and Selection Operator (LASSO) were utilized 
to screen for characteristic variables. To construct a prediction 
model, the entire dataset was partitioned into a training set and an 
internal validation set at a ratio of 6:4. Subsequently, six ML 
algorithms including linear discriminant analysis (LDA), logistic 
regression (LR), Naive Bayes (NB), random forest (RF), support 
vector machine (SVM), and extreme gradient boosting (XGboost), 
were employed to train the model. During the model training 
process, a 10-fold cross-validation method was utilized to 
optimize the model parameters and prevent the occurrence of 
overfitting. In addition, we employed the AUC to evaluate the 
predictive ability of the model. Calibration curves and the Brier 
score were utilized to assess the calibration ability, while decision 
curve analysis (DCA) was applied to evaluate the clinical 
applicability. Additionally, the Shapley Additive exPlanations 
(SHAP) was used to interpret the best predictive model. 

Statistical analyses were conducted using the R language 
(version 4.2.3, http://www.R-project.org/) and Python (version 
3.9.0, https://www.python.org/). All data were analyzed using 
two-sided tests, and statistical significance was defined as P < 0.05. 
Results 

Baseline characteristics of participants 

A total of 1,553 participants were recruited in this study, 
including 1,237 T2DM patients without lean NAFLD and T2DM 
316 patients with complicated by lean NAFLD. The median age of 
the patients was 59.00 years (IQR:50.00–67.00), among whom 713 
cases (45.9%) were male and 840 cases (54.1%) were female. When 
comparing the baseline characteristics between the two groups of 
patients, statistically significant differences were observed in terms 
of gender, BMI, DBP, routine blood tests, liver and kidney 
functions, blood lipid levels, and blood glucose levels (p < 0.05). 
As shown in Table 1. 

Figure 2 presented the prevalence rate of lean NAFLD in the 
study population. The overall prevalence rate of lean NAFLD is 
20.3%, with the prevalence rate among females (20.5%) being 
slightly higher than that among males (20.2%) (Figure 2A). Age 
pattern analysis showed that the prevalence of lean NAFLD 
decreased with increasing age (Figure 2B). 
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Independent risk factors 

Twenty potential risk factors associated with lean NAFLD were 
screened through univariate analysis (p < 0.05 and SMD > 0.1) (Table 1). 
To ensure the accuracy and reliability of the research results, the 
variance inflation factor (VIF) of each variable was calculated. 
Variables with a VIF value exceeding 10 typically exhibit severe 
Frontiers in Endocrinology 04
multicollinearity (Supplementary Table 1). Subsequently, we employed 
stepwise backward logistic regression analysis with the Akaike 
information criterion to filter and remove multicollinear variables. 
Ultimately, twelve variables were included for the multivariate logistic 
regression analysis, and eight variables such as Age, BMI, ALT, GGT, 
IBIL, ALB, UA, and TG were identified as independent risk factors for 
lean NAFLD (p < 0.05). The results were presented in Figure 3. 
FIGURE 1 

Flow diagram of the study. 
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TABLE 1 Univariate analysis of lean NAFLD. 

Overall Normal Lean NAFLD P-value SMD 

N 1553 1237 316 

Gender (Male), % 713 (45.9) 569 (46.0) 144 (45.6) 0.942 0.009 

Age, years 59.00 (50.00, 67.00) 59.00 (51.00, 67.00) 56.00 (45.00, 64.00) <0.001 0.326 

BMI, kg/m2 22.03 (20.76, 23.05) 21.80 (20.55, 22.89) 22.60 (21.64, 23.44) <0.001 0.513 

SBP, mmHg 130.00 (118.00, 144.00) 130.00 (118.00, 145.00) 130.00 (118.00, 142.00) 0.936 0.005 

DBP, mmHg 77.00 (70.00, 85.00) 77.00 (70.00, 84.00) 79.00 (72.00, 87.00) <0.001 0.22 

HR, n 81.00 (75.00, 92.00) 81.00 (74.00, 91.00) 82.50 (76.00, 93.00) 0.113 0.121 

Smoking (Yes), % 271 (17.5) 216 (17.5) 55 (17.4) 1 0.001 

WBC, ×109/L 6.53 (5.35, 7.90) 6.46 (5.20, 7.80) 6.97 (5.80, 8.30) <0.001 0.133 

RBC, ×1012/L 4.47 (4.11, 4.87) 4.40 (4.09, 4.80) 4.65 (4.29, 5.10) <0.001 0.389 

MCV, fL 90.60 (88.00, 93.40) 91.00 (88.00, 93.80) 90.00 (87.50, 92.60) 0.002 0.113 

LYMPH, ×109/L 1.70 (1.30, 2.20) 1.70 (1.30, 2.20) 1.90 (1.50, 2.32) <0.001 0.059 

MONO, ×109/L 0.40 (0.31, 0.53) 0.40 (0.30, 0.51) 0.44 (0.37, 0.60) 0.031 0.082 

NEUT, ×109/L 4.00 (3.20, 5.20) 4.00 (3.10, 5.10) 4.20 (3.30, 5.50) 0.029 0.126 

ESO, ×109/L 0.08 (0.04, 0.14) 0.08 (0.04, 0.14) 0.09 (0.04, 0.13) 0.462 0.026 

BASO, ×109/L 0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 0.106 0.027 

HB, g/L 130.00 (113.00, 143.00) 129.00 (112.00, 141.00) 135.00 (117.00, 149.25) <0.001 0.078 

PLT, ×109/L 213.00 (177.00, 252.00) 211.00 (175.00, 251.00) 220.00 (188.00, 259.00) 0.006 0.116 

MPV, fL 10.30 (9.60, 11.00) 10.30 (9.60, 11.10) 10.30 (9.70, 10.90) 0.895 0.021 

PDW, % 12.10 (10.80, 13.90) 12.10 (10.70, 13.90) 12.00 (11.00, 14.00) 0.416 0.056 

ALT, IU/L 19.00 (13.00, 28.00) 17.00 (13.00, 25.00) 25.50 (18.00, 35.00) <0.001 0.312 

AST, IU/L 19.00 (16.00, 25.00) 19.00 (15.00, 24.00) 22.00 (17.00, 28.00) <0.001 0.099 

GGT, U/L 21.00 (15.00, 34.00) 20.00 (14.00, 30.00) 31.00 (20.00, 46.25) <0.001 0.165 

TBIL, mmol/L 10.60 (8.00, 14.10) 10.40 (7.80, 13.70) 11.90 (8.80, 15.30) <0.001 0.195 

DBIL, mmol/L 3.00 (2.30, 4.00) 3.00 (2.20, 3.99) 3.10 (2.40, 4.12) 0.07 0.016 

IBIL, mmol/L 7.50 (5.40, 10.20) 7.20 (5.20, 9.80) 8.40 (6.10, 11.40) <0.001 0.292 

ALB, g/L 41.30 (37.80, 44.70) 40.80 (37.50, 44.30) 43.10 (39.48, 45.73) <0.001 0.359 

GLO, g/L 28.10 (25.40, 31.50) 27.80 (25.30, 31.30) 28.90 (25.60, 31.72) 0.05 0.115 

TP, g/L 69.90 (65.00, 74.50) 69.40 (64.60, 73.90) 71.65 (67.38, 75.90) <0.001 0.349 

CREA, mmol/L 60.00 (50.00, 74.00) 61.00 (50.60, 74.00) 59.00 (49.68, 75.00) 0.698 0.046 

UA, mmol/L 295.00 (240.60, 357.00) 288.00 (237.00, 346.00) 325.65 (260.50, 398.08) <0.001 0.384 

TC, mmol/L 4.76 (4.01, 5.66) 4.69 (3.99, 5.57) 5.02 (4.12, 5.95) <0.001 0.218 

TG, mmol/L 1.30 (0.91, 1.91) 1.21 (0.85, 1.77) 1.69 (1.22, 2.67) <0.001 0.423 

HDL-C, mmol/L 1.16 (0.99, 1.39) 1.18 (1.01, 1.42) 1.12 (0.95, 1.33) 0.002 0.202 

LDL-C, mmol/L 3.05 (2.42, 3.66) 3.00 (2.41, 3.60) 3.18 (2.46, 3.89) 0.007 0.154 

GLU, mmol/L 8.20 (6.23, 12.39) 8.05 (6.13, 12.25) 8.80 (6.63, 13.07) 0.004 0.165 

HBA1C, % 9.00 (7.20, 11.10) 8.90 (7.20, 11.00) 9.30 (7.40, 11.50) 0.132 0.089 
F
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BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; WBC, white blood cell count; RBC, red blood cell count; MCV, mean red blood cell volume; 
LYMPH, lymphocyte count; MONO, monocyte count; NEUT, neutrophil count; EOS, eosinophil count; BASO, basophil count; HB, haemoglobin; PLT, platelet count; MPV, mean platelet 
volume; PDW, platelet distribution width; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transpeptidase; TBIL, total bilirubin; DBIL, direct bilirubin; 
IBIL, indirect bilirubin; ALB, albumin; GLO, globulin; TP, total protein; CREA, creatinine; UA, uric acid; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; 
LDL-C, low-density lipoprotein cholesterol; GLU, glucose; HBA1C, glycosylated haemoglobin. 
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Predictor screening and construction of 
risk prediction models 

The study population was divided into a training set and an 
internal validation set at a ratio of 6:4. Statistical analysis revealed 
no significant differences between the two groups (Table 2). 

LASSO regression is a data reduction method that reduces the 
complexity of the model, prevents overfitting, and selects important 
feature variables by formulating an optimized objective function 
Frontiers in Endocrinology 06
with a penalty term (28). In this study, 22 characteristic factors were 
identified by using LASSO regression (Figure 4A). 

The Boruta algorithm is a feature selection method based on 
random forests, aiming to identify truly significant features from a 
given feature set and distinguish irrelevant features (29). Thirteen key 
factors were identified through the Boruta algorithm (Figure 4B). 

In the training set, through a comparative analysis of the 
screening results of the LASSO regression and the Boruta 
algorithm, we identified the common subset of feature variables 
FIGURE 3 

Multivariate logistic regression analysis of lean NAFLD. 
FIGURE 2 

The prevalence of lean NAFLD in the study population. (A) The prevalence of lean NAFLD in different populations (B) The prevalence of lean NAFLD 
in different age groups. 
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TABLE 2 Characteristics of participants in different sets. 

Overall Training set Internal validation set P-value 

N 1553 1089 464 

Gender (Male), % 713 (45.9) 485 (44.5) 228 (49.1) 0.107 

Age, years 59.00 (50.00, 67.00) 59.00 (50.00, 66.00) 58.00 (50.00, 67.00) 0.981 

BMI, kg/m2 22.03 (20.76, 23.05) 22.03 (20.75, 23.03) 22.06 (20.76, 23.05) 0.427 

SBP, mmHg 130.00 (118.00, 144.00) 129.00 (118.00, 144.00) 131.00 (118.00, 145.25) 0.233 

DBP, mmHg 77.00 (70.00, 85.00) 77.00 (70.00, 84.00) 78.00 (70.00, 85.00) 0.412 

HR, n 81.00 (75.00, 92.00) 81.00 (74.00, 92.00) 82.00 (75.00, 91.00) 0.459 

Smoking (Yes), % 271 (17.5) 180 (16.5) 91 (19.6) 0.164 

WBC, ×109/L 6.53 (5.35, 7.90) 6.58 (5.40, 8.00) 6.50 (5.25, 7.70) 0.139 

RBC, ×1012/L 4.47 (4.11, 4.87) 4.47 (4.10, 4.88) 4.46 (4.14, 4.85) 0.558 

MCV, fL 90.60 (88.00, 93.40) 90.60 (88.00, 93.40) 90.60 (88.00, 93.60) 0.866 

LYMPH, ×109/L 1.70 (1.30, 2.20) 1.70 (1.30, 2.20) 1.80 (1.40, 2.20) 0.613 

MONO, ×109/L 0.40 (0.31, 0.53) 0.40 (0.31, 0.50) 0.40 (0.32, 0.59) 0.141 

NEUT, ×109/L 4.00 (3.20, 5.20) 4.00 (3.20, 5.30) 4.00 (3.08, 5.00) 0.094 

ESO, ×109/L 0.08 (0.04, 0.14) 0.08 (0.04, 0.14) 0.09 (0.04, 0.14) 0.566 

BASO, ×109/L 0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 0.03 (0.02, 0.04) 0.018 

HB, g/L 130.00 (113.00, 143.00) 131.00 (114.00, 144.00) 129.00 (109.75, 140.00) 0.036 

PLT, ×109/L 213.00 (177.00, 252.00) 215.00 (177.00, 254.00) 209.00 (179.00, 250.00) 0.432 

MPV, fL 10.30 (9.60, 11.00) 10.30 (9.60, 11.00) 10.30 (9.60, 11.00) 0.751 

PDW, % 12.10 (10.80, 13.90) 12.10 (10.80, 13.90) 11.95 (10.70, 13.90) 0.849 

ALT, IU/L 19.00 (13.00, 28.00) 19.00 (14.00, 28.00) 18.00 (13.00, 28.00) 0.763 

AST, IU/L 19.00 (16.00, 25.00) 19.00 (16.00, 25.00) 19.00 (16.00, 24.25) 0.823 

GGT, U/L 21.00 (15.00, 34.00) 21.00 (15.00, 34.00) 20.00 (15.00, 34.00) 0.413 

TBIL, mmol/L 10.60 (8.00, 14.10) 10.70 (8.20, 14.10) 10.50 (7.79, 14.12) 0.473 

DBIL, mmol/L 3.00 (2.30, 4.00) 3.00 (2.30, 4.00) 3.00 (2.20, 3.90) 0.41 

IBIL, mmol/L 7.50 (5.40, 10.20) 7.51 (5.50, 10.30) 7.25 (5.20, 10.20) 0.513 

ALB, g/L 41.30 (37.80, 44.70) 41.20 (37.70, 44.70) 41.35 (37.90, 44.82) 0.873 

GLO, g/L 28.10 (25.40, 31.50) 28.10 (25.30, 31.50) 28.10 (25.50, 31.30) 0.755 

TP, g/L 69.90 (65.00, 74.50) 69.90 (65.20, 74.60) 69.80 (64.60, 74.12) 0.625 

CREA, mmol/L 60.00 (50.00, 74.00) 60.00 (50.00, 75.00) 60.00 (51.00, 73.00) 0.988 

UA, mmol/L 295.00 (240.60, 357.00) 294.80 (241.00, 357.10) 295.90 (239.45, 355.62) 0.885 

TC, mmol/L 4.76 (4.01, 5.66) 4.76 (4.01, 5.66) 4.78 (4.01, 5.68) 0.899 

TG, mmol/L 1.30 (0.91, 1.91) 1.30 (0.92, 1.90) 1.29 (0.89, 1.93) 0.595 

HDL-C, mmol/L 1.16 (0.99, 1.39) 1.17 (0.98, 1.39) 1.16 (1.02, 1.40) 0.417 

LDL-C, mmol/L 3.05 (2.42, 3.66) 3.05 (2.42, 3.66) 3.04 (2.44, 3.68) 0.943 

GLU, mmol/L 8.20 (6.23, 12.39) 8.19 (6.15, 12.58) 8.24 (6.39, 11.88) 0.988 

HBA1C, % 9.00 (7.20, 11.10) 9.00 (7.20, 11.20) 8.80 (7.20, 10.90) 0.58 
F
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BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; WBC, white blood cell count; RBC, red blood cell count; MCV, mean red blood cell volume; 
LYMPH, lymphocyte count; MONO, monocyte count; NEUT, neutrophil count; EOS, eosinophil count; BASO, basophil count; HB, haemoglobin; PLT, platelet count; MPV, mean platelet 
volume; PDW, platelet distribution width; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transpeptidase; TBIL, total bilirubin; DBIL, direct bilirubin; 
IBIL, indirect bilirubin; ALB, albumin; GLO, globulin; TP, total protein; CREA, creatinine; UA, uric acid; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; 
LDL-C, low-density lipoprotein cholesterol; GLU, glucose; HBA1C, glycosylated haemoglobin. 
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selected by the two methods (Figure 4C). These selected variables 
were used as predictors to construct a risk prediction model for lean 
NAFLD, including BMI, LYMPH, HB, ALT, AST, GGT, IBIL, ALB, 
UA, and TG. In addition, the optimal model was determined among 
the risk prediction models constructed by six machine learning 
algorithms, namely LDA, LR, NB, RF, SVM, and XGboost. 
Model performance 

Within the training set, the RF model exhibited outstanding 
predictive performance [AUC: 0.739 (95%CI: 0.676–0.802)]. In 
contrast, the AUC values of the remaining five models were as 
follows: 0.723 (95%CI: 0.682–0.764) for LDA, 0.723 (95%CI: 0.691– 
0.755) for LR, 0.694 (95%CI: 0.647–0.741) for NB, 0.635 (95%CI: 
0.579–0.727) for SVM, and 0.733 (95%CI:0.69–0.776) for XGboost 
(Figure 5A). In the internal validation set, the RF model also 
demonstrated robust clinical predictive value [AUC: 0.789 (95% 
CI: 0.722–0.856)] (Figure 5B). Furthermore, we conducted a 
comprehensive comparative analysis of additional clinical 
performance metrics, including accuracy, sensitivity, specificity, 
precision, recall, and F1 score, across various predictive models in 
both the training set and internal validation set (Tables 3, 4). The 
table revealed that the RF model demonstrates superior 
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performance across all evaluated parameters. Concurrently, cut-
off values were respectively established for the predictive 
probabilities of six ML models in both the training set and 
internal validation set (Figure 6). Patients were classified as 
positive if the predicted probability exceeded the cut-off value; 
otherwise, they were categorized as negative. Consequently, 
confusion matrixes of the predicted probabilities and the actual 
values were plotted, as illustrated in the Figures 7, 8. 

In this study, we evaluated the consistency between the model’s 
predicted probabilities and the actual occurrence probabilities 
through the analysis of calibration curves for the training set and 
the internal validation set. As shown in Figure 9, in both the 
training set and the internal validation set, except for the NB and 
XGboost models, the predicted values of the remaining models were 
in good agreement with the theoretical values, indicating favorable 
clinical calibration. Among them, the Brier score of RF model was 
the smallest, which reflected the high reliability of the 
model’s prediction. 

The DCA curve assessed the clinical decision-making value of 
the model under different thresholds through the net benefit. In the 
training set and internal validation set, except for the NB and 
XGboost models, the remaining models (especially the RF model) 
exhibited favorable clinical decision-making value. The results were 
presented in Figure 10. We further calculated the risk threshold 
FIGURE 4 

Screening of characteristic predictors. (A) Characteristic variables screening based on LASSO (B) Characteristic variables screening based on Boruta 
(C) LASSO combined Boruta. LASSO, least absolute shrinkage and selection operator. 
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probabilities of the RF model in the training set. The results 
indicated that when the threshold probability ranged between 1% 
and 55%, the net benefit provided by the model was significantly 
higher than that of the baseline strategy. In the internal validation 
set, the model also exhibited favorable net benefits, particularly 
demonstrating clinical advantages within the threshold probability 
range of 1% to 50%. 
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SHAP-based model interpretability analysis 

ML models achieve favorable performance by capturing data 
patterns through intricate mathematical structures. However, their 
complexity makes it difficult to interpret their internal decision -
making processes, and they are commonly regarded as “black-box” 
models. SHAP is a tool designed for interpreting machine learning 
TABLE 3 Performance parameters of six machine learning prediction models in the training set. 

Model Accuracy Sensitivity Specificity Precision Recall F1 

LR 0.677 0.677 0.677 0.358 0.677 0.468 

NB 0.628 0.629 0.628 0.31 0.629 0.416 

SVM 0.628 0.629 0.628 0.31 0.629 0.416 

RF 0.671 0.672 0.671 0.352 0.672 0.462 

XGboost 0.661 0.659 0.662 0.342 0.659 0.45 

LDA 0.673 0.672 0.673 0.354 0.672 0.464 
 

LR, logistic regression; NB, Naive Bayes; SVM, support vector machine; RF, random forest; XGboost, extreme gradient boosting; LDA, linear discriminant analysis. 
FIGURE 5 

Receiver operating characteristic curve. (A) Training set (B) Internal validation set. 
TABLE 4 Performance parameters of six machine learning prediction models in the internal validation set. 

Model Accuracy Sensitivity Specificity Precision Recall F1 

LR 0.692 0.644 0.703 0.333 0.644 0.439 

NB 0.287 0.954 0.133 0.202 0.954 0.334 

SVM 0.72 0.69 0.727 0.368 0.69 0.48 

RF 0.722 0.69 0.729 0.37 0.69 0.482 

XGboost 0.703 0.632 0.719 0.342 0.632 0.444 

LDA 0.703 0.632 0.719 0.342 0.632 0.444 
LR, logistic regression; NB, Naive Bayes; SVM, support vector machine; RF, random forest; XGboost, extreme gradient boosting; LDA, linear discriminant analysis. 
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FIGURE 6 

Cut-off values of six ML models in both the training set and internal validation set. (A) Linear discriminant analysis (B) Logistic regression (C) Naive 
Bayes (D) Random forest (E) Support vector machine (F) Extreme gradient boosting. 
FIGURE 7 

The confusion matrix of the six machine learning models in the training set. (A) Linear discriminant analysis (B) Logistic regression (C) Naive Bayes 
(D) Random forest (E) Support vector machine (F) Extreme gradient boosting. 
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FIGURE 8 

The confusion matrix of the six machine learning models in the internal validation set. (A) Linear discriminant analysis (B) Logistic regression (C) Naive Bayes 
(D) Random forest (E) Support vector machine (F) Extreme gradient boosting. 
FIGURE 9 

Calibration curve. (A) Training set (B) Internal validation set. 
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models. It explains the prediction results of a model by assigning a 
“contribution value” (Shapley value) to each feature, thereby rendering 
the decision-making process of black-box models transparent and 
controllable (30). Based on the above results, the RF model emerged 
as the optimal predictive model, demonstrating stable performance in 
both the training set and the internal validation set. Therefore, we 
further employed interpretable tools to analyze the contributions of 
characteristic predictors to the RF model. Figure 11A illustrated the 
contribution of characteristic predictors to the prediction model in the 
RF model, where TG, ALT, GGT, BMI, and UA were the top five 
variables in terms of importance. From Figure 11B, we could observe 
that the larger the TG, ALT, GGT, BMI, and UA, the greater the SHAP 
value and the higher the risk of disease. 
Discussion 

A total of 1,553 patients with T2DM were included in this 
study. Ultimately, 316 patients (20.3%) were diagnosed with lean 
Frontiers in Endocrinology 12 
NAFLD.  The prevalence rate was  lower than the  33.18% reported  
by Zhang X et al. (31), which might be associated with sample size 
and the region. Multivariate logistic regression analysis revealed 
that  eight variables  including Age, BMI, ALT, GGT, IBIL,  ALB,
UA, and TG, were independent risk factors for lean NAFLD in 
patients with T2DM (p < 0.05), which was generally consistent 
with the findings of previous studies (32–35). We employed a dual 
methodology of Boruta’s algorithm and LASSO regression to 
identify ten predictors for accurate feature selection and model 
stability, namely BMI, LYMPH, HB, ALT, AST, GGT, IBIL, ALB, 
UA, and TG. These variables have all been shown to be related to 
lean NAFLD in previous studies (13, 36, 37). Meanwhile, we 
established and validated the clinical performance of six ML 
models. The results showed that the RF model demonstrated the 
highest clinical predictive value in the training set [AUC: 0.739 
(95%CI: 0.676–0.802)] and performed exceptionally well in terms 
of accuracy, sensitivity, specificity, precision, recall, and F1 score. 
This was consistent with the results of the study by M et al. on the 
evaluation of diabetes using ML techniques (38). The SHAP 
FIGURE 10 

Decision curve analysis. (A) Training set (B) Internal validation set. 
FIGURE 11 

Feature importance of random forest model. (A) The importance ranking of the features according to the mean absolute SHAP value (B) The effect 
of features on the outcome of the model. 
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explanation of the RF model showed that TG, ALT, GGT, BMI, 
and UA were the top five most contributive variables in the 
predictive model. 

Most patients with T2DM are the potential population at risk 
of lean NAFLD. Patients with T2DM are particularly prone to 
non-alcoholic steatohepatitis (NASH) and face a higher risk of 
progressing to liver cirrhosis and hepatocellular carcinoma (39, 
40). Research indicated that lipid metabolism in the liver has 
already been disrupted during the pre-diabetic stage (41). Insulin 
resistance (IR) plays a crucial role in the occurrence and 
development of T2DM complicated with lean NAFLD. IR in 
adipose tissue increases lipolysis and the release of free fatty 
acids (FFA) and glycerol, leading to the accumulation of 
triglycerides in the liver. Subsequently, chronic inflammation, 
up-regulation of hepatotoxic cytokines, oxidative stress, and 
alterations in the gut microbiota, which damage the liver and 
cause it to develop into NASH (42–44). Among them, the 
dysregulation of the spleen-liver immune axis serves as a crucial 
driving force for the progression of lean NAFLD. Specifically, FFA 
and pro-inflammatory factors (such as TNF-a and IL-6) enter the 
spleen via the portal vein circulation, leading to the activation of 
splenic natural killer T (NKT) cells and the accumulation of 
myeloid - derived suppressor cells (MDSCs). These abnormally 
activated immune cells  and inflammatory mediators migrate to 
the liver through the portal vein. On one hand, they exacerbate IR 
in hepatocytes by inhibiting the insulin signaling pathway. On the 
other hand, they activate hepatic Kupffer cells, thereby inducing 
chronic inflammatory responses (45, 46). 

Therefore, the identification and screening of lean NAFLD 
should be incorporated into the routine treatment of patients 
with T2DM. Due to the lack of reliable methods for detecting 
steatosis, lean NAFLD is mostly incidentally detected during 
imaging examinations. However, the large-scale promotion of 
imaging examinations will inevitably lead to the waste of medical 
resources and an increase in time costs. Serum indices and imaging 
techniques are employed for the general screening of diabetic 
patients to detect advanced fibrosis. However, Qadri S et al. found 
that serum indices lack high specificity and imaging techniques 
yield a high rate of false positives (47). In this study, we developed a 
risk prediction model for lean NAFLD in patients with T2DM based 
on interpretable ML algorithms. The aim was to identify high-risk 
individuals at an early stage, thereby reducing the occurrence of 
adverse events and optimizing medical resources. 

This study has certain limitations. Firstly, the sample size of this 
study was relatively small and confined to a specific populations and 
regions, which may limit the generalizability of the research 
findings. Secondly, the collection of clinical data was incomplete, 
potentially leaving out some latent predictive factors. Finally, the 
risk prediction model had only been validated using the internal 
dataset, without external dataset validation or temporal validation. 
Therefore, in future research, it is advisable to integrate multi-center 
data and utilize more advanced machine learning techniques to 
enhance the performance of the model. 
Frontiers in Endocrinology 13 
Conclusion 

This study has effectively developed a risk prediction model for 
lean NAFLD in patients with T2DM, which holds significant 
clinical implications for reducing and preventing adverse events. 
Among them, the performance of the RF model outperforms that of 
other ML algorithms. 
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Glossary 

ALB albumin 
Frontiers in Endocrin
ALT alanine aminotransferase 
AST aspartate aminotransferase 
AUC area under the receiver operating characteristic curve 
BMI body mass index 
DCA decision curve analysis 
FFA free fatty acids 
GGT gamma-glutamyl transpeptidase 
HB hemoglobin 
IBIL indirect bilirubin 
IR Insulin resistance 
LASSO Least Absolute Shrinkage and Selection Operator 
LDA linear discriminant analysis 
LR logistic regression 
ology 16 
LYMPH lymphocyte count 
ML machine learning 
NAFLD Non-alcoholic fatty liver disease 
NASH non-alcoholic steatohepatitis 
NB Naive Bayes 
RF random forest 
SHAP Shapley Additive exPlanations 
SVM support vector machine 
TBIL total bilirubin 
T2DM type 2 diabetes mellitus 
TG triglycerides 
UA uric acid 
VIF variance inflation factor 
XGboost extreme gradient boosting 
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