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JiaJia Hu, Bangbei Wan* and Weiying Lu*

Reproductive Medical Center, Hainan Women and Children’s Medical Center, Haikou, China
Melatonin, a neuroendocrine hormone widely present in animals, is a derivative of

tryptophan secreted by the pineal gland. This hormone regulates animal circadian

rhythms and can affect reproductive performance in many ways; for example,

melatonin levels change in response to sunshine duration changes, which can

inhibit or promote reproductive performance. In juvenile animals, melatonin inhibits

estrus, whereas in mature animals, it promotes estrus. Melatonin regulates animal

reproductive activities mainly through the hypothalamus–pituitary–gonad axis and

through membrane binding receptor (MT1 and MT2) interactions. It effectively

removes cellular free radicals that have strong antioxidant effects and can directly

act on the reproductive system and even early embryos by improving tissue and cell

anti-inflammatory and antioxidant functions, improving animal reproductive

performance. Although modern human fertility is no longer affected by seasonal

reproduction, the relationship betweenmelatonin and human reproduction remains

unclear. Melatonin is important for improving mitochondrial function, reducing free

radical damage, and inducing oocytematuration, which can improve the fertilization

rate, promote embryo development, and positively affect in vitro fertilization and

embryo transfer. Here, we describe the biosynthesis and regulation ofmelatonin and

its secretion, the physiological function of melatonin, and its effects on animal

reproductive performance and assisted reproduction.
KEYWORDS

melatonin, biosynthesis, antioxidant, inflammatory response and assisted reproduction,
MT1, MT2
1 Introduction

Melatonin, a hormone produced by the pineal gland, has garnered significant attention

owing to its role in reproductive system regulation (1). Melatonin’s influence spans various

reproductive stages, including gamete production, embryo implantation, and fetal

development (2). Importantly, melatonin exerts diverse regulatory effects on

reproduction, mainly through binding with its receptors MT1 and MT2, which are G

protein-coupled receptors (GPCRs) that play crucial roles in mediating melatonin signaling

(3). These receptors are involved in multiple reproductive processes, such as gametogenesis,

gamete quality, reproductive rhythm, endocrine function, and embryonic development (3).

Understanding the intricate mechanisms of melatonin biosynthesis and its impact on

reproductive processes is crucial for advancing our knowledge of its basic scientific and
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clinical applications (4). Here, we explore the complexities of

melatonin biosynthesis and its regulation in reproduction,

shedding light on the latest research findings and their potential

implications for reproductive health (5). Neuroendocrine hormones

are essential for complex communication between the nervous and

endocrine systems and regulate various physiological processes,

including reproduction (6). Melatonin, a neuroendocrine hormone,

is a potent signaling molecule that coordinates reproductive events

by controlling the release of reproductive hormones and interacting

with other systems, such as the immune system, to optimize

reproductive functions (7). Melatonin has become a research

focus in reproductive science in recent years because of its diverse

roles in regulating fertility (8).

The suprachiasmatic nucleus in the anterior hypothalamus

governs the biological clock, maintains circadian rhythms, and

synchronizes physiological processes with the natural light–dark

cycle (9). Melatonin, also known as the “hormone of darkness,”

plays a central role in this system. In response to darkness, the

pineal gland synthesizes and releases melatonin, which reaches peak

levels at night and decreases during the day (10). Melatonin also

directly affects the reproductive system (11). Melatonin biosynthesis

and regulation are important for understanding the complex

interplay between melatonin and reproductive processes (12).

This interaction has attracted increasing attention because of the

diverse and pivotal roles of melatonin in regulating reproductive

functions (13). Investigating the intricate processes involved in

melatonin biosynthesis and their impact on reproduction can

provide valuable insights into the complexities of fertility and

potentially result in the development of novel therapeutic

approaches addressing reproductive disorders and infertility (14).

The multifaceted roles of melatonin in modulating circadian

rhythms and reproductive functions have piqued the interest of

scientists and clinicians, underscoring the importance of this

research area (15). Previous studies have indicated that melatonin

plays a role in regulating different reproductive functions (8). For

example, it influences the secretion of gonadotropin-releasing

hormones, which are crucial for the production of reproductive

hormones in the hypothalamus (16). Moreover, melatonin has been

linked to the control of follicle development, ovulation, and embryo

implantation (17). Thus, the essential role of melatonin in the

complex process of reproduction cannot be overlooked.

Melatonin regulates circadian rhythms and significantly influences

various aspects of fertility, including the timing of ovulation, sperm

production, and embryo implantation (18). Elucidating the

mechanisms underlying melatonin biosynthesis and its regulation in

reproduction will provide valuable insights into fertility processes and

enable the development of innovative treatments for reproductive

disorders and infertility (14). Increasing research into the

multifaceted roles of melatonin in circadian rhythm and

reproductive function regulation has highlighted the importance of
Abbreviations: ART, Assisted reproductive technology; DSS, Dextran sodium

sulfate; GC, Granulosa cell; MCO, Metal-catalyzed oxidation; ROS, Reactive

oxygen species; SSC, Spermatogonial stem cell; UI, Unexplained infertility.
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scientific and clinical research on this neuroendocrine hormone (19).

The diverse roles of melatonin in fertility regulation underscore the

importance of further exploration (20), and the complex interplay

between melatonin biosynthesis and regulation in reproduction has

sparked widespread interest in its potential role in assisted reproductive

technology (ART) (21). As the demand for ART increases, there is a

growing need to explore the potential impact of melatonin on the

success rate of these techniques (22). Investigating the role of melatonin

in ART can potentially reveal novel strategies that can increase the

efficacy of fertility treatments and improve outcomes for individuals

and couples seeking reproductive assistance (23). Melatonin research

can potentially revolutionize ART approaches and address evolving

challenges in assisted reproduction (24). Furthermore, understanding

the influence of melatonin on ART can help advance the personalized

and targeted approaches that are increasingly emphasized in

reproductive medicine (25).

The potential role of melatonin in ART has recently garnered

significant interest. Advancements in ART procedures necessitate

the optimization of fertility treatments to increase success rates (25).

Melatonin is a promising candidate for enhancing ART outcomes

due to its antioxidant nature and ability to modulate reproductive

processes. Researchers have investigated the effects of melatonin

supplementation in conjunction with ART to assess its potential to

improve oocyte quality, enhance embryo development, and

optimize the success of in vitro fertilization procedures (26).

Furthermore, understanding the specific mechanisms by which

melatonin regulates follicle development, ovulation, and embryo

implantation in humans can provide valuable insights into

reproductive outcomes (27).

Understanding the effects of melatonin on the reproductive system

is essential for developing personalized treatment approaches for

individuals facing fertility challenges (28). Understanding the

influence of melatonin on reproductive function provides insight

into potential mechanisms for tailoring fertility treatments according

to individuals’ melatonin levels and circadian rhythms (29). In this

review, we discuss interactions among melatonin, circadian rhythms,

and reproductive processes with a specific focus on the potential of

melatonin in the context of ART, providing valuable insights into these

processes that could revolutionize reproductive science and contribute

to the development of more effective and personalized fertility

treatments (30).

In brief, we explore how melatonin biosynthesis and control

affect human reproduction, particularly the timing of puberty, the

menstrual cycle, follicle development, ovulation, and embryo

implantation, seeking to fill the knowledge gap regarding

melatonin’s involvement in human reproduction and its potential

influence on ART (31). Furthermore, we discuss the regulation and

management of melatonin in the aforementioned processes (32),

including the impact of melatonin on menstrual cycle regularity and

timing and the potential effects of melatonin supplementation on

ART, including pregnancy rates and oxidative stress reduction.

We hypothesized that melatonin is crucial for the regulation

and enhancement of human reproductive processes; specifically, we

hypothesized that melatonin levels and their biosynthesis and

regulation contribute to the timing of puberty, the menstrual
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cycle, follicle development, ovulation, and embryo implantation

(33). We further hypothesized that melatonin supplementation

could improve the success rate of ART by increasing the quality

of oocytes and embryos, increasing pregnancy rates, reducing

oxidative stress, and promoting overall reproductive health.
2 Melatonin synthesis and secretion

Various tissues and organs can secrete melatonin; however, only

the retinal tissue of the pineal gland and eye exhibits periodic

secretory activity. The biosynthesis of melatonin shows a circadian

rhythm and seasonal characteristics associated with external light

conditions. Functionally, melatonin can link changes in external

light signals and multiple physiological activity rhythms (34), has a

good protective effect on the nervous system, regulates circadian

changes, and has good therapeutic effects on psychiatric diseases

(35). In addition, melatonin has broad-spectrum antibacterial (36)

and immunoregulatory functions (37).

Melatonin was originally isolated and identified from the pineal

glands of animals (38). Research has shown that various tissues and

organs, including the gut and ovarian follicles, can also synthesize

melatonin (39) as autocrine and paracrine signals. Vertebrate

gastrointestinal tryptophan is a precursor of melatonin

biosynthesis. Tryptophan is excreted from the small intestine into

the blood circulation and actively taken up by pineal cells, in which

5-hydroxytryptophan is formed by tryptophan hydroxylase. Aryl

alkylamine-N-acetyltransferase (AANAT) converts tryptophan

hydroxylase into N-acetylserotonin, and acetylserotonin O-

methyltransferase (ASMT) catalyzes the final conversion to

melatonin (40). AANAT is the major rate-limiting enzyme in this

process, and its biological activity can regulate the melatonin

synthesis rate. The binding regulatory/binding sequences in the

AANAT gene encode a binding switch for cAMP operation, and

cAMP-catalyzed protein kinase promotes the formation of a

complex with the 14-3–3 protein. This AANAT/14-3–3 complex

shields melatonin from dephosphorylation and AANAT proteolysis

and reduces the K (m) of serotonin, enhancing melatonin

production (41). Suofu et al. (42) further established that

melatonin is synthesized in the mitochondrial matrix. Melatonin
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is quickly released into the blood and spinal fluid (43), binds to

plasma proteins, and is distributed throughout most tissues (44).

Additionally, many studies have demonstrated that some

bacteria and fungi can synthesize melatonin (45). Tilden et al.

(46) investigated the influence of light conditions on the aerobic

photosynthetic bacterium Eryrobacter longusits, demonstrating that

it could synthesize and secrete melatonin under weak light

conditions. However, the efficiency and concentration of

melatonin synthesis in the bacterium’s natural state were low and

not conducive to isolation, purification, and application. Advances

in research on microbial genomes, genetic engineering technologies,

and fermentation engineering have resulted in the use of genetically

engineered bacteria to synthesize substances that are of high value

or that are difficult to obtain (47). The use of engineered bacteria to

ferment and transform substances has the advantages of

convenience, speed, safety, efficiency, and cost reduction.

Escherichia coli is the most commonly used host bacterium. Some

E. coli plasmids can encode T7 lysozyme, express large quantities of

target proteins, and inhibit the normal expression of host self-

proteins (48). Researchers have used genetic engineering technology

to transform Xanthomonas rapeseed carrying the phenylalanine 4-

hydroxylase (P4H) gene, rice 3-O-methyltransferase (COMT) gene,

and Streptomyces white toxin synthesis gene construction vector

into E. coli and used protein engineering and metabolic engineering

technology to successfully express melatonin in these bacteria (48).

The differences in melatonin synthesis pathways between

vertebrates and microorganisms are comprehensively detailed

in Table 1.
3 The biological function of melatonin

Melatonin regulates circadian rhythms in animals (49). At

night, under weak light conditions, endogenous melatonin is

synthesized to promote sleep and improve sleep quality. During

the day, melatonin secretion by the pineal gland is inhibited by light

stimulation (35). Studies have shown that changes in external light

conditions can affect the level of melatonin synthesis and secretion

by the pineal gland through ocular processes (IOP) and

subsequently regulate the body’s sleep state (50). Thus, the body
TABLE 1 Comparison of melatonin synthesis in vertebrates and microorganisms.

Characteristics Vertebrates Microorganisms References

Primary Source Pineal gland, retina, other tissues Specific bacteria (e.g., Erythrobacter longus), fungi (40, 46)

Key Enzymes TPH, AADC, AANAT, ASMT Similar enzymes, but often with lower efficiency and concentration (40, 46)

Regulation Circadian rhythms, external light conditions Light conditions (e.g., weak light for Erythrobacter longus) (40, 46)

Production Method Endogenous synthesis in specific tissues
Genetic engineering and fermentation processes (e.g., using
Escherichia coli)

(46, 48)

Efficiency
High efficiency, regulated by complex
biological processes

Lower efficiency in natural conditions but can be enhanced through
genetic modifications

(46, 48)

Applications
Regulation of circadian rhythms,
reproductive processes

Potential for industrial production and therapeutic applications (46, 48)
TPH, tryptophan hydroxylase; AADC, aromatic L-amino acid decarboxylase; AANAT, arylalkylamine N-acetyltransferase; ASMT, acetylserotonin O-methyltransferase.
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senses changes in external light through the eyes and transmits

signals to the pineal gland, which converts these signals into

melatonin production responses, regulating the body’s circadian

rhythm. A mouse model with downregulated melatonin expression

has been constructed via gene editing technology (51), revealing

significantly longer sleep durations in these mice compared to those

with upregulated melatonin expression. These results demonstrate

the regulatory effect of melatonin on the circadian rhythm. Figure 1

shows the biological function of melatonin in circadian

rhythm regulation.

The immunomodulatory functions of melatonin can have

proinflammatory and anti-inflammatory effects under different

inflammatory conditions and can improve the body’s resistance

and resilience to exogenous or endogenous antigens (52). These

effects are partly mediated by the melatonin receptors MT1 and

MT2, which can trigger various downstream signaling pathways.

These receptors mainly interact with Gi (including Gai2 and Gai3)
and Gq/11 proteins, leading to the inhibition of adenylate cyclase

(AC) activity and cAMP production. Additionally, MT1 receptors

can stimulate the Gbg-dependent PI3K/Akt and PKC/ERK

pathways and activate K+ channels (Kir3) and Ca2+ channels

(Cav2.2). MT2 receptors can stimulate Gai-dependent PKC/ERK
signaling and decrease intracellular cGMP levels (3). These

signaling pathways collectively contribute to the diverse biological

functions of melatonin, including its immunomodulatory effects

(3). Melatonin stimulates reactive oxygen species (ROS) production

in monocytes, which can activate other immune cells (52),

promoting immune system defenses. Furthermore, melatonin can

act on MT1 and MT2 on the surface of human monocyte U937

cells, stimulating intracellular ROS production; however, the

concentration of ROS produced does not cause oxidative stress-
Frontiers in Endocrinology 04
related damage (53, 54). Activated monocytes can differentiate into

macrophages and synthesize chemokines and related inflammatory

factors to perform their immunomodulatory functions. In other

studies, melatonin has been found to act on MT1 on the cell

membrane surface of immune cells, upregulating the expression

of the interleukin 2 (IL-2) receptor and alleviating the inhibitory

effects of prostaglandins on IL-2 (55). In contrast, melatonin

inhibits severe inflammation; dextran sodium sulfate-induced

neuroinflammation and liver injury in mice were relieved by

exogenous melatonin administration, which increased short-chain

fatty acid production (56). Melatonin has also been found to inhibit

the overactivation of intestinal fonnesin X receptor fibroblast

growth factor 15 (FXR-FGF 15) and apoptotic signal-regulated

kinase 1 (ASK 1) in the liver, alleviating intestinal inflammation

and hepatic metabolic disorders.

Melatonin has broad-spectrum antioxidant activity (37) and

can limit oxidative damage through multiple mechanisms,

including scavenging excess free radicals, stimulating endogenous

antioxidant enzymes, and improving the efficiency of other

antioxidants (57). Furthermore, melatonin can be transferred by

hydrogen atoms (hydrogen atom transfer, HAT), proton-coupled

electron transfer (proton-coupled electron transfer, PCET), free

radical addition, substances (radical adduct formation, RAF),

single-electron transfer (SET), sequential electron-proton transfer

(SEPT), and other mechanisms that directly remove peroxy groups

(peroxyl radical, ROO), hydroxyl radical (OH), OO groups (nitric

oxide, NO), and other free radicals (58). Mekhloufi et al. (59)

constructed an in vitro lipid model to assess the scavenging effects of

melatonin and hydroperoxides. The results revealed that melatonin

could directly react with and remove hydroxyl radicals. Melatonin

can also chelate Cu2+, reduce Fe2+, Zn2+, Al3+, Mn2+, and other
FIGURE 1

Biological function of melatonin in the regulation of circadian rhythms.
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toxic metal ions (60), reduce metal ion-catalyzed molecular damage,

and suppress metal ion interaction with b-amyloid peptides to

produce free radicals (61), playing significant antioxidant and

protective roles in the body. The effects of melatonin on Cu2

+-mediated lipid peroxidation (62) and Cu2+/H2O2-induced

metal-catalyzed oxidation and protein damage (63) have been

found to be protective. In addition, melatonin can increase the

antioxidant effects of glutaglyanin, ascorbic acid, and water-soluble

vitamin E through electron transfer (64).
4 Effects of melatonin on
reproduction

Melatonin can act on the hypothalamic–pituitary–gonadal axis to

regulate animal reproductive activity (65), which has multiple effects

on animal reproduction. These effects are largely mediated by the

melatonin receptors MT1 and MT2. For example, in the male

reproductive system, melatonin can inhibit the expression of key

steroidogenic genes (such as p450scc, p450c17, and StAR) in Leydig

cells via MT1 receptors, thereby reducing testosterone synthesis (3).

In the female reproductive system, MT1 receptors are widely

distributed in the ovary and are crucial for melatonin-regulated

activities, such as delaying the decline in fertility in female animals

(3). Moreover, melatonin can improve oocyte development and

fertilization capacity via a receptor-mediated demethylation

mechanism, including an increase in Tet1 gene expression and a

decrease in Dnmt1 gene expression (3). In immature animals,

melatonin can inhibit the secretion of endogenous gonadotropin-

releasing hormone (GnRH) (66) to inhibit sexual maturation,

spontaneous ovulation, and the estrous response (67). Melatonin

also plays a role in mature animals (68). To some extent, this

phenomenon shows that melatonin has a protective effect on

immature animals, preventing premature reproductive activities

and reducing damage to the reproductive system and other tissues

and organs. The hypothalamic suprachiasmatic nucleus of mammals

receives light stimulation through the retinal hypothalamic bundle,

thereby regulating the rhythmicity of pineal melatonin synthesis and

secretion. Melatonin is mainly secreted at night, and its secretion is

inversely proportional to the duration of sunshine during the day.

Thus, the photoperiod signal is transformed into changes in

melatonin content in the animal, thereby regulating the

reproductive cycle of animals with seasonal estrus (69, 70).
4.1 Effects on the male reproductive
system

Melatonin significantly improves the status of the male

reproductive system, acting through the hypothalamic–pituitary–

gonadal (HPG) axis to regulate the secretion of reproductive

hormones, primarily GnRH and luteinizing hormone (LH) (71).

Melatonin receptors (MT1 and MT2) mediate not only melatonin

signaling but also other hormone signaling, thereby increasing

testosterone levels (72). In the embryonic and juvenile stages,
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melatonin promotes the secretion of male hormones and the

development and maturation of the reproductive system by binding

to MT1 and MT2 in testicular tissues (73). In adulthood, melatonin

continues to promote testosterone secretion and sperm formation,

increasing reproductive activity, especially in seasonal breeders (74).

The inherent anti-inflammatory and antioxidant effects of

melatonin also contribute to the overall health of the male

reproductive system. Studies have shown that melatonin can

improve the survival of cryopreserved spermatogonial stem cells

(SSCs) by reducing ROS production during freezing and thawing

(75). Additionally, melatonin has a protective effect against

reproductive diseases in male animals. For example, it can

increase the phagocytic capacity of macrophages in the testis,

inhibit the p38 MAPK pathway, and promote testosterone

secretion by Leydig cells, thereby reducing inflammation (76).
4.2 Effects on the female reproductive
system

Melatonin also significantly affects the female reproductive

system, influencing oocyte maturation, cumulus cell expansion,

and the production of steroid hormones. Recent studies have

highlighted the critical role of melatonin in modulating gene

expression levels related to these processes.

Melatonin has been shown to upregulate the expression of

several genes crucial for oocyte maturation and cumulus cell

expansion. For example, melatonin supplementation has been

found to increase the expression of genes such as growth

differentiation factor 9 (GDF9), bone morphogenetic protein 15

(BMP15), and pentraxin 3 (PTX3) (77). These genes are essential

for promoting the development and quality of oocytes, thereby

enhancing reproductive outcomes. Melatonin also supports the

expansion of cumulus cells, which is vital for providing a

supportive environment for oocyte maturation.

In addition to its effects on gene expression, melatonin influences

the production of steroid hormones by granulosa cells. Growing

granulosa cells produce steroid hormones such as 17b-estradiol and
androstenedione, which are essential for maintaining the physical

connections between granulosa cells and oocytes and facilitating the

exchange of necessary substances during oocyte growth (78).

Melatonin modulates the synthesis of these hormones, thereby

supporting the overall health and development of oocytes.

The antioxidant and anti-inflammatory properties of melatonin

contribute to its beneficial effects on the female reproductive system

(79). By reducing oxidative stress and inflammation, melatonin

helps protect oocytes and surrounding cells from damage, thereby

improving the overall reproductive environment (80). This

protective effect is particularly important in the context of ART,

where oxidative stress can negatively impact oocyte quality and

embryo development. The ability of melatonin to mitigate oxidative

stress and inflammation ensures a healthier reproductive

environment, thereby increasing ART procedure success rates.

The clinical implications of the effects of melatonin on the female

reproductive system are significant. In the context of ART, melatonin
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supplementation has been shown to improve oocyte quality, increase

embryo development, and increase pregnancy rates. For example, a

systematic review and meta-analysis demonstrated that melatonin

improved the fertilization rate and the number of mature oocytes

(MII), although it did not significantly affect the clinical pregnancy rate

(81). These findings highlight the potential of melatonin as a

therapeutic agent for improving reproductive outcomes.

In conclusion, melatonin plays a vital role in modulating

reproductive functions in both males and females and is a

promising therapeutic agent for improving reproductive outcomes

due to its antioxidant properties and effects on gene expression and

steroid hormone production. Future research should continue to

explore the mechanisms underlying the actions of melatonin and its

potential applications in clinical settings.
4.3 Effects of melatonin on early
embryonic development and oocyte
quality

4.3.1 Effects on early embryonic development
Melatonin affects both gamete formation and early embryo

development. Melatonin can increase the mtRNA copy number,

mitochondrial membrane potential, and mitochondrial distribution

in blastocyst-stage cells; inhibit the expression of apoptotic genes such

as p53 and Bax; and promote the expression of antioxidant genes

such as SOD1 and GPx 4, thus improving the mitochondrial function

of blastocyst-stage embryos, promoting early embryo development,

and improving the quality of blastocysts (82). MT1 expression is

initiated early in embryonic development (83), and MT1 is

distributed mainly on the cell membrane in activated oocytes with

no cleavage. With the development of blastomeres, MT1 receptor

expression gradually increases, and it is primarily localized on the cell

membrane. During embryo development, MT1 is expressed and

distributed inside the blastomere, and its expression levels are low

in degenerated embryos. Treating IVF-fertilized follicles with 10–9

mol/L melatonin significantly improved the blastocyst formation rate

and embryo quality (84). During bovine embryo development, 10–9

mol/L melatonin significantly improved the cleavage rate, blastocyst

rate, and number of blastocyst cells. Moreover, melatonin binds to

MT2 receptors to promote the establishment of an endometrial

receptive state during embryonic colonization (85). The expression

of AANAT, the rate-limiting enzyme for melatonin synthesis,

increases in the uterus during early pregnancy, and MT2 receptors

are specifically expressed in uterine luminal epithelial cells and

uterine glands on the second day of pregnancy (86). After the

injection of 15 mg/kg melatonin, the endometrial thickness and

uterine gland density increased, and the number of implantation

sites and litter size increased significantly.

4.3.2 Effects on oocyte quality during in vitro
maturation and growth

Recent research has highlighted the significant role of melatonin

in improving oocyte quality, particularly in the context of in vitro
Frontiers in Endocrinology 06
maturation and growth (87, 88). Melatonin has been shown to

enhance the meiotic and developmental competence of oocytes

derived from early antral follicles and small antral follicles (89).

For example, studies have demonstrated that melatonin

supplementation during in vitro maturation (IVM) can upregulate

the expression of genes related to oocyte maturation, such as GDF9,

BMP15, and PTX3 (77). These genes are essential for promoting

oocyte development and improving oocyte quality. Besides, recent

studies further demonstrate that melatonin supplementation during

in vitro growth (IVG) of oocytes from preantral or early antral

follicles significantly improves their developmental competence. For

instance, a study has reported that melatonin could enhance the

developmental potential of porcine oocyte-granulosa cell complexes

derived from preantral follicles (90), while another research has

showed that melatonin, combined with cyclic adenosine

monophosphate (cAMP) modulators, could promote meiotic and

developmental competence in porcine oocytes from early antral

follicles during IVG and pre-maturation culture (91). These

findings highlight melatonin’s dual role in supporting both oocyte

growth and maturation, offering promising avenues for human

ART applications.

Moreover, the antioxidant properties of melatonin play crucial

roles in protecting oocytes from oxidative stress in vitro (92).

Melatonin helps maintain oocyte integrity and functionality by

scavenging ROS and enhancing endogenous antioxidant enzyme

activity (57, 58). This protection is particularly important in IVM

settings, where oocytes are exposed to relatively high levels of

oxidative stress due to the absence of the natural protective

mechanisms provided by the follicular environment.

Recent studies have also shown that melatonin can improve the

survival and developmental competence of oocytes derived from

small antral follicles (89). Compared with larger follicles, these

oocytes often exhibit lower quality and developmental potential.

Melatonin supplementation has been shown to enhance the meiotic

maturation and developmental competence of these oocytes,

thereby improving their potential for successful fertilization and

embryo development (85).

In summary, the effects of melatonin on early embryonic

development and oocyte quality are multifaceted. Melatonin

enhances mitochondrial function, reduces oxidative stress, and

promotes the expression of genes crucial for oocyte maturation

and development. These findings underscore the potential of

melatonin as a valuable supplement in IVM and in vitro growth

(IVG) protocols, thereby improving reproductive outcomes.
5 Clinical application and treatment of
melatonin in reproduction

ART has played a pivotal role in helping infertile couples

achieve pregnancy. This includes a range of treatments, such as

artificial insemination (AI), in vitro fertilization–embryo transfer

(IVF–ET), and derivative technologies. The global ART-facilitated

birth population has now exceeded 6 million, with ART treatment
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accounting for 1–3% of the total number of newborns in developed

countries (93). One controlled clinical trial revealed that

fertilization and pregnancy rates were approximately twice as

high in patients treated with melatonin than in those treated

without melatonin, indicating the ability of melatonin to improve

the success rate of IVF–ET (94). A meta-analysis of randomized

trials revealed that melatonin treatment significantly increased

clinical pregnancy rates during the ART cycle, as did the number

of oocytes collected, mature oocytes, and high-quality embryos (95).

Melatonin can also improve the clinical outcomes of IVF–ET by

increasing the fertilization rate and the number of mature oocytes

and high-quality embryos (96); therefore, melatonin intake during

IVF–ET is considered to have some clinical utility (97).

Melatonin is also used as a therapeutic agent for unexplained

infertility. A randomized pilot study revealed improvements in

intracellular oxidative stress and oocyte quality in patients receiving

3 or 6 mg/day doses and slight increases in clinical pregnancy and live

birth rates with IVF–ET (98). The main advantage of melatonin

antioxidant therapy is its relatively adequate safety, as confirmed in

short-term studies. However, long-term clinical trials are needed to

evaluate its application further.

Despite these promising findings, the effectiveness of melatonin

supplementation in ART can vary significantly depending on the

specific stage of treatment and the individual context. One key

limitation is the variability in individual responses to melatonin

treatment. Factors such as age, underlying health conditions, and

the presence of other antioxidants in the body can significantly

impact the efficacy of melatonin. For example, older patients or

those with preexisting oxidative stress conditions may not respond as

positively to melatonin treatment as younger or healthier individuals

do. This variability underscores the need for personalized approaches

in ART, where melatonin supplementation is tailored to the specific

needs and conditions of each patient.

Another limitation is the lack of standardized protocols for

melatonin administration in ART. The optimal dosage, timing, and

duration of melatonin supplementation remain the foci of ongoing

research. The variability in these parameters across different studies

makes it challenging to draw definitive conclusions about the

universal effectiveness of melatonin in ART. Standardizing these
Frontiers in Endocrinology 07
protocols is crucial for maximizing the benefits of melatonin while

minimizing potential side effects.

Furthermore, while melatonin has shown promise in improving

oocyte quality and embryo development, its impact on the overall

success rates of ART, such as live birth rates, has been less

consistent. Some studies have demonstrated significant

improvements in live birth rates with melatonin supplementation,

whereas others have not reported such effects (99–102). This

variability highlights the need for further research to better

understand the contexts in which melatonin is most effective.

Future studies should focus on elucidating the mechanisms

underlying individual variability in response to melatonin

treatment, potentially leading to personalized approaches in ART.

Table 2 encapsulates the multifaceted role of melatonin in

reproductive medicine, summarizing its beneficial effects on

oocyte quality, embryo development, fertilization rates, clinical

pregnancy rates, and live birth rates. These findings also

underscore the antioxidant and anti-inflammatory properties of

melatonin, highlighting the need for further research to elucidate

optimal dosing strategies and long-term clinical outcomes.
6 Conclusion

Melatonin is a key signaling molecule that connects changes in

external light conditions with changes in physiological activities in the

body. After the retina of an animal’s eye receives a light signal, it

transmits the signal to the pineal gland. The pineal gland then

transforms the light signal into melatonin, thereby participating in

various physiological reactions in the body. Melatonin regulation of

various antioxidants and immune responses improves animal

reproductive performance. ART has enhanced our understanding

of the various physiological changes in the reproductive process, and

an increasing number of problems restricting reproductive

performance have been identified. Previous studies have elucidated

the role of melatonin in improving animal reproductive performance,

and this factor can potentially improve human-assisted reproduction

in the future. However, the mode of administration of melatonin and

its isoforms requires further study in different species and breeds.
TABLE 2 Summary of the effects of melatonin on reproduction.

Characteristics Effect of melatonin Relevant references

Oocyte Quality Enhances oocyte maturation and quality by upregulating genes such as GDF9, BMP15, and PTX3. (77, 85)

Embryo Development Increases mitochondrial function and reduces apoptosis in blastocysts. (82, 84)

Fertilization Rates Significantly increases fertilization rates in IVF-ET procedures. (94, 95)

Clinical Pregnancy Rates Increases clinical pregnancy rates during ART cycles. (94–96)

Live Birth Rates Shows potential for increasing live birth rates, although results vary. (98)

Antioxidant Effects Reduces oxidative stress in oocytes and embryos. (57, 58, 96)

Anti-inflammatory Effects Mitigates inflammation in reproductive tissues. (59, 60)
GDF9, growth differentiation factor 9; BMP15, bone morphogenetic protein 15; PTX3, pentraxin 3; IVF-ET, in vitro fertilization-embryo transfer; ART, assisted reproductive technology.
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97. Cosme P, Rodrıǵuez AB, Garrido M, Espino J. Coping with oxidative stress in
reproductive pathophysiology and assisted reproduction: melatonin as an emerging
therapeutical tool. Antioxidants. (2022) 12:86. doi: 10.3390/antiox12010086

98. Espino J, Macedo M, Lozano G, Ortiz Á, Rodrıǵuez C, Rodrıǵuez AB, et al.
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