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In reptiles with temperature-dependent sex determination (TSD), including the red-
eared slider turtle Trachemys scripta elegans, female sex determination is sensitive to 
estrogen. However, the underlying molecular mechanism by which estrogen 
facilitates ovarian development remains unclear in TSD. Here, we explore the role 
of estrogen receptors (ESRs) in ovarian differentiation by administering 17b-estradiol 
(E2), as well as agonists and antagonists of ESRs to embryos of red-eared sliders. We 
found that treatment with E2 or one of the ESR (ESRa, ESRb, or  GPER1) agonists  
induced typical female characteristics of gonads at the male-producing temperature 
(MPT), exhibiting advanced outer cortex and degraded medullary cord as well as 
upregulation of Cyp19a1 and Foxl2 and downregulation of  Amh and Dmrt1. In

addition, this male-to-female sex reversal induced by E2 at MPT can be reversed by 
using a combination of three ESR antagonists. However, antagonizing any of the 
three ESRs or the three ESRs together did not affect ovarian differentiation at the 
female-producing temperature (FPT). Our study demonstrates that estrogen 
regulates the expression of estrogen-responsive sex-specific genes through the 
ESRs to induce ovarian differentiation at MPT, and ESRs do not have to engage in 
ovarian development directly at FPT, indicating that alternative pathways might drive 
feminization under natural high-temperature conditions. 
KEYWORDS 

red-eared slider turtle, temperature-dependent sex determination (TSD), estrogen, 
estrogen receptor (ESR), ovarian differentiation 
 

1 Introduction 

Traditional studies on sex determination mainly focused on testis development rather than 
ovarian development, because ovarian development had long been considered a “default” 
developmental outcome switched on passively by the  absence of sex-determining  region  Y
(SRY) in mammals (1, 2). Recently, increasing lines of evidence demonstrate that active 
mechanisms are required to produce an ovary in vertebrates (3–6). In many reptiles, including 
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the red-eared slider turtle (Trachemys scripta elegans) with

temperature-dependent sex determination (TSD), female sex 
determination is sensitive to both temperature and estrogen during 
the temperature-sensitive period (TSP) (7–9). Warmer temperature 
can affect the expression of sex-related genes, which induce ovarian 
determination and differentiation in T. scripta (6, 10). Estrogen, amajor 
steroid hormone, plays an essential role in ovarian development in 
vertebrates (11–14). It is not only critical for the development of female 
secondary sexual characteristics and female reproduction in eutherian 
mammals, but also essential to female sex determination and 
differentiation in non-eutherian vertebrates (11–16). Additionally, a 
synergistic effect between warm temperature and estrogen action can 
be seen in turtle sex determination—less estrogen is required to sex-
reverse embryos from intermediate temperatures than from extreme 
male-producing temperatures (MPTs) (17, 18). Indeed, the 
administration of estrogen/aromatase inhibitor can influence sex 
determination while the ambient temperature during the TSP of 
embryo development primarily determines the sex of offspring 
(19–23). For example, estrogen treatment caused premature 
suppression of a central male sex-determining gene, which is 
indispensable for testis differentiation, SRY-box transcription factor 9 
(SOX9), and the dissolution of cord structures in the medulla, while 
aromatase inhibition maintained SOX9 and testis cords, and resulted in 
ovotestis development in T. scripta (24–26). Nevertheless, the  precise  
molecular mechanism underlying estrogen action on gonadal 
development in TSD reptiles remains poorly understood. 

This mechanism may involve estrogen receptors (ESRs) since 
estrogen mediates its actions by binding to the two classical nuclear 
ESRs (ESRa/ESR1 and ESRb/ESR2) to regulate target gene transcription 
or by activating the G protein-coupled estrogen receptor 1 (GPER1/ 
GPR30) to elicit downstream signaling cascades (27, 28). These 
receptors are found to participate in regulating ovarian function in 
several vertebrates regardless of the mode of sex determination (29–33), 
but the involvement of specific ESR differs among lineages. For example, 
ESRa and ESRb are necessary for normal ovarian function but have no 
gross effect on ovarian differentiation in mammals (29, 34, 35). ESRa 
plays an important role in the differentiation of reproductive tracts in 
female embryos of birds and reptiles (30, 31, 36–39), while ESRb is more 
essential for ovary development in bony fish (33, 38, 40). Additionally, 
GPER1 is not required for ovarian differentiation or function in 
mammals, birds, and fish (41, 42). Therefore, verifying the working 
ESRs on TSD not only is important for our understanding of how 
estrogen affects ovarian differentiation in the  species  of  interest  but also  
provides new insights into the role of ESR in sex determination 
of vertebrates. 

To investigate the precise molecular mechanism underlying the 
action of estrogen–ESR on ovarian differentiation in TSD species, we 
conducted a series of experiments in the T. scripta following a female– 
male TSD pattern, of which eggs incubated at warm temperature (31°C) 
produces all females, whereas cold temperature (26°C) produces all 
males (10, 43). We administered 17b-estradiol (E2) and specific 
pharmaceutical agonists and antagonists for ESRs (ESRa, ESRb, and  
GPER1) to embryos of T. scripta at MPT or FPT during TSP. 
Subsequently, we performed immunocytochemical analysis and real-
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time quantitative PCR (RT-PCR) to examine gonadal histology and 
specific sex gene expression patterns. Our results demonstrated that 
agonists of ESRa, ESRb, or GPER1 can  induce sex-reversed females  at  
MPT, accompanied by the upregulation of female-related sex-
determining genes and the downregulation of male-related sex-
determining genes. Moreover, this male-to-female sex reversal 
induced by E2 at MPT can be reversed by blocking the three ESRs 
together. In contrast, antagonizing one or three ESRs did not affect 
ovarian differentiation of turtle embryos incubated at FPT. These 
findings indicate that estrogen regulates the expression of estrogen-
responsive sex-related genes through the three ESRs—ESRa, ESRb, and  
GPER1—to induce ovarian differentiation of T. scripta at MPT, whereas 
warmer temperatures trigger female-specific regulator expression 
underpinning ovarian development of T. scripta at FPT without ESRs’ 
engagement directly. 
2 Materials and methods 

2.1 Egg incubation and tissue collection 

We obtained freshly laid eggs (within 1 day of being laid) of T. 
scripta from a turtle farm in Hanshou (Hunan, China). Fertilized eggs 
were collected and rinsed in distilled water to clean the outer shell and 
then placed in small plastic boxes containing a 1:1 (by mass) vermiculite: 
water mixture and incubated at either 26°C (MPT) or 31°C (FPT) using 
two KB240 thermal-regulation systems (Binder, Germany). Incubation 
at these temperatures yields 100% male and 100% female embryos, 
respectively (9, 44). The progress of development was monitored by 
dissection of one to two eggs at regular intervals. Embryos were staged 
according to criteria established by Greenbaum (45). Eggs were opened 
and embryos were immediately decapitated  and placed into phosphate­
buffered saline (PBS) for gonad–mesonephros complexes (GMCs) at 
stage 25 and whole-gonad collection at different developmental stages 
(including stage 16, stage 17, stage 18, stage 19, stage 20, stage 21, and 
stage 25) (46). All experiments were carried out under the guidelines 
specified by the Animal Care and Use Committee at the Institute of 
Zoology, Chinese Academy of Sciences (IOZ-IACUC-2023-152). 
2.2 Chemical treatments 

We dissolved E2 (17b-estradiol) (Sigma-Aldrich) in ethanol at a 
final concentration of 1.0 mg/mL and we dissolved the estrogenic 
compounds in dimethyl sulfoxide (DMSO) (Sigma-Aldrich) with the 
following concentrations: 10.0 mg/mL of ESRa-specific agonist  PPT
(4,4,4 ’-(4-propyl-[1H]-pyrazole-1,3,5-triyl)  tris-phenol)  
(MedChemExpress), 10.0 mg/mL of ESRa-specific antagonist

AZD9496(3-[3,5-difluoro-4-[(1r,3r)-2-(2-fluoro-2-methylpropyl)­

2,3,4,9-tetrahydro-3-methyl-1h-pyrido[3,4-b]indol-1-yl] phenyl]-2­
propenoic acid) (MedChemExpress), 10.0 mg/mL of ESRb-specific 
agonist WAY20007 (7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol­

5-ol) (MedChemExpress), 10.0 mg/mL of ESRb-specific antagonist

PHTPP (4-[2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] 
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pyrimidine-3-yl] phenol) (MedChemExpress), 0.5 mg/mL of  GPER-
specific agonist G1 (1-[(3aR,4S,9bS)-4-(6-bromo-1,3-benzodioxol-5­

yl)-3a,4,5,9b-tetrahydro-3H cyclopenta [c] quinolin-8-yl]) 
(MedChemExpress), and 0.5 mg/mL of GPER-specific antagonist 
G15 ((3aR,4R,9bS)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b­

tetrahydro-3H-cyclopenta[c] quinolone) (MedChemExpress). 
When the embryos were estimated to be approaching stage 16 

(within the thermo-sensitive period), a total 1,350 eggs were 
randomly assigned to nine treatment groups, with 150 eggs in 
each chemical treatment group. We wiped the end of eggs with 
alcohol and punched a small hole with a needle. We injected solvent 
with the active chemical through the hole in the shell into the turtle 
eggs with a fine metal needle (Hamilton Company, USA, size: 0.5 
mm) and classified them into the following groups (see 
Supplementary Table S1): MPT + E2 (eggs with 0.5 mg/g of E2 at 
MPT), MPT + PPT (eggs with 5 mg/g of PPT at MPT), MPT + 
WAY200070 (eggs with 5 mg/g of WAY200070 at MPT), MPT + G1 
(eggs with 0.25 mg/g of G1 at MPT), FPT + AZD9496 (eggs with 5 
mg/g of AZD9496 at FPT), FPT + PHTPP (eggs with 5 mg/g of 
PHTPP at FPT), FPT + G15 (eggs with 0.25 mg/g of at FPT), MPT + 
E2 + Tripo (eggs with 0.5 mg/g of E2, 5 mg/g of AZD9496, 5 mg/g of 
PHTPP, and 0.25 mg of G15 at MPT). The control group was treated 
with the corresponding solvent without the active chemical. 
2.3 Gonadal histology 

GAMs from embryos were washed three times with PBS and then 
were observed with a stereomicroscope (Leica, Germany), and pictures 
were obtained digitally. Fresh dissected gonads were fixed in 4% (w/vol) 
paraformaldehyde (PFA) at 4°C overnight. On the second day, fixed 
GAMs were paraffin embedded for histologic analyses. Serial 5-mm 
sections of the gonads were stained with hematoxylin and eosin (H&E) 
by a standard procedure for microscopic examination and assignment 
of sex. Three independent blinded investigators determined the 
phenotypic features of the gonads. 
 

2.4 RNA extraction and quantitative RT­
PCR 

Gonads at different developmental stages (stage 16, stage 17, stage 
18, stage 19, stage 20, stage 21, and stage 25) from 15 individual 
embryos in each group were harvested for RNA extraction using the 
RNeasy Plus Micro kit (Qiagen) following the manufacturer’s 
instructions. The quantity and quality of the RNA were assessed 
using the NanoDrop 2000 (Thermo Scientific, USA) and by gel 
electrophoresis. A two-step RT-PCR analysis approach  was taken.

RNA (0.5–2 mg) was reverse transcribed using the HiFiScript cDNA 
Synthesis Kit (CWBIO) following the manufacturer’s instructions. 
Real-time amplification was performed on a LightCycler® 480II real-
time PCR system (Roche, Germany), using the manufacturer’s 
recommended program for ChamQ Universal SYBR qPCR Master 
Mix kit (Vazyme) in a standard 96-well block. Reactions were 
conducted in 20-mL volumes containing 2 × SYBR Premix Taq, 
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1 mL of  first-strand cDNA, and 5 pmol of each primer. Thermal 
cycling conditions consisted of 1 cycle of 95°C for 3 min and 40 cycles 
of denaturation at 95°C for 10 s and annealing/extension at 60°C for 
20 s. We measured the expression levels of ESRa, ESRb, and  GPER1 in 
embryonic gonads from stage 16 to stage 21, and stage 25 of 
embryonic development at both FPT and MPT, and also measured 
the expression levels of cytochrome P450 family 19 subfamily A 
member 1 (Cyp19a1), forkhead box L2 (Foxl2), anti-Mullerian 
hormone (Amh), and doublesex and mab-3 related transcription 
factor 1 (Dmrt1) in embryonic gonads from stage 25 in each 
chemical treatment group and control group. Analysis of the results 
was performed employing a comparative Ct method with the gene 
glyceraldehyde-3-phosphate dehydrogenase (Gapdh) as the

endogenous control (47). For each assay, three biological replicates 
and three technical replicates were performed. The sequence of 
primers for RT-PCR is listed in Supplementary Table S2. 
2.5 Immunohistochemistry and confocal 
imaging 

Freshly dissected gonads were fixed in 4% (w/vol) PFA in PBS 
for 2 h at 4°C. After washing with increasing concentrations of 
methanol, tissues were embedded in paraffin wax and sliced into 5­
mm serial sections (Carl Zeiss, Germany). Deparaffinized sections of 
the gonads were immersed in antigen retrieval buffer (10 mM/L 
citrate buffer, pH 6.0) at 95°C for 10 min and washed twice in PBS 
with 0.01% Tween-20, then incubated for 1 h at room temperature 
in a blocking solution consisting of 10% heat-inactivated fetal 
bovine serum (FBS), 3% bovine serum albumin (BSA), and 0.2% 
Triton X-100 in PBS followed by overnight incubation at 4°C in 
primary antibodies diluted in the blocking solution. Sections were 
rinsed three times in PBS and incubated in secondary antibodies in 
the blocking solution for 1 h at room temperature. A Zeiss 710 
inverted confocal microscope (Carl Zeiss, Germany) was used to 
collect images, and the Zeiss free offline software was used to 
generate maximum intensity projections. 

Primary antibodies were goat anti-Foxl2 (privately produced) 
used at 1:250; rabbit anti-Sox9 (AB5535, Chemicon, USA) used at 
1:1,000; rabbit anti-Vasa (ab13840, Abcam, CA) used at 1:200; and 
mouse anti-b-catenin (C7207, Sigma, USA) used at 1:250. 
Secondary antibodies were Alexa Fluor 594 donkey anti-rabbit 
IgG (A21207, Invitrogen, USA), Alexa Fluor 594 donkey anti-
mouse IgG (A21203, Invitrogen, USA), Alexa Fluor 488 donkey 
anti-rabbit IgG (A21206, Invitrogen, USA), and Alexa Fluor 488 
donkey anti-mouse IgG (A21202, Invitrogen, USA), all of which 
were used at 1:250 to detect primary antibodies. Cell nuclei were 
stained with DAPI (C1006, Beyotime, China). 
2.6 Statistical analyses 

Data were visualized and analyzed using GraphPad Prism 8 
(GraphPad Software, San Diego, CA, USA) and R (version 4.1.0) 
(48). The effects of chemical treatments on sex ratio were tested 
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using the chi-square test. The Student’s unpaired  t-test was 
employed to test the differences in Dmrt1, Amh, Foxl2, and

Cyp19a1 gene expression between the treatment and the control 
group, as well as the differences in gene expression of ESRa, ESRb, 
and GPER1 at different incubation temperatures during the same 
stage. We utilized the Kruskal–Wallis test and Dunn’s comparison 
to analyze the differences in gene expression at each developmental 
stage of ESRs under MPT or FPT, as well as three ESRs’ expression 
across different developmental stages under both MPT and FPT 
conditions. Each experiment was independently repeated at least 
three times. All data are presented as means ± standard error of the 
mean (SEM). Significant effects were considered at p ≤ 0.05. 
3 Results 

3.1 Expression profile of ESRa, ESRb, and 
GPER1 during development of gonads in T. 
scripta at MPT and FPT 

ESRa, ESRb, and  GPER1 were constitutively expressed from stage 
16, before the onset of gonadal differentiation in embryonic gonads of 
T. scripta, through to stage 25 of embryonic development at both FPT 
and MPT. The expression level of GPER at stage 21 in males was the 
relative point of relative expression. Specifically, ESRa expression was 
Frontiers in Endocrinology 04
significantly higher in females than in males at stage 21; ESRb 
expression was significantly higher in females than in males at 
stages 18, 21, and 25; GPER1 expression was significantly higher in 
males than in females at stage 17, but higher in females than in males 
at stage 18. There was no difference in expression levels of any 
receptor between MPT and FPT at other same stages (Figure 1; 
Supplementary Table S3). The results also showed that regardless of 
FPT or MPT, the expression levels of any of the three ESRs did not 
show significant changes during stage 16 to stage 21 and stage 25 
(Figure 1; Supplementary Tables S4–S6). Furthermore, ESRa and 
ESRb were robustly expressed in embryonic gonads, with ESRa 
mRNA level being higher than those of ESRb in gonads of 
embryos. However, weaker expression of GPER1 was detected in 
both FPT and MPT gonads compared to that of ESRa and ESRb 
(Figure 1; Supplementary Table S7). 
3.2 Estradiol treatments induced ovarian 
differentiation at MPT 

Based on histological and immunofluorescence characteristics, 
embryos incubated at MPT displayed ovarian structure at stage 25 
following E2 treatment (Figures 2A–C; Supplementary Figure S1A). 
Compared to the fetal gonads in MPT groups, which were short and 
round, gonads following estradiol treatments in MPT embryos 
FIGURE 1 

Expression profiles of ESRa, ESRb, and  GPER1 during gonadal sex development (stages 16–25) in female and male T. scripta. Sex differences within the 
same developmental stage are indicated by different lowercase letters (a, b). Developmental stage differences in males are marked with blue uppercase 
letters (A-C), and developmental stage differences in females are marked with red uppercase letters (A-C). No  significant difference was found in gene 
expression at any developmental stage within each sex. Each experiment was independently repeated at least three times. All data are presented as 
means ± standard error of the mean (SEM). Significant effects were considered at p ≤ 0.05. Data are mean ± standard deviation (SD); n ≥ 3. 
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became long and flat, resembling those in the FPT groups 
(Figure 2A). MPT control gonads exhibited well-differentiated 
testis cords with a degenerated cortex and dense medulla, and the 
primordial germ cells (PGCs) were arranged in the seminiferous 
cords, whereas FPT control gonads exhibited typical ovarian 
morphology, showing an advanced outer cortex compartment 
with PGCs (Figure 2B). For eggs treated with E2 at MPT, the 
morphology of gonads exhibited a completely male-to-female 
gonadal sex reversal phenotype (Figure 2B). MPT control gonads 
expressed SOX9, a marker of Sertoli cells, whereas FPT control 
gonads expressed FOXL2, a critical marker of granulosa cells 
(Figure 2C). In the gonads treated with E2 at MPT, FOXL2 
expression showed a female-like pattern and SOX9 vanished 
(Figure 2C). In addition, compared with normal male controls, 
the expression of ovarian-related markers Cyp19a1 and Foxl2 
significantly increased, whereas that of testis-related markers Amh 
and Dmrt1 sharply decreased in gonads (stages 25) treated with E2 
at MPT (Figure 2D). 
Frontiers in Endocrinology 05 
3.3 Agonists of ESRa, ESRb, or GPER1 
induced ovarian differentiation at MPT 

Treatment with ESRa+, ESRb+, and GPER1+ resulted in 
significantly more females than the control incubated at MPT 
(Supplementary Figure S1B, Table 1). Some embryos in the 
ESRa+, ESRb+, and  GPER1+ group  exhibited  ovarian  
differentiation with visible morphological and histological 
changes, showing typical long and flat ovaries with thickened 
outer cortex containing a number of germ cells and degenerated 
medullary cords as in FPT control (Figures 3A, B). Those feminized 
gonads expressed FOXL2 in granulosa cells of both the medulla and 
the cortex, similar to the FPT female type (Figure 3C). Gonadal 
tissues displayed a clear induction of sex-specific mRNA after 
embryo exposure to the specific agonists  for  the  three  ESRs.
Treatment with PPT, WAY200070, and G1 alone increased the 
expression of ovarian-related markers Cyp19a1 and Foxl2 and 
decreased the expression of testis-related markers Amh and 
FIGURE 2 

Estradiol treatments during temperature-sensitive period (TSP) at male-producing temperature (MPT)-induced ovarian differentiation in T. scripta. 
(A) Morphological analysis of the adrenal–kidney–gonad complex (AKG) in hatchings of control males, control females, and E2-induced females. The 
dashed black line indicates gonad. Gd, gland; Ovi, oviduct. Scale bars are 1 mm. (B) H&E-stained sections of AKG in hatchings of males, females, and 
E2-induced females. Cor, cortex region; Med: medullary region; Gc, germ cells; Sc, Sertoli cell. Scale bars are 50 mm. (C) Immunofluorescence 
images of VASA (red), CTNNB1, FOXL2 (green), SOX9 (red), and DAPI (4′,6-diamidino-2-phenylindole, blue) in gonadal cross sections of hatching 
males, females, and E2-induced females. (D) Relative expression of Dmrt1, Amh, Foxl2, and Cyp19a1 mRNA in gonads of male, female, and E2­
induced females. Three asterisks: p < 0.001. 
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Dmrt1 (Figure 3D). Furthermore, although these agonists increased 
the expression of Cyp19a1 and Foxl2 in the gonads compared to 
embryos incubated at 26°C, the expression levels did not exceed 
those observed in embryos incubated at 31°C. 
 

3.4 Estrogen-induced feminization can be 
reversed by the combination of ESRa, 
ESRb, and GPER1 antagonists 

E2-induced male-to-female sex reversal was rescued by the triple 
combination of ESRa−, ESRb−, and GPER1− (Figure 4; Supplementary 
Figure S1C), which exhibited a male-like phenotype with an attenuated 
outer cortex and an apparent medulla occupied by testicular-like cords 
in  the E2 and  Tripo− group (Figures 4A, B). Treatment with ESRa− , 
ESRb−, and  GPER1− overrode E2-induced feminization of MPT 
embryos, which was characterized by the disappearance of the 
ovarian regulator FOXL2 in gonadal cells and ectopic expression of 
the male marker SOX9 in the nuclei of Sertoli cells in the seminiferous 
cords of gonads (Figure 4C). Testicular differentiation markers Dmrt1 
and Amh were strongly upregulated, and ovarian development 
regulators Cyp19a1 and Foxl2 were significantly downregulated in E2 
and Tripo− gonads, which are similar to the sex-specific expression  
pattern of gonads in MPT rather than FPT (Figure 4D). In addition, 
combined treatment with E2 and three ESR antagonists resulted in the 
development of some individuals with ovotestes, which expressed both 
SOX9 and FOXL2 (Supplementary Figure S2). This suggests that 
blocking ESR activity partially disrupts ovarian development, leading 
to an intermediate gonadal state. 
 
3.5 Antagonists of ESRa, ESRb, or/and 
GPER1 do not disrupt ovarian 
differentiation at FPT 

However, eggs treated with ESRa− , ESRb− , or/and GPER1− 

showed no significant difference in their gonadal sex ratio 
compared with the FPT control. Gonads in the FPT + AZD9496, 
FPT + PHTPP, and FPT + G15 groups displayed topical long and flat 
ovaries with advanced outer cortex and germ cells like those in the 
FPT control group (Supplementary Figures S3A, B). FOXL2 
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expression was identified in granulosa cells of both the medulla 
and the cortex, and no male marker SOX9 was detected in the 
gonadal cells of eggs that received AZD9496, PHTPP, or G15 
treatment (Supplementary Figure S3C). Transcripts of the ovarian 
development regulator Cyp19a1 and Foxl2 increased while transcripts 
of testicular differentiation markers Amh and Dmrt1 remained at low 
levels in gonads when eggs were treated with AZD9496, PHTPP, or 
G15, which are consistent with those incubated at FPT 
(Supplementary Figure S3D). Then, we added three antagonists of 
ESRs together to turtle eggs to assess whether ESRa, ESRb, and
GPER1 have a compensatory function for each other, and no 
apparent morphological alteration in the gonads of the FPT + 
Tripo group (Supplementary Figures S4A, B). Immunofluorescent 
detection revealed that FOXL2 was robustly expressed in somatic cells 
of gonads and SOX9 was not detected in gonads of the FPT + Tripo 
group, similar to the control group incubated at FPT (Supplementary 
Figure S4C). RT-PCR analysis showed that Amh, Dmrt1, Cyp19a1, 
and Foxl2 transcripts in gonads after treatment with AZD9496, 
PHTPP, and G15 together exhibited the same expression pattern as 
that incubated at FPT (Supplementary Figure S4D). 
4 Discussion 

The mechanism by which temperature directs the expression of 
genes and cell signaling to induce the differentiation of the bipotential 
gonad to the testis or ovary is the most intriguing question in TSD 
species. However, estrogens have been shown to be necessary and 
sufficient for ovarian determination and differentiation in TSD 
reptiles (7, 10, 19, 23, 49, 50). Our study provides insights into the 
mechanisms through which estrogens influence embryo sex at MPT: 
estrogens exert their effects through three ESRs (ESRa, ESRb, and
GPER1), thereby regulating the expression of estrogen-responsive 
sex-related genes to induce ovarian differentiation and inhibit testis 
differentiation at MPT, whereas at FPT, the expression of female-

specific regulators responsible for ovarian development is directly 
regulated by warmer temperatures as a primary cue and does not 
require support from ESRs. This finding not only improves our 
understanding of the involvement of estrogen in sex determination in 
TSD species, but also carries broader implications for estrogen-
associated gonadal development in vertebrates. 
TABLE 1 Effect of chemical drugs on sex determination at MPT. 

Treatment 
Number Sex reversed ratio (%) Chi-square p-value 

Total Male Female 

E2 64 0 64 100.00 124.000 <0.001 

ESRa+ 44 34 10 22.73 15.087 <0.001 

ESRb+ 52 42 10 19.23 12.670 <0.001 

GPER1+ 60 54 6 10.00 6.316 0.012 

E2+Tripo− 64 32 32 50.00 40.435 <0.001 
 

Embryos of the red-eared slider turtle (T. scripta) were incubated at male-producing temperature (MPT, 26°C) and treated with E2, ESRa+, ESRb+, GPER1+, and a combination of estrogen and 
Tripo−. The chi-square test was employed to test the sex ratio with 95% confidence intervals between MPT and MPT treated with ESR agonists, as well as between MPT treated with E2 and MPT 
treated with a combination of E2 and three ESR antagonists. 
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FIGURE 3 

ESRa+-, ESRb+-, or GPER1+-induced ovarian differentiation at male-producing temperature (MPT) in T. scripta. (A) Morphological analysis of the 
adrenal–kidney–gonad complex (AKG) in control male hatchings, control female hatchings, and hatchings incubated at 26°C treatment with ESRa+, 
ESRb+, or GPER1+. The dashed black line indicates gonad. Gd, gland; Ovi, oviduct. Scale bars are 1 mm. (B) H&E-stained sections of AKG in control 
male hatchings, control female hatchings, and hatchings incubated at 26°C treatment with ESRa+, ESRb+, or GPER1+. Cor, cortex region; Med: 
medullary region; Gc, germ cells; Sc, Sertoli cell. Scale bars are 50 mm. (C) Immunofluorescence images of VASA (red), CTNNB1, FOXL2 (green), 
SOX9 (red), and DAPI (4′,6-diamidino-2-phenylindole, blue) in gonadal cross sections from control male hatchings, control female hatchings, and 
hatchings incubated at 26°C treatment with ESRa+, ESRb+, or GPER1+. (D) Relative expression of Dmrt1, Amh, Foxl2, and Cyp19a1 mRNA in gonads 
of control male hatchings, control female hatchings, and hatchings incubated at 26°C treatment with ESRa+, ESRb+, or GPER1+. One asterisk 
indicates statistical significance at p < 0.05; two asterisks: p < 0.01; three asterisks: p < 0.001. 
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ESRs are expected to mediate estrogen’s effects on embryo sex in 
vertebrates, but the engagement of ESRs varies from species to 
species. In teleost, there are three nuclear ESRs, ESRa, ESRb1, and 
ESRb2, encoded by genes, Esr1, Esr2a, and Esr2b, and ESRb1 and 
ESRb2 are required to mediate the role of estrogen in sex 
determination (51). In contrast, the feminization effect of estrogen 
on sexual differentiation is mediated by ESRa in birds and turtles 
with GSD (genetic sex determination) (31, 52). For example, the 
selective ESRa agonist induced ovarian differentiation of genetic 
male chicken (Gallus gallus), Japanese quail (Coturnix japonica), 
and Chinese soft-shelled turtle (Pelodiscus sinensis), but the 
selective ESRb agonist did not (31, 37, 52, 53). The only study on 
the functionalization of ESRs in TSD reptiles demonstrated that 
ESRa, rather than ESRb, modulates estrogen-induced sex reversal 
in ovarian differentiation in American alligator (Alligator 
mississippiensis) (30, 36). However, our study showed that 
application of a specific agonist of ESRa, ESRb, or GPER1 can 
induce feminization at MPT, and the male-to-female sex reversal 
induced by E2 can be reversed by the combination of ESRa, ESRb, 
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and GPER1 antagonists in red-eared sliders. These results indicated 
that estrogen induces ovarian differentiation through the three ESRs 
(ESRa, ESRb, and GPER1) in T. scripta at MPT. This interspecies 
variation in the involvement of ESRs may be related to different 
TSD patterns, as the MPT of the American alligator with a TSD II 
pattern significantly differs from that of the red-eared slider turtle 
with a TSD Ia pattern (19, 45), and temperature can affect 
conformational transitions of ESRs (54, 55). Additionally, the 
temporal and spatial expression patterns of ESRs may shed light 
on their respective physiological functions (17, 56). We found that 
ESRa, ESRb, and GPER1 in gonads express at stage 16, which is 
early in TSP and clearly prior to gonadal differentiation, at both 
MPT and FPT in T. scripta. The mRNA expression levels of ESRs 
within each stage exhibited the pattern of ESRa > ESRb > GPER1 
(Figure 1; Supplementary Table S7), which is consistent with the 
pattern of sex reversal ratio by the administration of agonists of 
ESRa, ESRb, and GPER1. Therefore, ESRa, ESRb, and GPER1 
mediate estrogen action on sex  determination and  ovarian
differentiation in T. scripta at MPT. Nonetheless, because our 
FIGURE 4 

Estrogen-induced feminization can be reversed by the combination of ESRa−, ESRb−, and GPER1− in T. scripta. (A) Morphological analysis of the 
adrenal–kidney–gonad complex (AKG) in control male hatchings, control female hatchings, and hatchings incubated at 26°C treatment with E2, 
ESRa−, ESRb−, and GPER1−. The dashed black line indicates gonad. Gd, gland; Ovi, oviduct. Scale bars are 1 mm. (B) H&E-stained sections of AKG in 
control male hatchings, control female hatchings, and hatchings incubated at 26°C treatment with E2, ESRa−, ESRb−, and GPER1−. Cor, cortex 
region; Med: medullary region; Gc, germ cells; Sc, Sertoli cell. Scale bars are 50 mm. (C) Immunofluorescence images of VASA (red), CTNNB1, FOXL2 
(green), SOX9 (red), and DAPI (4′,6-diamidino-2-phenylindole, blue) in gonadal cross sections from control male hatchings, control female 
hatchings, and hatchings incubated at 26°C treatment with E2, ESRa−, ESRb−, and GPER1− . (D) Relative expression of Dmrt1, Amh, Foxl2, and 
Cyp19a1 mRNA in gonads of control male hatchings, control female hatchings, and hatchings incubated at 26°C treatment with E2, ESRa−, ESRb− , 
and GPER1−. One asterisk indicates statistical significance at p < 0.05; two asterisks: p < 0.01; three asterisks: p < 0.001. 
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knowledge is limited to two species, further studies are urgently 
needed to comprehensively understand the role of ESRs in sex 
determination in TSD reptiles. 

It is known that these two sexual pathways are mutually 
antagonistic, and activating one of the alternatives and repressing 
the other is critical for the maintenance of the testis or ovary 
programs (3, 57). Our study demonstrated that agonists of ESRs 
(ESRa, ESRb, or GPER1) increased the expression of the ovarian 
regulators Foxl2 and Cyp19a1 (6, 58–63) and  decreased  the
expression of the testicular Sertoli cell markers Dmrt1 and Amh 
(25, 59, 64, 65). Agonists of ESRs also activated the ovarian 
regulator of FOXL2 (58–60) and repressed an indispensable 
regulator of SOX9 (24, 26) for testis differentiation in T. scripta. 
Furthermore, treatment with ESRa, ESRb, and GPER1 antagonists 
together reverses the estrogen-induced feminization of T. scripta, 
with Dmrt1, Sox9, and Amh increasing and FoxL2 and Cyp19a1 
decreasing (Figure 4), confirming that ESRa, ESRb, and GPER1 
mediate the estrogen-induced feminization of T. scripta incubated 
at MPT. Estrogen–ESR signaling diverts the bipotential gonad of 
embryos to females by strongly altering the expression patterns of 
sex-related genes (24, 66, 67). For example, the direct effects of sex 
steroids on Amh transcription are mediated by ESRa action on 
Amh promoter sequences, and modest estrogen action is also 
mediated by the membrane G-coupled estrogen receptor 1 (68). 
Foxl2 binds directly to ESRb, regulating estrogen production in 
granulosa cells in mice, and this transcription factor, together with 
ESRa, synergizes repression of Sox9 by negatively regulating the 
testis-specific enhancer core element unit of the promoter (69, 70). 
Although further experiments are needed to demonstrate a direct 
relationship between ESRs and these sex-related genes in T. scripta, 
these results collectively point towards estrogen signaling, with 
ESRa, ESRb, and GPER1 regulating the expression of estrogen-
responsive sex-related genes, inducing ovarian differentiation, and 
inhibiting testis differentiation of T. scripta at MPT. 

Our results showed that treatment with any of the three antagonists 
individually or all three antagonists combined did not affect ovarian 
development in T. scripta (Supplementary Figures S3, S4). This 
confirms that ESRs are not required for regulating female-specific 
gene expression underlying ovarian development at FPT. Together 
with previous findings that warmer temperatures influence the 
expression of sex-related genes involved in ovarian determination and 
differentiation in T. scripta (6, 10),  our results  suggest that warmer

temperatures alone can drive the feminization process, independent of 
ESR signaling. For example, warmer temperature can repress expression 
of an essential regulator of Dmrt1 for testicular differentiation and 
promote expression of an important regulator Foxl2 for ovarian 
differentiation in T. scripta at FPT (6, 10, 64). Specifically, at warmer 
temperatures (FPT), signal transducer and activator of transcription 3 
(STAT3) is phosphorylated, binds the Kdm6b locus, and represses 
Dmrt1 expression, blocking the male pathway; meanwhile, pSTAT3 also 
binds the Foxl2 locus and promotes Foxl2 expression, activating the 
female pathway (6, 10, 64). Recent studies showed that embryos 
incubated at higher temperatures have more germ cells (GCs) than 
those incubated at the male-inducing temperature. Furthermore, 
elimination of GCs in embryos incubating at intermediate 
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temperatures results in a strong shift toward male-biased sex ratios. 
These findings suggested that warmer temperatures directly increase 
germ cell number and a higher number of GCs favor the female 
pathway in T. scripta (71, 72). Although exogenous estrogen at MPT 
appears to be the physiological equivalent of warmer incubation 
temperature, both result in ovarian development (7, 17, 73), and 
exogenous estrogen produces the gonads whose morphology and 
histology differ from those induced by temperature (24, 66, 74–77). 
For example, in T. scripta, ovaries that develop in embryos incubating at 
FPT are large and thick, whereas ovaries in embryos incubating at MPT 
treated with exogenous E2 are small in size and the oviducts are not fully 
detached from the underlying mesonephric tissues (56, 66, 78). Those 
studies combined with our results indicated different molecular 
regulatory mechanisms between warmer temperature- and estrogen-
induced feminization for T. scripta. 

More generally, genetic effects are essential for sex differentiation 
in mammals and birds with heteromorphic sex chromosomes, 
whereas estrogen is a significant player involved in sex 
differentiation in ectothermic vertebrates, in which sex 
chromosomes are rarely differentiated. In TSD reptiles, both 
temperature and estrogens can trigger ovarian development 
through differential activation/repression of sex-determining genes 
during the temperature-sensitive period. The molecular mechanism 
of how estrogen promotes ovarian differentiation through ovary 
regulatory loops is critically important to understanding gonad 
differentiation. Estrogen regulates the expression of estrogen-
responsive sex-related genes through the three ESRs—ESRa, ESRb, 
and/or GPER1—to induce ovarian differentiation of T. scripta at 
MPT. Clearly, this finding broadens our knowledge of the role of 
ESRs in sex determination and ovarian differentiation. 
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