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Purpose: This study aims to utilize genetic instrumental variables - protein
quantitative trait loci (pQTL), and through analysis methods such as Mendelian
randomization (MR), systematically screen and validate druggable proteins that
have a causal relationship with diabetic retinopathy (DR), and further explore
related drug targets, providing genetic evidence and new directions for the drug
development of this disease.

Methods: The research was based on large-scale public databases to conduct
two-sample Mendelian randomization (MR) analysis. Firstly, 511 encoded proteins
were selected from the known 4,479 druggable genes as initial exposure factors,
with the summary data of GWAS for diabetic retinopathy as the outcome. MR
analysis was conducted using the inverse variance weighted (IVW) method and
the Wald ratio method, and strict screening was performed through Bonferroni
correction. For the significantly associated proteins, heterogeneity tests,
pleiotropy tests, leave-one-out analysis, and Steiger directionality tests were
further conducted to verify the robustness of the results. Additionally, summary
MR (SMR) analysis and colocalization analysis (coloc) were used to confirm the
reliability of the causal relationship. Finally, a protein-protein interaction (PPI)
network was constructed using the STRING database, and potential targeted
drugs were mined from the DrugBank and DSigDB databases.

Results: A preliminary analysis identified 37 proteins with potential causal
relationships to DR (p < 0.05). After more rigorous pQTL screening and
multiple testing corrections, it was found that Noggin (NOG) protein has a
significant negative causal relationship with the risk of DR (p.adjust < 0.05),
meaning that higher NOG protein levels may reduce the risk of disease. All
sensitivity analyses supported the robustness of this result (no heterogeneity, no
pleiotropy), and SMR and colocalization analyses (PP.H4 > 0.8) further confirmed
this causal association. PPl network analysis revealed that NOG interacts with 10
proteins (such as BMP2, BMP4, etc.). Drug mining identified DB01373 as a
corresponding drug for BMP4, and through DSigDB analysis, progesterone and
estradiol were found to be potential therapeutic compounds targeting the
NOG network.

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fendo.2025.1632691/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1632691/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1632691/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1632691/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1632691&domain=pdf&date_stamp=2025-10-09
mailto:lgdeye@126.com
https://doi.org/10.3389/fendo.2025.1632691
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1632691
https://www.frontiersin.org/journals/endocrinology

Liu et al.

10.3389/fendo.2025.1632691

Conclusions: Through comprehensive genetic analysis, this study identified the
NOG protein as a novel potential protective drug target for DR. Its function may
be achieved by regulating the BMP signaling pathway. The research findings not
only provide a new perspective for understanding the pathogenesis of this
disease but also recommend existing drugs such as progesterone and estradiol
as potential therapies, which are worthy of further functional experiments and
clinical studies for verification.

diabetic retinopathy, drug target, Mendelian randomization, latest updated articles,

network analysis

1 Introduction

Diabetic retinopathy (DR), a microvascular complication of
diabetes affecting approximately one-third of diabetic patients, is a
leading cause of blindness (1). The Inlternational Diabetes Federation
estimated that by 2030, nearly 191 million individuals will suffer from
some degree of DR, with many at risk for loss of vision. In the early
stages of DR, hyperglycemia may lead to oxidative stress,
neurodegenerative diseases, alterations of the retinal blood vessel
wall, and blood rheology, leading to retinal ischemia and hypoxia,
retinal vascular leakage, and neovascularization. In the terminal stage
of diabetic retina, severe ischemia and hypoxia may cause
neovascularization, vitreous hemorrhage, and even retinal
detachment (2).At present, the gold standard for the examination of
DR remains fundus angiography, but ultra-wide-angle fundus
photography and artificial intelligence analysis are gradually being
applied (3). Martinez-Garcia I et al. previously published an article
indicating that non-invasive skin autofluorescence (SAF) could
potentially serve as an accessible, rapid, and straightforward
alternative for the screening and early diagnosis of diabetic
retinopathy (DR). Nevertheless, this examination method has not
been clinically implemented to date. If this approach can be translated
into clinical practice in the future, it will alleviate the suffering
associated with invasive procedures for patients with diabetic
retinopathy, thereby bringing them significant benefits (4). Current
treatments, such as control of blood glucose, blood pressure,
cholesterol, and other indicators; laser photocoagulation; anti-VEGF
injections; and vitrectomy are limited by their invasiveness, potential
side effects, and variable patient response (5, 6). For instance, retinal
laser photocoagulation is an invasive treatment that does not lead to
improvement in the patient’s vision. Anti-VEGF therapy and
vitrectomy are associated with high costs and often necessitate
repeated treatments. These limitations underscore the urgent need
to identify novel therapeutic targets for safer and more
effective interventions.

Identification of novel drugs to treat DR is complicated by its
multifactorial pathophysiology; hyperglycemia-induced metabolic
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changes lead to retinal microvascular damage and inflammation.
Proteomic studies have revealed alterations in several proteins
associated with DR progression (7). Furthermore, genetic factors
contribute to individual susceptibility and disease severity.
Genome-wide association studies (GWAS) have identified
multiple loci associated with DR, but the causal relationships
between these genetic polymorphisms and the disease remain
largely unexplored (8).

Adding to the challenges in novel DR drug identification,
traditional statistical methods for inferring causality from
observational data are prone to confounding biases. Mendelian
randomization (MR), which involves using genetic variants as
instrumental variables for modifiable exposures, offers an
alternative approach that mitigates these biases owing to the
random assortment of alleles at conception (8, 9). In complex
diseases like DR, MR could provide robust evidence for causal
inference when randomized controlled trials are not feasible
or ethical.

In this study, we aimed to identify potential drug targets for DR
by employing a comprehensive bioinformatics approach. We
integrated druggable gene selection, protein quantitative trait
locus (pQTL) analysis, two-sample MR analysis, summary-data-
based MR (SMR), colocalization analyses, and drug target
validation through protein-protein interaction (PPI) networks
and pharmacological databases. On this basis, verification was
also conducted through external datasets, immune infiltration,
and laboratory experiments. By elucidating the causal relationship
between proteins implicated in DR and the disease itself, we sought
to identify novel therapeutic strategies that would lead to more
effective treatments.

2 Results
2.1 Technology roadmap

The analysis flow of this study is shown in Figure 1.

frontiersin.org


https://doi.org/10.3389/fendo.2025.1632691
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Liu et al.

zheng et al. cis-pQTL

511 druggable proteins

Diabetic retinopathy
(finn-b-DM_RETINOPATHY )

TwoSampleMR analysis

deCODE

1. Pvalue < 5e-08

2. F statistic > 10

3. Located outside the major histocompatibility
complex (MHC) region (chr6, 26-34MB)

4. cis pQTL (500KB)

5. Linkage disequilibrium clumping r2 < 0.001

6. Pvalue > 5e-08 with outcome

TwoSampleMR analysis
SMR
Colocalization
LDtrait

MR adjusted pvalue < 0.05
SMR pvalue < 0.05

PPI

Predict drug » Molecular Docking

FIGURE 1
Technology roadmap.

MR, Mendelian Randomization; SMR, the Summary - data -
-based Mendelian Randomization. PP, Protein-protein interaction;
pQTL, protein Quantitative Trait Locus.

2.2 MR analysis of pharmaceutically
available proteins

We first intersected the 734 proteins studied by Zheng et al. with
4479 proteins encoded by druggable genes to obtain 511 proteins
encoded by druggable genes. Then, we performed two-sample MR
analysis of the 511 proteins and DR by using two-sample MR. We
next performed initial screening using p.adjust < 0.05 for significant
causal filters. A total of 37 proteins are shown in Table 1 as a result
of the analysis of causal relationships between proteins and DR.

Owing to the presence of only one SNP in each of the 37
proteins, subsequent sensitivity analysis was not feasible. As a result,
we obtained pQTL files for the 37 proteins from the deCODE
database for further analysis. According to the cis-pQTL selection
criteria for this 37-filtered-proteins pQTL file, get 35 protein to cis -
PQTL (see Appendix Supplementary Table S3), and then of the 35
through two-sample MR protein and analyses using two-sample
MR with DR. For the secondary screening, we used the more strict
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inspection for with the Bonferroni correction, in which p.adjust <
0.05 was the significant causal filter condition, to determine whether
DR had any strong causal associated proteins. The findings
presented in Table 2 indicate a causal relationship between a
specific protein and DR, with noggin (NOG) protein showing a
negative correlation with the risk of developing the condition.
Finally, we created a scatter diagram showing the MR effect of
NOG protein and DR (Figure 2), showing that each model line on
the vertical intercept tends toward zero, and the slopes are all in the
same direction.

2.3 Sensitivity analysis of protein and DR

We conducted a heterogeneity analysis between NOG protein
and DR (Table 3). The findings indicated that there was no
significant heterogeneity in the MR results for NOG protein
related to DR (I = 0, Cochran Q p.adjust > 0.05). Subsequently,
we carried out pleiotropy assessments for NOG protein and DR
(Table 4). The results presented in the table demonstrate that the
p-adjust values for pleiotropy tests of all proteins exceeded 0.05, and
the intercepts were near zero. This suggests that horizontal
pleiotropy did not influence the causal inference.

Sensitivity analysis of the results with the use of one-by-one
exclusion tests did not show a significant change in the estimates of
the protein NOG effect, suggesting stability of the results (Appendix
Supplementary Table S4). Leave-one-out analysis was used to
remove each instrumental variable and examine the causal effect
of NOG protein on DR, and no significant deviation was found
from the lump effect of instrumental variables. To ensure that the
causal effect of protein on the pathogenesis of DR was in the correct
direction, we used Steiger directionality test for analysis. We found
that the p.adjust for NOG protein and DR was far less than 0.05,
indicating the correct direction (Table 5).

2.4 SMR analysis and colocalization
analysis

We aimed to gather further evidence through the analysis of the
SMR pleiotropic presence. Table 6 shows that the SMR analysis results
of NOG protein p_SMR < 0.05, indicating a causal relationship. Based
on the results of colocalization analysis (Table 7), we observed a
relationship between NOG and DR (PP.H4 > 0.8).

2.5 Drug targets

We extended the PPI analysis of druggable targets (such as
NOG) using the STRING database and constructed a network of 10
related proteins (BMP2, BMP4, BMP5, BMP6, BMP7, GDF5,
GDF6, GDF7, SHH, SHH, BMP2, BMP4, BMP5, BMP6, and
BMP?7) after retaining the targets that had connections with other
nodes. RSPO1) in the protein-protein interaction network
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TABLE 1 Mendelian randomization causal effect estimates of protein in the pathogenesis of diabetic retinopathy.
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exposure outcome nsnp o} se OR (95% CI) | P value method
ADAM?23 Diabetic retinopathy 1 0.080536913 0.030779912 0.92 (0.87, 0.98) 8.88 e-03 Wald ratio
CFH Diabetic retinopathy 1 0.21691678 0.03574352 0.80 (0.75, 0.86) 1.29 e-09 Wald ratio
PLA2G2A Diabetic retinopathy 1 0.029691328 0.014306712 0.97 (0.94, 1.00) 3.80 e-02 Wald ratio
LY9 Diabetic retinopathy 1 0.063503475 0.031152648 1.07 (1.00, 1.13) 4.15 e-02 Wald ratio
GSTA1 Diabetic retinopathy 1 0.08082752 0.031031994 1.08 (1.02, 1.15) 9.20 e-03 Wald ratio
WEFIKKN2 Diabetic retinopathy 1 0.044083882 0.020970458 1.05 (1.00, 1.09) 3.55 e-02 Wald ratio
COLI18A1 Diabetic retinopathy 1 0.215060241 0.081927711 1.24 (1.06, 1.46) 8.66 e-03 Wald ratio
GP1BA Diabetic retinopathy 1 0.138677233 0.064614447 1.15 (1.01, 1.30) 3.19 e-02 Wald ratio
CHLI1 Diabetic retinopathy 1 0.126801153 0.063400576 0.88 (0.78, 1.00) 4.55 e-02 Wald ratio
CRTAM Diabetic retinopathy 1 0.119915254 0.055508475 0.89 (0.80, 0.99) 3.07 e-02 Wald ratio
TGFB1 Diabetic retinopathy 1 0.114671815 0.054440154 1.12 (1.01, 1.25) 3.52 e-02 Wald ratio
HSPB1 Diabetic retinopathy 1 0.089166667 0.043333333 0.91 (0.84, 1.00) 3.96 e-02 Wald ratio
F13B Diabetic retinopathy 1 0.097074954 0.027787934 1.10 (1.04, 1.16) 4.77 e-04 Wald ratio
CTSH Diabetic retinopathy 1 0.043330427 0.016826504 1.04 (1.01, 1.08) 1.00 e-02 Wald ratio
COL6A1 Diabetic retinopathy 1 0.170524327 0.060935286 0.84 (0.75, 0.95) 5.13 e-03 Wald ratio
RNASE3 Diabetic retinopathy 1 0.181775701 0.076168224 1.20 (1.03, 1.39) 1.70 e-02 Wald ratio
CD59 Diabetic retinopathy 1 0.08480663 0.040331492 1.09 (1.01, 1.18) 3.55 e-02 Wald ratio
CPM Diabetic retinopathy 1 0.161377084 0.081764389 0.85 (0.72, 1.00) 4.84 e-02 Wald ratio
NQO1 Diabetic retinopathy 1 0.073086156 0.022005868 1.08 (1.03, 1.12) 8.96 e-04 Wald ratio
IL7R Diabetic retinopathy 1 0.073446328 0.030838041 1.08 (1.01, 1.14) 1.72 e-02 Wald ratio
PAM Diabetic retinopathy 1 0.093053173 0.028945111 0.91 (0.86, 0.96) 1.31 e-03 Wald ratio
FGFR3 Diabetic retinopathy 1 0.175706215 0.081920904 0.84 (0.71, 0.98) 3.20 e-02 Wald ratio
CST5 Diabetic retinopathy 1 0.052675585 0.023968785 1.05 (1.01, 1.10) 2.80 e-02 Wald ratio
DUT Diabetic retinopathy 1 0.166076696 0.078761062 0.85 (0.73, 0.99) 3.50 e-02 Wald ratio
PPT1 Diabetic retinopathy 1 0.046978309 0.022851177 1.05 (1.00, 1.10) 3.98 e-02 Wald ratio
CFHR1 Diabetic retinopathy 1 0.037606178 0.017142857 1.04 (1.00, 1.07) 2.83 e-02 Wald ratio
BST1 Diabetic retinopathy 1 0.034295124 0.013245507 0.97 (0.94, 0.99) 9.62 e-03 Wald ratio
NOG Diabetic retinopathy 1 0.174306735 0.049074299 0.84 (0.76, 0.92) 3.82 e-04 Wald ratio
LAMC2 Diabetic retinopathy 1 0.045166531 0.021933387 1.05 (1.00, 1.09) 3.95 e-02 Wald ratio
NID2 Diabetic retinopathy 1 0.064941654 0.032724505 1.07 (1.00, 1.14) 4.72 e-02 Wald ratio
CHRDL2 Diabetic retinopathy 1 0.150490731 0.049384639 0.86 (0.78, 0.95) 2.31 e-03 Wald ratio
NEGR1 Diabetic retinopathy 1 0.171621622 0.087162162 0.84 (0.71, 1.00) 4.90 e-02 Wald ratio
CLEC4C Diabetic retinopathy 1 0.032105263 0.015052632 0.97 (0.94, 1.00) 3.29 e-02 Wald ratio
CFHR4 Diabetic retinopathy 1 0.102442748 0.021526718 1.11 (1.06, 1.16) 1.95 e-06 Wald ratio
RTN4R Diabetic retinopathy 1 0.120354488 0.043453402 1.13 (1.04, 1.23) 5.61 e-03 Wald ratio
CPA4 Diabetic retinopathy 1 0.03139475 0.011408475 0.97 (0.95, 0.99) 5.93 e-03 Wald ratio
ENPP5 Diabetic retinopathy 1 0.040805981 0.018121911 1.04 (1.01, 1.08) 2.43 e-02 Wald ratio

SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
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TABLE 2 Mendelian randomization causal effect estimates of druggable proteins on the onset of DR from deCODE.

10.3389/fendo.2025.1632691

exposure outcome nsnp o} se OR (95% CIl) p.adjust method

CFH Diabetic retinopathy 1 0.036337 0.066134 1.04 (0.91, 1.18) 1 Wald ratio

RTN4R Diabetic retinopathy 4 0.107451 0.045161 1.11 (1.02, 1.22) 0.589775 Inverse variance weighted
CHRDL2 Diabetic retinopathy 4 0.08449 0.077789 0.92 (0.79, 1.07) 1 Inverse variance weighted
LAMC2 Diabetic retinopathy 1 0.036124 0.038645 1.04 (0.96, 1.12) 1 ‘Wald ratio

FGFR3 Diabetic retinopathy 2 0.19247 0.070028 0.82 (0.72, 0.95) 0.203554 Inverse variance weighted
CD59 Diabetic retinopathy 3 0.107684 0.089652 1.11 (0.93, 1.33) 1 Inverse variance weighted
NID2 Diabetic retinopathy 4 0.08841 0.035632 1.09 (1.02, 1.17) 0.445223 Inverse variance weighted
CTSH Diabetic retinopathy 5 0.04626 0.02296 1.05 (1.00, 1.10) 1 Inverse variance weighted
HSPB1 Diabetic retinopathy 3 0.07702 0.051606 1.08 (0.98, 1.20) 1 Inverse variance weighted
BST1 Diabetic retinopathy 9 0.01613 0.017309 0.98 (0.95, 1.02) 1 Inverse variance weighted
CRTAM Diabetic retinopathy 5 0.07001 0.073212 0.93 (0.81, 1.08) 1 Inverse variance weighted
ENPP5 Diabetic retinopathy 3 0.01044 0.071669 0.99 (0.86, 1.14) 1 Inverse variance weighted
ADAM23 Diabetic retinopathy 3 0.04646 0.038872 0.95 (0.88, 1.03) 1 Inverse variance weighted
LY9 Diabetic retinopathy 5 0.026926 0.027517 1.03 (0.97, 1.08) 1 Inverse variance weighted
CPA4 Diabetic retinopathy 4 0.0138 0.015279 0.99 (0.96, 1.02) 1 Inverse variance weighted
DUT Diabetic retinopathy 1 0.115906 0.223181 1.12 (0.73, 1.74) 1 Wald ratio

PPT1 Diabetic retinopathy 2 0.074389 0.130506 1.08 (0.83, 1.39) 1 Inverse variance weighted
CHLL1 Diabetic retinopathy 5 0.0815 0.05138 0.92 (0.83, 1.02) 1 Inverse variance weighted
CFHR4 Diabetic retinopathy 8 0.024325 0.023215 1.02 (0.98, 1.07) 1 Inverse variance weighted
CPM Diabetic retinopathy 2 0.23203 0.112093 0.79 (0.64, 0.99) 1 Inverse variance weighted
COL6A1 Diabetic retinopathy 8 0.00681 0.02485 0.99 (0.95, 1.04) 1 Inverse variance weighted
F13B Diabetic retinopathy 2 0.02774 0.159561 0.97 (0.71, 1.33) 1 Inverse variance weighted
PAM Diabetic retinopathy 2 0.04469 0.035197 0.96 (0.89, 1.02) 1 Inverse variance weighted
RNASE3 Diabetic retinopathy 5 0.057573 0.042397 1.06 (0.97, 1.15) 1 Inverse variance weighted
CST5 Diabetic retinopathy 2 0.050544 0.031303 1.05 (0.99, 1.12) 1 Inverse variance weighted
NEGRI1 Diabetic retinopathy 1 0.26061 0.259151 0.77 (0.46, 1.28) 1 Wald ratio

WFIKKN2 Diabetic retinopathy 5 0.040372 0.031884 1.04 (0.98, 1.11) 1 Inverse variance weighted
NQO1 Diabetic retinopathy 3 0.059827 0.023121 1.06 (1.01, 1.11) 0.328598 Inverse variance weighted
COLI18A1 Diabetic retinopathy 2 0.118148 0.101691 1.13 (0.92, 1.37) 1 Inverse variance weighted
NOG Diabetic retinopathy 3 0.15746 0.045523 0.85 (0.78, 0.93) 0.018434 Inverse variance weighted
GP1BA Diabetic retinopathy 3 0.116146 0.08927 1.12 (0.94, 1.34) 1 Inverse variance weighted
PLA2G2A Diabetic retinopathy 3 0.03449 0.022879 0.97 (0.92, 1.01) 1 Inverse variance weighted
GSTA1 Diabetic retinopathy 5 0.092417 0.039726 1.10 (1.01, 1.19) 0.679957 Inverse variance weighted
CFHR1 Diabetic retinopathy 4 0.032898 0.036886 1.03 (0.96, 1.11) 1 Inverse variance weighted

SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.

(Figure 3) We used 11 target proteins to analyze the potential drugs
of target proteins by using the DURGBANK database. Table 8
shows that BMP4 encoded proteins corresponding to DB01373
drugs, NOG, BMP2, BMP5, BMP6, BMP7, GDF5, GDF6, GDF7,

SHH, DB01373 drugs, NOG, BMP2, BMP5, BMP6, BMP7, GDF5,
GDF6, GDF7, SHH, there is no corresponding drug for RSPO1
encoded protein, which could be further explored. We then used
DSigDB on the Enrichr platform to screen results, with p.adjust
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TABLE 3 Heterogeneity test of Mendelian randomization analysis of proteins on diabetic retinopathy.

outcome

exposure

NOG Diabetic retinopathy 1.353852724

2 0.508176545 0

Q, Cochran Q test statistic; Q_df, Q test degree of freedom; Q_pval, Q test P values; I statistics reflect the heterogeneity of instrumental variable part of the proportion of the total variance in>0
or less, I set it to 0, showed no observed heterogeneity; I* = 0 - 25%, suggesting mild heterogeneity; I* = 25%-50%, indicating moderate heterogeneity; I>>50% indicated high heterogeneity. The

specific calculation formula is* 1=(q-df)/Qx100%.

<0.05 (Table 9), and we identified 00006624 estradiol and
progesterone CTD CTD 00005920 NOG as potential drugs.

2.6 Validation of the expression
discrepancies of key genes in the normal
group and diseases group

To investigate the expression variations of key genes (Key
Genes) in the GEO dataset GSE60436 (Figure 4), the differential
analysis results of the expression levels of the 10 key genes (Key
Genes) in the DR group and the normal (Normal) group in the
GEO dataset GSE60436 were presented via group comparison
graphs and ROC curves. The differential results revealed that the
expression quantities of the 10 key genes (Key Genes) in the DR
group and the Normal group of the GEO dataset GSE60436 were
dissimilar. In the GEO dataset GSE60436, the expressions of the key
genes (Key Genes) NOG, BMP4, BMP5, BMP7, and RSPO1
exhibited significant differences (pvalue < 0.05).

Ultimately, the ROC curves were plotted based on the
expression levels of the key genes (Key Genes) in the DR group
using the R package pROC. In the GEO dataset GSE60436
(Figures 1B-D), the ROC curves demonstrated that the expression
levels of the key genes (Key Genes) NOG, BMP4, BMP5, BMP7, and
RSPOLI in the DR group presented high accuracy (AUC > 0.9) in
discriminating between different groups; the expression level of the
key gene (Key Genes) BMP2 in the DR group presented certain
accuracy (0.7 < AUC < 0.9) in discriminating between different
groups; and the expression levels of the key genes (Key Genes)
BMP6, GDF5, GDF6, and GDF7 in the DR group presented low
accuracy (0.5 < AUC < 0.7) in discriminating between
different groups.

2.7 Immune infiltration analysis

The expression matrix of the GEO dataset GSE60436 was
employed to calculate the immune infiltration abundance of 28
types of immune cells via the ssGSEA algorithm. Firstly, the
expression discrepancies of the immune cell infiltration abundance
among different groups were displayed through a group comparison
chart (Figure 5A). The results demonstrated that the infiltration
abundances of six immune cells, including Activated CD4+ T cell,
Activated CD8+ T cell, CD56bright natural killer cell, Effector
memory CD8 +T cell, Natural killer T cell, and Regulatory T cell
exhibited statistically significant differences between the DR group
and the normal (Normal) group (p value < 0.05). Subsequently, the
correlation outcomes of the infiltration abundance of 28 immune
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cells in the GEO dataset GSE60436 were presented via a correlation
heatmap (Figure 5B). The results revealed that the majority of
immune cells were positively correlated. Then, the correlations
between 10 key genes and 28 immune cells were analyzed and
presented through a correlation heatmap (Figure 5C). The results
indicated that there was the strongest positive correlation between
the key gene GDF6 and the immune cell Activated B cell (r value =
0.82, p value < 0.05), and between the key gene BMP5 and the
immune cell Type 17 T helper cell (r value = 0.82, p value < 0.05); the
strongest negative correlation was observed between the key gene
GDF7 and the immune cell CD56dim natural killer cell (r value =
-0.94, p value < 0.01), between the key gene BMP7 and the immune
cell CD56dim natural killer cell (r value = -0.94, p value < 0.01),
between the key gene BMP4 and the immune cell CD56dim natural
killer cell (r value = -0.94, p value < 0.01), between the key gene NOG
and the immune cell Central memory CD8 T cell (r value = -0.94,
p value < 0.01), and between the key gene GDF7 and the immune
cell Gamma delta T cell (r value = -0.94, p value < 0.01).

2.8 Laboratory verification

We extracted blood from six patients with DR and six healthy
individuals. RNA was isolated from the blood and reverse
transcribed into cDNA, which was subsequently amplified using a
PCR apparatus. The obtained results were subjected to statistical
analysis via SPSS 18.0 (SPSS, Chicago, IL), revealing that the
expression of NOG protein in the blood of patients with DR was
significantly decreased compared to the normal group and the
expression levels of BMP2, BMP4, BMP6, GDF5, and GDF 6
were significantly elevated (Figure 6).

2.9 Molecular docking

Molecular docking of the Noggin protein encoded by the NOG
gene and the BMP pathway inhibitor LDN-193189 was performed
using CB-Dock2. The docking results between the Noggin protein
and its corresponding active component are presented in Figure 4.
The interaction analysis revealed a strong binding affinity between
Noggin and LDN-193189, with a Vina Score of -9.4 Kcal/mol.
Specifically, amino acids SER113, GLY114, ALA115, MET116,
PRO117, SER118, GLU119, ILE120, LEU123, LEU149, TRP150,
THR153, PHE154, CYS155, VAL157, TYR159, CYS184, SER185,
VALI186, PRO187, MET190, SER195, LYS196, SER226, GLU227,
CYS228, LYS229, and CYS230 participate in the molecular
interactions through hydrogen bonds, ionic bonds, and
hydrophobic interactions (Figure 7).
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Scatter plots of effect estimates for different models of MR analysis
of proteins for DR. MR, Mendelian randomization; DR, Diabetic
retinopathy. Scatter plot of different Mendelian randomization
model effect estimates of NOG on diabetic retinopathy.

3 Discussion

DR is a serious complication of diabetes that profoundly
impacts patients’ quality of life and imposes a substantial social
and economic burden. To address the limitations of current
treatment options, we aimed to identify new drug targets for DR.
The strength of our study lies in the utilization of two-sample MR
analysis, which enables a more precise evaluation of the causal
relationship between proteins and the disease. On the basis of the
aforementioned work, we incorporated external dataset validation,
immune infiltration analysis, and laboratory experiments to verify
the correlation between the NOG protein and DR.

In this study, we leveraged a multi-faceted bioinformatics
approach. Key findings include the selection of genes with
therapeutic potential from a pool of 4479 druggable genes, the
identification of proteins related to DR through pQTL data analysis,
and the determination of causal relationships between several proteins
and the disease using two-sample Mendelian randomization (Tables 1,
2). We conducted a sensitivity analysis to establish the causal

10.3389/fendo.2025.1632691

relationship between the proteins and DR (Tables 3-5). Further
validation was provided by performing SMR and colocalization
analyses (Tables 6, 7). The construction of a PPI network and
subsequent drug target analysis using DRUGBANK and DSigDB
databases have highlighted potential targets for future treatment
strategies (Tables 8, 9). These systematic explorations offer a
scientific basis for developing new therapeutic approaches for DR.
Our results indicate a robust inverse association between NOG protein
and DR, and we rigorously validated these results through diverse
sensitivity analyses.

Our study’s identification of NOG protein as a negative
regulator of DR is supported by previous research indicating its
involvement in angiogenesis and fibrosis, processes central to DR
pathology. Several researchers have reported that NOG protein
represents a potential protective factor against diabetes
complications, including retinopathy (10, 11), which aligns with
our findings (b=-0.15746, OR = 0.85, p.adjust=0.018434). These
studies, which used animal models and patient-derived samples,
reported that modulation of NOG expression influences vascular
and fibrotic pathways (12, 13). Our team, through the validation of
external datasets, immune infiltration analysis and experiments, has
demonstrated a negative correlation between the NOG protein and
DR. Conversely, some earlier studies reported no association
between NOG protein levels and diabetic complications (14),
which might be attributed to differences in study design, sample
size, or population genetics.

The NOG protein is a dimeric glycoprotein that is secreted and
encoded by the NOG gene, with a molecular weight of 64 kDa. The
NOG protein is recognized for its role in regulating BMPs (15).
Darwish et al. demonstrated an upregulation of BMP4 expression in
diabetic human patients as well as mice, which was found to impair
the function of the human retinal endothelial barrier. Furthermore,
NOG acts as an inhibitor of BMP/ALK signal transduction to
mitigate the detrimental effects of BMP4 (12). Using Akita mice
as a model, Humble J et al. conducted immunofluorescence analysis
of BMP4 and lectins in the eyes of humans and mice with and
without diabetes. The expression of BMP4 was found to be three
times higher in samples from patients with diabetes, and NOG
attenuated the effects of BMP4 on retinal endothelial cells (16). The
upregulation of BMP2 has been demonstrated in the retinas of
experimental diabetic animal models and human patients with
diabetes. It has also been shown that BMP2 is inhibited by NOG.
The inhibition of BMP2 signaling has been found to preserve retinal

TABLE 4 Mendelian randomization analysis level pleiotropy test of proteins for diabetic retinopathy.

exposure outcome

NOG ‘ Diabetic retinopathy 0.063481801

egger_intercept se

pval

0.054578184 0.452079369

TABLE 5 Protein Mendelian randomization analysis of diabetic retinopathy: Steiger directional inspection.

outcome

exposure snp_r2.exposure

NOG Diabetic retinopathy 0.029828269

snp_r2.outcome correct_causal_direction

6.14 e-05

steiger_pval

TRUE 1.42 e-185
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TABLE 6 Results of SMR analysis of proteins for diabetic retinopathy.

Gene exposure outcome

ENSG00000183691.4 | NOG Diabetic retinopathy

SMR, Summary-data-based Mendelian Randomization. SNP, single nucleotide polymorphism.

endothelial cell barrier function in individuals with hyperglycemia
(17). The literature collectively suggests that NOG, as a BMP
inhibitor, effectively preserves the functional integrity of retinal
endothelial barrier and reduces the occurrence of DR. This
indirectly aligns with our experimental findings. Nevertheless, no
direct studies have reported the association between NOG and DR
prior to our investigation.

In conclusion, BMP is increasingly acknowledged as a
multifunctional regulator of angiogenesis, tissue homeostasis, and
tumorigenesis. The activation of BMP signal transduction activity
occurs in various disease contexts. There are four BMP-1 receptors:
Alk1/Acvrll, Alk2/Acvrl, Alk3/Bmprla, and Alk6/Bmprlb. BMP9/
10, which exhibits anti-angiogenic eftects, demonstrates a higher
affinity for ALK1. The absence of ALKI results in vigorous
angiogenesis, indicating that ALKI regulates the vascular
inhibitory effect of BMP9/10 in endothelial cells. Furthermore,
ALK2, ALK3, and ALK6 bind to BMP2, BMP4, and BMP6,
respectively, to regulate angiogenic signaling. Additionally, NOG
protein serves as an inhibitory regulator of BMP and could
effectively inhibit the occurrence of DR. It could also serve as an
early diagnostic criterion for DR.

Our MR analysis has provided robust evidence for the
involvement of NOG protein in DR, suggesting a protective effect
against this complication of diabetes. Consistent estimates across
multiple models and a lack of significant bias in both heterogeneity
and pleiotropy tests reinforce the credibility of this inverse causal
relationship. The observed odds ratio of 0.85, with a 95% confidence
interval from 0.78 to 0.93 and an adjusted p-value of 0.018434,
suggests that elevated levels of NOG protein are linked to a lower
risk of developing DR. Mendelian randomization employs genetic
variants as instrumental variables to investigate whether risk factors
have a causal effect on health outcomes. However, the identified
causal relationship could potentially be influenced by reverse
causality, horizontal pleiotropy, or genetic confounding due to
linkage disequilibrium (LD). To address these concerns,
bidirectional MR was performed. The proteins initially identified
through MR analysis did not show evidence of reverse causality, a
conclusion reinforced by Steiger filtering. This approach ensures
that the observed associations are less likely to be confounded by
reverse causation or other biases, thereby strengthening the validity
of the causal inference.

Further substantiating our findings, summary data-based
Mendelian randomization (SMR) analysis yielded a significant p-
value (p_SMR = 3.62 e-04), reinforcing the notion that NOG

topSNP

rs76164057

10.3389/fendo.2025.1632691

b_SMR se_SMR p_SMR

0.173837 0.0487455 3.62 e-04

expression exerts a causal influence on the pathogenesis of DR.
This is particularly noteworthy as it aligns with previous biological
insights into the role of NOG in tissue development and repair
processes, which could be pertinent to the vascular and neural
components affected in DR.

Colocalization analysis added another layer of support by
demonstrating shared genetic etiology between NOG expression
and DR (PP.H4.abf = 0.890). This high posterior probability
suggests that variants influencing NOG expression are likely to be
the same variants associated with disease risk, providing further
credence to our hypothesis.

The construction of a PPI network using the STRING database
identified several proteins related to bone morphogenetic proteins
(BMPs), including BMP2, BMP4, BMP5, BMP6, BMP7; growth
differentiation factors (GDFs) like GDF5, GDF6, GDF7; SHH; and
RSPOL. These proteins are interconnected and have known roles in
angiogenesis and tissue remodeling, processes which are critical in
the pathophysiology of DR. In addition, BMPs enhance
angiogenesis by promoting endothelial cell migration, invasion,
and proliferation. The interaction between BMP-SMAD and
Notch signaling pathways plays a critical role in determining
endothelial cell stemness during retinal angiogenesis in both
embryonic and postnatal development. Furthermore, in vitro and
in vivo studies have shown that BMP2 and BMP4 exert pro-
angiogenic effects via the VEGF-A/VEGFR2 and angiopoietin-1/
TIE2 signaling pathways. BMP signal transduction also plays a vital
role in regulating both physiological and pathological processes in
endothelial cells. It has been implicated in various conditions
characterized by vascular hyperpermeability, such as acute
inflammation and atherosclerosis.Tumor necrosis factor (TNF)-o
induces BMP2 expression in human umbilical vein endothelial cells
(HUVECs) and chondrocytes through the NFxB pathway,
indicating that BMP2 may have pro-inflammatory properties.
Elevated BMP2 expression is commonly observed in monocytes
from individuals with type 2 diabetes. Moreover, high glucose
exposure promotes human macrophages to adopt an Ml
inflammatory phenotype. Consequently, increased BMP2 levels in
individuals with type 2 diabetes may contribute to heightened
inflammatory responses.These findings highlight the multifaceted
role of BMPs in both angiogenesis and inflammation, underscoring
their significance in various pathological conditions. Our research
leverages comprehensive datasets from the deCODE and MRC IEU
OpenGWAS databases to enhance the reliability of our findings.
Our multifaceted approach combining pQTL data set analysis with

TABLE 7 Results of colocalization analysis of protein and diabetic retinopathy.

exposure outcome PP.HO.abf

NOG Diabetic retinopathy = 4.9022 e-260
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PP.H1.abf

0.08559018

PP.H2.abf PP.H3.abf PP.H4.abf

1.437 e-260 0.024 0.890
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FIGURE 3

PPI network analysis. PPl network, Protein - Protein interaction
network. In the figure, nodes represent proteins, and the color of
the line from blue to red indicates the degree of correlation
between nodes from small to large.

GWAS data provides an integrated view of the genetic landscape
influencing DR. The use of advanced bioinformatics tools such as
the Two Sample MR package for Mendelian randomization analysis
further substantiates the credibility of our results.

After identifying the above-mentioned proteins, we conducted a
drug/compound - gene association analysis and determined that
progesterone CTD 00006624 and estradiol CTD 00005920 are
potential drugs for NOG. In our clinical work, we often find that
DR in men usually occurs earlier, is more severe, and has a worse
prognosis than in women. We consider this might be related to the
levels of estradiol and progesterone. Chen Ying et al. conducted
research on female and male mice and found that diabetes inflicts
less neurovascular damage in females. They also performed

TABLE 8 Drug information of patent drug-related targets in DRUGBAN.

10.3389/fendo.2025.1632691

experiments on human females and observed that the prevalence
of DR in premenopausal women is significantly reduced. This study
strongly emphasizes the importance of estradiol in protecting the
retina (18). Regarding this aspect, our team will further conduct
clinical research.

In order to gain deeper insights into the relationship between
NOG protein and DR, our research group isolated RNA from blood
samples obtained from patients with confirmed diagnoses of DR.
Following this, we carried out reverse transcription and subsequently
performed quantitative PCR analysis on the extracted RNA. The
results indicated a significant reduction in the expression of NOG
protein among patients with DR, while the expression levels of BMP2,
BMP4, BMP6, GDF5, and GDF6 were notably elevated. Although the
sample size was limited, our observations aligned well with those
derived from earlier bioinformatics studies, thereby strengthening the
link between NOG protein and the development of DR. Additionally,
our findings validated previously reported experimental data,
establishing a negative correlation between NOG protein expression
and the expression levels of BMP2, BMP4, BMP6, GDF5, and GDFé.
Collectively, these outcomes provide support for the notion that NOG
protein could act as a protective factor in the context of DR. Of course,
we cannot directly determine the regulation of NOG on the retina by
collecting NOG mRNA from blood. However, blood sampling is a
relatively acceptable method for patients. Next, we may collect
vitreous humor for further experiments to increase the credibility of
the experiment.

To obtain more potential drugs that may act on the NOG
protein, we conducted molecular docking of the NOG protein with
BMP inhibitors and found that LDN-193189 has a strong binding
force with the NOG protein. This indicates that the NOG protein
and LDN-193189 have strong structural complementarity. Their
strong binding may alter the function and role of the NOG protein,
which might provide some new ideas for the treatment of DR.

Despite the promising results obtained, this study has several
limitations that should be acknowledged. First, the laboratory
experiments conducted had a limited number of samples, which

uniprot drugbank ID durg group Pharmacological action actions
BMP2 P12643 NA NA NA NA NA
BMP4 P12644 DB01373 Calcium nutraceutical unknown NA
BMP5 P22003 NA NA NA NA NA
BMP6 P22004 NA NA NA NA NA
BMP7 P18075 NA NA NA NA NA
GDF5 P43026 NA NA NA NA NA
GDFe6 Q6KF10 NA NA NA NA NA
GDF7 Q77ZA4P5 NA NA NA NA NA
NOG Q13253 NA NA NA NA NA
SHH Q15465 NA NA NA NA NA
RSPO1 Q2MKA7 NA NA NA NA NA
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TABLE 9 Predicted drug candidates/compounds using DSigDB.

Adjusted.P.value Old.P.value Old.Adjusted.P.value Odds.Ratio Combined.Score

Octreotide CTD 00007059 436610 | 85508 0 0 600.6015 12944.95 BMP4; BMP2; BMP7; BMP6
TITANIUM BOSS 18907 | 1.85e05 0 0 118.4107 1833.191 BMP4; BMP2; BMP7; BMP6
Nandrolone phenpropionate BOSS 3.81 e-07 2.49 e-05 0 0 98.7528 1459.7 BMP4; BMP2; BMP7; BMP6
Electrocorundum CTD 00005364 438¢06 | 0000214 0 0 128.8642 1590.068 BMP4; BMP2; BMP6
triclosan CTD 00006933 63606 | 0.000249 0 0 113.1989 1354532 BMP2; GDF5; BMP6
Heparitin BOSS 14205 | 0.000463 0 0 85.78448 957.7644 BMP4; BMP2; BMP7
:('](020'3)'2;"OEthyDbenze"es“lfony] fluoride CTD 1 14 e05 | 0.000599 0 0 403.596 4339.904 BMP2; SHH

Deacetylchitin BOSS 56605 | 0.001387 0 0 53.16696 519.9225 BMP2; BMP7; BMP6
gﬁgggis;’:myl'z’3'dimercaptosu“inate 1D 0000162 | 0.003175 0 0 1343838 1172.878 BMP2; BMP5

Stannic fluoride BOSS 0000162 | 0.003175 0 0 1343838 1172.878 BMP2; BMP7

Arsenenous acid CTD 00000922 0000359  0.006401 0 0 12.2007 96.76978 BMP4; BMP2; SHH; BMP6; BMP5
Chromium(III) oxide CTD 00001091 0.000511 | 0.008342 0 0 7381111 559.4599 BMP4; BMP2

Calcium phosphate BOSS 0.000561 | 0.008348 0 0 7028571 526.1064 BMP2; BMP7
Chromium(IT) chloride CTD 00000877 0.000596 | 0.008348 0 0 68.11624 505.7478 BMP4; BMP2

ellipticine PC3 UP 000087 | 001137 0 0 56.00563 394.663 BMP4; BMP2

Lead(II) acetate CTD 00000394 0.000935 | 0.011458 0 0 53.94851 3762673 BMP4; BMP2
dexamethasone CTD 00005779 0001347 | 0015535 0 0 17.55772 116.0492 BMP4; BMP2; BMP6
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Differential expression validation of key genes in GSE60436 in DR and normal group. (A) The group comparison graph of key genes (Key Genes) in
the diabetic retinopathy (DR) group and the normal (Normal) group in GSE60436. B-D. The ROC curves of key genes (Key Genes) NOG, BMP2,
BMP4 and BMP5 (B), BMP6, BMP7, GDF5 and GDF6 (C), GDF7 and RSPOL1 (D) in the DR group. DR, diabetic retinopathy; ROC, Receiver Operating
Characteristic; AUC, Area Under the Curve; TPR, True Positive Rate; FPR, False Positive Rate. * Denotes p value < 0.05, which is statistically
significant; ns denotes p value > 0.05, which is not statistically significant. In the group comparison graph, blue represents the normal (Normal)
group and red represents the DR group. When the AUC exceeds 0.5, it suggests that the molecule’s expression is associated with a trend that
promotes the event's occurrence. As the AUC approaches 1, the diagnostic performance improves. An AUC in the range of 0.5 to 0.7 indicates
limited accuracy, while an AUC between 0.7 and 0.9 suggests moderate accuracy. An AUC greater than 0.9 signifies high accuracy.

scale integration of the plasma proteome with genetics and diseases
(20), specifically using the deCODE 4674 protein database. These data
served as the primary pQTL resource to identify potential drug targets
for DR.The selection criteria for cis-pQTL variants were as follows:
adjusted p-value < 5e-08; exclusion of SNPs within the major
histocompatibility complex (MHC) region; and identification of
SNPs located within 500KB upstream or downstream of the gene,
while removing those with linkage disequilibrium r* < 0.001. The
selected datasets were derived from individuals of European
ancestry.This approach allowed us to systematically evaluate genetic
associations with protein expression, thereby enhancing our ability to
pinpoint promising drug targets for DR.

4.3 Outcome dataset
We obtained the GWAS ID of DR (finn-b-DM_RETINOPATHY)

from the MRC IEU OpenGWAS (21) database, and standardized
association summary statistics were obtained from the R-packet

Frontiers in Endocrinology

12

TwoSampleMR (7) for use as outcomes. A total of 14584 DR
experimental samples and 20-082 control samples were included.

4.4 Two-sample MR

We performed a two-sampleMR analysis using the
TwoSampleMR package, with the pharmaceutically available
protein studied by Zheng et al (20) as the exposure factor and DR
as the outcome. We used Wald thewire method evaluation contains
only one SNP exposed Mendelian randomization results, using
inverse variance weighted (IVW) method to evaluate the samples
containing two or more exposed MR results of SNP. We used
TwoSampleMR heterogeneity inspection, pleiotropic test, and a
method of analysis, and then used the inspection for a Steiger
directionality test to judge the correctness of the causal direction.

After selecting the proteins with significant causal relationships
with DR, the pQTL data of the corresponding proteins were
downloaded from the deCODE database as the exposure factors
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FIGURE 5

Immune infiltration analysis by ssGSEA algorithm. (A) Group comparison chart of immune cells in the DR group and the normal (Normal) group in the
GEO dataset GSE60436. (B) Correlation heatmap of immune cell infiltration abundance in the GEO dataset GSE60436. (C) Correlation heatmap of
key genes (Key Genes) with immune cell infiltration abundance in the GEO dataset GSE60436. ssGSEA, single-sample Gene-Set Enrichment Analysis;
DR, diabetic retinopathy. ns indicates p value > 0.05, no statistical significance; * indicates p value < 0.05, statistically significant; ** indicates p value
< 0.01, highly statistically significant; *** indicates p value < 0.001, extremely statistically significant. A correlation coefficient (r value) absolute value
below 0.3 is considered weak or not correlated, between 0.3 and 0.5 is weakly correlated, between 0.5 and 0.8 is moderately correlated, and above
0.8 is strongly correlated. In the group comparison chart, blue represents the normal (Normal) group and red represents the DR group. Red indicates
positive correlation and blue indicates negative correlation. The depth of color represents the strength of the correlation.

and DR as the outcome, and then two-sample MR analysis was
performed. Using the same method, we used the Wald thewire
method evaluation contains only one SNP exposed Mendelian
randomization results, using the IVW method to evaluate contain
two or more exposed Mendelian randomization result of SNP. We
used TwoSampleMR heterogeneity inspection, pleiotropic test and a
method of analysis, and then used the inspection for directional
steiger, direction, judged the correctness of the causal direction.

4.5 Analysis of SMR

In prior studies, SMR (22) leverages GWAS summary data and
expression QTL studies to evaluate pleiotropic associations between
baseline protein expression levels and complex traits of interest. The
HEIDI (Heterogeneity in Dependent Instruments) test is employed
to assess potential horizontal pleiotropy by examining whether
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there is heterogeneity in the instrumental variable signals. For our
analysis, we downloaded the Linux version (1.3.1) of SMR from the
official website (https://yanglab.westlake.edu.cn/software/smr) and
performed the SMR analysis using default parameters.This
approach allows for a robust evaluation of genetic associations
between protein expression and complex traits while accounting for
potential pleiotropic effects.

4.6 Positioning analysis

We utilized the coloc package for conducting colocalization
analysis. This package employs a Bayesian approach to evaluate
support for five mutually exclusive hypotheses: first, SNP is
uncorrelated with traitl and trait2; second, a relationship exists
between SNP and traitl; third, SNP is associated with trait2; fourth,
SNP is related to both traitl and trait2 as independent SNPs; fifth,
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FIGURE 6
The discrepancy of NOG, BMP4, BMP2, GDF5, BMP6, GDF6 expression in the blood between patients with diabetic retinopathy and normal
individuals(*p<0.05).

common SNPs are linked to both traitl and trait2. The posterior ~ probability, which is chosen for each protein, we retrieved its
probabilities for each hypothesis test are denoted as HO, H1, H2,  topSNP upstream and downstream all SNPs within 500 KB for
H3, and H4, respectively. Each tests the a posteriori probability of ~ positioning analysis, and we found that the PH4 > 0.8 for GWAS
HO, H1, H2, H3, and H4. To estimate the shared variable posterior ~ and pQTL provided evidence of positioning.

FIGURE 7

Molecular docking of noggin and LDN-193189. The visualization of the docking results of Noggin protein and LDN-193189, from left to right, are the
global docking map and the interaction force map. The color of the protein surface gradually changes from green, orange to red, indicating the
change of amino acid properties from hydrophilic to hydrophobic. Blue dotted line — hydrogen bond, light blue dotted line — weak hydrogen bond,
gray dotted line — hydrophobic interaction force, cyan dotted line — halogen bond, yellow dotted line — ionic bond.
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4.7 Drug targets

A protein-protein interaction (PPI) network comprises
individual proteins that interact with one another. The STRING
database (23) provides a platform for exploring both known and
predicted protein interactions. In this study, we utilized the
STRING database to construct a PPI network specific to human
proteins. We identified proteins that interacted with druggable
targets, using a minimum correlation coefficient of greater than
0.900 as the threshold. To build and visualize this network, we
employed the R packages ‘igraph" and ‘ggraph".This methodology
allowed us to systematically identify and map high-confidence
interactions between proteins and druggable targets. By
visualizing these interactions, we aimed to gain deeper insights
into the functional relationships within the network, facilitating a
more comprehensive understanding of potential therapeutic targets.

After that, we searched DRUGBANK (24) and obtained the
drugs corresponding to all the proteins contained in PPI and their
modes of action. The selected drugs can be used for the later
treatment of DR. Characteristics of drug database (DSigDB) is an
Enrichr platform (https://maayanlab.cloud/Enrichr/) in the
database; it is mainly used for the correlation analysis of drugs
and compound with gene expression (25). Understanding the
effects of drugs on the expression of specific genes is promising
for determining the potential therapeutic effects of existing drugs
and compounds in new disease areas, thereby facilitating the
discovery and application of new drugs. All the proteins included
in PPI were input into DSigDB of the Enrichr platform, and their
associations with different drugs and compounds was analyzed.

4.8 Statistical methods

All data processing and statistical analyses in this study were
performed in the R software environment (version 4.2.2; https://
www.r-project.org/). The main analytical methods included two-
sample Mendelian randomization (MR), summary-data-based
Mendelian randomization (SMR), colocalization analysis (coloc),
and protein-protein interaction (PPI) network construction and
enrichment analysis. Specifically, in the MR analysis, we used the
Wald ratio method (for single instrumental variable) and the
inverse variance weighted (IVW) method (for multiple
instrumental variables) to estimate the causal relationship
between exposure (protein) and outcome (disease). Heterogeneity
among instrumental variables was assessed using Cochran’s Q test,
while horizontal pleiotropy was evaluated using MR-Egger
regression. Sensitivity analysis was conducted via leave-one-out
validation. The Steiger test was applied to verify the direction of
causality. SMR analysis incorporated the HEIDI test to exclude
potential pleiotropic effects and further validate the association
between protein and disease. Colocalization analysis was performed
using the coloc package with a Bayesian framework to determine
whether pQTL and GWAS signals shared the same causal variant
(26). The PPI network was constructed using the STRING database
with an interaction confidence threshold of > 0.900, and visualized
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using the igraph and ggraph packages. Drug-gene association
analysis was performed using the DSigDB database, with a
significance threshold of adjusted p-value (FDR) < 0.05. Unless
otherwise stated, the statistical significance level was set at P < 0.05,
and multiple testing correction was performed using the
Bonferroni method.

4.9 The verification of the expression
differences of key genes in the normal
group and diseases

To further verify the expression differences of key genes in the
DR group and the normal group in the GEO dataset GSE60436,
group comparison plots were drawn based on the expression levels
of key genes. Finally, the R package pROC (27) (Version 1.18.5) was
used to draw the ROC curves of key genes and calculate the area
under the curve (AUC) values to evaluate the diagnostic efficacy of
the expression levels of key genes for the occurrence of DR. The
AUC of the ROC curve is generally between 0.5 and 1. The closer
the AUC is to 1, the better the diagnostic effect. When the AUC is
between 0.5 and 0.7, the accuracy is low; when it is between 0.7 and
0.9, the accuracy is moderate; and when it is above 0.9, the accuracy
is high.

4.10 Immune infiltration analysis

Single-Sample Gene Set Enrichment Analysis (ssGSEA) (28) is a
method used to quantify the relative abundance of immune cell
infiltration in individual samples. In this study, we first identified
and labeled various human immune cell subtypes, including
activated CD8 T cells, activated dendritic cells, ¥ T cells, natural
killer cells, regulatory T cells, and others. Using ssGSEA, we
calculated enrichment scores to represent the relative abundance
of each immune cell type in each sample, generating an immune cell
infiltration matrix.Next, we utilized the R package ‘ggplot2®
(version 3.4.4) to create comparison plots that highlighted the
differences in immune cell expression between the DR group and
the normal control group within the GEO dataset GSE60436.
Immune cells showing significant differences between these two
groups were selected for further analysis.To explore the
relationships among immune cells, we computed their
correlations using the Spearman algorithm and visualized the
results with a heatmap generated by the R package ‘pheatmap’
(version 1.0.12). This heatmap displayed the correlation analysis
outcomes among the immune cells themselves.Additionally, we
assessed the correlation between model genes and immune cells
using the Spearman algorithm, retaining only those results with a p-
value < 0.05. Finally, we used *ggplot2" (version 3.4.4) to generate a
correlation bubble chart, illustrating the relationships between
model genes and immune cells.This comprehensive approach
allowed us to systematically analyze and visualize the interactions
between immune cells and model genes, providing valuable insights
into the immune landscape in DR.
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4.11 Molecular docking

To further analyze the interaction mechanism between the
NOG gene-encoded Noggin protein and the BMP pathway
inhibitor: LDN-193189, we conducted molecular docking of the
NOG gene-encoded Noggin protein and its corresponding small
molecule compound using the CB-Dock2 website. CB-Dock2 is an
improved version of the CB-Dock server for protein-ligand blind
docking, integrating cavity detection, docking, and homology
template fitting. Based on the three-dimensional (3D) structures
of the protein and ligand, we predicted their binding sites and
affinities, thereby achieving computer-aided drug discovery.

Firstly, we downloaded the molecular structure of the drug
LDN-193189 (CID: 25195294) from the PubChem database
(https://pubchem.ncbinlm.nih.gov). Subsequently, we obtained
the X-ray crystal structure of Noggin (PDB code: 1M4U) from
the PDB (Protein Data Bank) structure database (https://
www.rcsb.org/). Finally, we used the AutoDock vina program on
the CB-Dock2 website to perform blind docking and visualization
of the NOG gene-encoded Noggin protein and its corresponding
small molecule compound. The docking score of AutoDock Vina,
Vina Score, indicates the strength of the binding force. A Vina Score
> -4 Kcal/mol is considered to have a very weak binding force or no
binding force; -7 Kcal/mol < Vina Score < -4 Kcal/mol is defined as
a moderate binding force; and a Vina Score < -7 Kcal/mol is defined
as a standard with a strong binding force.

4.12 Laboratory validation

Patients hospitalized in our hospital in December 2024 were
recruited. The research subjects comprised 6 cases in the type 2 DR
(DM) group; 6 patients who underwent cataract surgery in our
hospital during the same period were selected as the blank control
group. 1. Inclusion criteria: All enrolled patients were diagnosed
with type 2 DR (DM) after mydriasis and ophthalmoscopy by
professional ophthalmologists in our hospital. 2. Exclusion criteria:
(1) Type 1 diabetes, special type diabetes or accompanied by acute
complications of diabetes; (2) Acute or chronic infections, patients
with severe traumas; (3) Tumors, hematological diseases,
cardiovascular and cerebrovascular disorders; (4) History of
treatment with corticosteroids or immunosuppressants and
rheumatism and immune-related diseases or other endocrine and
metabolic disorders; (5) Pregnancy, lactation or long-term use of
contraceptives; (6) Uveitis, glaucoma, retinal diseases and macular
degeneration and other ocular diseases.

Sample pretreatment for RNA extraction from blood samples:
The blood samples placed in the collection tubes containing
anticoagulants were stored in an -80°C freezer. Thus, the blood
samples should be retrieved in advance and thawed at
room temperature.

1. Sample processing: Prepare a 1.5 mL centrifuge tube (EP),

add 300 pL of whole blood and 800 pL of RNA extraction
reagent (Trizol) (Cayin Innovation Biotechnology Co., Ltd.)
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into it. Vigorously vortex for more than 30 seconds and let
it stand on ice at 0°C for 5 minutes.

. Separation: Add 160 pL of chloroform substitute BCP

(Cayin Innovation Biotechnology Co., Ltd.), vigorously
vortex for 15 seconds, and let it stand on ice at 0°C for 2
minutes. Then, centrifuge at 12,000 g and 4°C for
10 minutes.

. Precipitation: Transfer the upper aqueous phase to a new

EP tube. Precipitate the RNA in the aqueous phase with
isopropanol by adding 400 pL of isopropanol. Let it stand at
room temperature for 10 minutes, and centrifuge at 12,000
g and 4°C for 10 minutes. Discard the supernatant carefully
while retaining the precipitate on the sides and bottom of
the tube.

. Washing: Wash the RNA precipitate with 75% ethanol

(prepared with DEPC water). For every 1 mL of
RNAkeyTM Reagent used, add 1 mL of 75% ethanol.
Gently mix by pipetting, centrifuge at 12,000 g and 4°C
for 10 minutes. Discard the supernatant carefully while
retaining the precipitate on the sides and bottom of the
tube. Open the tube cap and let it stand at room
temperature for 5 to 10 minutes to air-dry the
RNA precipitate.

. Dissolution: Add an appropriate amount of RNase-free

H20 or DEPC H20O and gently pipette several times to
dissolve the RNA. Store at -80°C.

. RNA reverse transcription reaction: Utilize the kit (Wuhan

Saiwei Biotechnology Co., Ltd.). According to the manual,
the preparation of the reverse transcription reaction system
must be conducted on ice. Prepare a 20 UL system as per the
instructions. Mix well by repeated pipetting. Then, place
the samples in the reverse transcription instrument for the
reverse transcription reaction (reaction conditions: 5
minutes at 25°C, 20 minutes at 42°C, and 5 seconds at
85°C). The resulting samples are cDNA.

. Real-time fluorescence quantitative PCR: Employ the kit

(Cayin Innovation Biotechnology Co., Ltd.). Based on the
manual, prepare the PCR reaction system on ice (see
Table 10 below), mix uniformly, and then promptly
transfer it to the PCR instrument. The amplification
reaction conditions are carried out as per the
instructions. HPRT1 was utilized as the internal reference
gene. With B-actin serving as the internal reference gene,
the required primer sequences are as follows: B-actin:
upstream 5'-AAGGCCAACCGCGAGAA-37,
downstream 5 -ATGGGGGAGGGCATACC-3"; NOG:
upstream 5 -CGCCCTGGAGTAATTTCGGA-3",
downstream 5'-GCGGAAGAAAGGCACACAAG-3';
Gdf5: upstream 5 -GCTGGGAGGTGTTCGACATC-3",
downstream 5 -CACGGTCTTATCGTCCTGGC-3';
Gdf6: upstream 5 -CACGAGTACATGCTGTCAATCT-
3’, downstream 5'-CGTATTAGCCGACTTGGAAGAC-
3’; Bmp2: upstream 5'-ACCCGCTGTCTTCTAGCGT-
3’, downstream 5 -TTTCAGGCCGAACATGCTGAG-3';
Bmp4: upstream 5'-ATGATTCCTGGTAACCGAATGC-
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TABLE 10 The PCR reaction system.

reagent volume final concentration
2xSYBRGreenqPCRMasterMixII =~ 10UL 1x

ForwardPrimer(10uM) 0.4UL 0.20uM
ReversePrimer(10uM) 0.4UL 0.20uM

TemplateDNA Variable Asrequired
Nuclease-FreeWater Upto20uL

3’, downstream 5'-CCCCGTCTCAGGTATCAAACT-3";
Bmp6: upstream 5-AGCGACACCACAAAGAGTTCA-
3’, downstream 5 -GCTGATGCTCCTGTAAGACTTGA-
3’. The relative expression level of NOG, BMP2,BMP4,
BMP6, GDF5, and GDF 6 were calculated by the 2-AACt
method. Three replicate wells were set for each sample, and
the average of the three measurement results was taken.

8. Statistical analysis was conducted using SPSS 18.0 (SPSS,
Chicago, IL) statistical software. The qPCR measurement
results of each group were represented as X + s. The t-test
was employed for the comparison of means between
groups. The significance level for statistical tests was set
at 0.05. GraphPad Prism 10.1.2 software was utilized
for plotting.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.

Ethics statement

The studies involving humans were approved by The Medical
Ethics Committee of the Fourth Affiliated Hospital of Harbin
Medical University (approval number HYDSYEX1.0 2025-Ethical
Review-23). The studies were conducted in accordance with the
local legislation and institutional requirements. The participants
provided their written informed consent to participate in this study.

Author contributions

GL: Data curation, Conceptualization, Supervision, Investigation,
Validation, Resources, Writing - review & editing, Funding
acquisition, Project administration. MT: Validation, Writing -
review & editing, Resources, Software, Conceptualization,
Investigation, Data curation. XL: Writing - original draft,

Frontiers in Endocrinology

17

10.3389/fendo.2025.1632691

Validation, Data curation, Writing - review & editing.
XW: Investigation, Validation, Writing — review & editing, Data
curation. SZ: Investigation, Writing — review & editing, Validation,
Data curation. XZ: Validation, Writing - review & editing. GB:
Writing - review & editing, Supervision, Validation.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. Research Project on
Higher Education Teaching Reform in Heilongjiang Province,
China (SJGZ20200106);Modulation of diabetic retinopathy by
microRNA targeting the TLR4 pathway, China(QC2011C119);
Pluripotent differentiation of adipose stem cells induced by
transmembrane protein, China (HYDSYTB201913).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

SNP, single nucleotide polymorphism; R?, explain variance rate.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fend0.2025.1632691/
full#supplementary-material

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fendo.2025.1632691/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2025.1632691/full#supplementary-material
https://doi.org/10.3389/fendo.2025.1632691
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Liu et al.

References

1. Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al.
Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. (2012)
35:556-64. doi: 10.2337/dc11-1909

2. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. (2010) 376:124-
36. doi: 10.1016/S0140-6736(09)62124-3

3. Vujosevic S, Aldington SJ, Silva P, Hernandez C, Scanlon P, Peto T, et al.
Screening for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes
Endocrinol. (2020) 8:337-47. doi: 10.1016/S2213-8587(19)30411-5

4. Martinez-Garcia I, Cavero-Redondo I, Alvarez-Bueno C, Pascual-Morena C,
G(')mez—Guijarro MD, Saz-Lara A. Non-invasive skin autofluorescence as a screening
method for diabetic retinopathy. Diabetes Metab Res Rev. (2024) 40:e3721.
doi: 10.1002/dmrr.3721

5. Bressler NM, Beaulieu WT, Maguire MG, Glassman AR, Blinder K], Bressler SB,
et al. Early response to anti-vascular endothelial growth factor and two-year outcomes
among eyes with diabetic macular edema in protocol T. Am ] Ophthalmol. (2018)
195:93-100. doi: 10.1016/.aj0.2018.07.030

6. Song SJ, Han K, Choi KS, Ko SH, Rhee EJ, Park C, et al. Trends in diabetic
retinopathy and related medical practices among type 2 diabetes patients: Results from
the National Insurance Service Survey 2006-2013. ] Diabetes Investig. (2018) 9:173-8.
doi: 10.1111/jdi.12655

7. Yuan S, Xu F, Li X, Chen J, Zheng ], Mantzoros CS, et al. Plasma proteins and
onset of type 2 diabetes and diabetic complications: Proteome-wide Mendelian
randomization and colocalization analyses. Cell Rep Med. (2023) 4:101174.
doi: 10.1016/j.xcrm.2023.101174

8. Grassi MA, Tikhomirov A, Ramalingam SS, Below JE, Cox NJ, Nicolae DL.
Genome-wide meta-analysis for severe diabetic retinopathy. Hum Mol Genet. (2019)
28:2251-64. doi: 10.1093/hmg/ddr121

9. Smith GD, Hemani G. Mendelian randomization: genetic anchors for causal
inference in epidemiological studies. Hum Mol Genet. (2014) 23:R89-98. doi: 10.1093/
hmg/ddu328

10. Csész £, Dedk E, Kallé G, Csutak A, T8zsér J. Diabetic retinopathy: Proteomic
approaches to help the differential diagnosis and to understand the underlying
molecular mechanisms. J Proteom. (2017) 150:351-8. doi: 10.1016/j.jprot.2016.06.034

11. Yurekli BS, Kocabas GU, Aksit M, Kutbay NO, Suner A, Yurekli I, et al. The low
levels of bone morphogenic protein-4 and its antagonist noggin in type 2 diabetes.
Hormones (Athens). (2018) 17:247-53. doi: 10.1007/s42000-018-0041-5

12. Darwish NHE, Hussein KA, Elmasry K, Ibrahim AS, Humble J, Moustafa M,
et al. Bone morphogenetic protein-4 impairs retinal endothelial cell barrier, a potential
role in diabetic retinopathy. Cells. (2023) 12:1279. doi: 10.3390/cells12091279

13. Al-Shabrawey M, Hussein K, Wang F, Wan M, Elmasry K, Elsherbiny N, et al.
Bone morphogenetic protein-2 induces non-canonical inflammatory and oxidative
pathways in human retinal endothelial cells. Front Immunol. (2021) 11:568795.
doi: 10.3389/fimmu.2020.568795

14. Abhary S, Hewitt AW, Burdon KP, Craig JE. A systematic meta-analysis of
genetic association studies for diabetic retinopathy. Diabetes. (2009) 58:2137-47.
doi: 10.2337/db09-0059

Frontiers in Endocrinology

18

10.3389/fendo.2025.1632691

15. Krause C, Guzman A, Knaus P. Noggin. Int ] Biochem Cell Biol. (2011) 43:478—
81. doi: 10.1016/j.biocel.2011.01.007

16. Humble J, Darwish N, Elmasry K, Moustafa M, Awadalla F, Ibrahim A, et al. Bone
Morphogenic Protein 4 (BMP4); a potential player in diabetic retinopathy(]. Invest
Ophthalmol Visual Sci. (2023) 64:937-7.

17. Al-Shabrawey M, Hussein K, Wang F, Wan M, Elmasry K, Elsherbiny N, et al.
Bone morphogenetic protein-2 induces non-canonical inflammatory and oxidative
pathways in human retinal endothelial cells[]. Front Immunol. (2021) 11:568795.
doi: 10.3389/fimmu.2020.568795

18. Chen Y, Schlotterer A, Lin J, Dietrich N, Fleming T, Lanzinger S, et al. Sex
differences in the development of experimental diabetic retinopathy. Sci Rep. (2024)
14:22812. doi: 10.1038/s41598-024-73279-x

19. Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J, et al. The
druggable genome and support for target identification and validation in drug
development. Sci Transl Med. (2017) 9(383):eaagll66. doi: 10.1126/
scitranslmed.aag1166

20. Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, et al.
Phenome-wide Mendelian randomization mapping the influence of the plasma
proteome on complex diseases. Nat Genet. (2020) 52:1122-31. doi: 10.1038/s41588-
020-0682-6

21. Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, et al. The MRC
IEU OpenGWAS data infrastructure. bioRxiv. (2020) 2020.08.10.244293. doi: 10.1101/
2020.08.10.244293

22. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of
summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat
Genet. (2016) 48:481-7. doi: 10.1038/ng.3538

23. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas ], et al.
STRING vl11: protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic Acids
Res. (2019) 47:D607-13. doi: 10.1093/nar/gky1131

24. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank
5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. (2018) 46
(D1):D1074-82. doi: 10.1093/nar/gkx1037

25. Yoo M, Shin J, Kim J, Ryall KA, Lee K, Lee S, et al. DSigDB: drug signatures
database for gene set analysis. Bioinformatics. (2015) 31:3069-71. doi: 10.1093/
bioinformatics/btv313

26. Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI,
Styrmisdottir EL, et al. Large-scale integration of the plasma proteome with
genetics and disease. Nat Genet. (2021) 53:1712-21. doi: 10.1038/s41588-021-
00978-w

27. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an
open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf.
(2011) 12:77. doi: 10.1186/1471-2105-12-77

28. Xiao B, Liu L, Li A, Xiang C, Wang P, Li H, et al. Identification and verification of
immune-related gene prognostic signature based on ssGSEA for osteosarcoma. Front
Oncol. (2020) 10:607622. doi: 10.3389/fonc.2020.607622

frontiersin.org


https://doi.org/10.2337/dc11-1909
https://doi.org/10.1016/S0140-6736(09)62124-3
https://doi.org/10.1016/S2213-8587(19)30411-5
https://doi.org/10.1002/dmrr.3721
https://doi.org/10.1016/j.ajo.2018.07.030
https://doi.org/10.1111/jdi.12655
https://doi.org/10.1016/j.xcrm.2023.101174
https://doi.org/10.1093/hmg/ddr121
https://doi.org/10.1093/hmg/ddu328
https://doi.org/10.1093/hmg/ddu328
https://doi.org/10.1016/j.jprot.2016.06.034
https://doi.org/10.1007/s42000-018-0041-5
https://doi.org/10.3390/cells12091279
https://doi.org/10.3389/fimmu.2020.568795
https://doi.org/10.2337/db09-0059
https://doi.org/10.1016/j.biocel.2011.01.007
https://doi.org/10.3389/fimmu.2020.568795
https://doi.org/10.1038/s41598-024-73279-x
https://doi.org/10.1126/scitranslmed.aag1166
https://doi.org/10.1126/scitranslmed.aag1166
https://doi.org/10.1038/s41588-020-0682-6
https://doi.org/10.1038/s41588-020-0682-6
https://doi.org/10.1101/2020.08.10.244293
https://doi.org/10.1101/2020.08.10.244293
https://doi.org/10.1038/ng.3538
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/bioinformatics/btv313
https://doi.org/10.1093/bioinformatics/btv313
https://doi.org/10.1038/s41588-021-00978-w
https://doi.org/10.1038/s41588-021-00978-w
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.3389/fonc.2020.607622
https://doi.org/10.3389/fendo.2025.1632691
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Development of targeted drugs for diabetic retinopathy using Mendelian randomized pharmacogenomics
	1 Introduction
	2 Results
	2.1 Technology roadmap
	2.2 MR analysis of pharmaceutically available proteins
	2.3 Sensitivity analysis of protein and DR
	2.4 SMR analysis and colocalization analysis
	2.5 Drug targets
	2.6 Validation of the expression discrepancies of key genes in the normal group and diseases group
	2.7 Immune infiltration analysis
	2.8 Laboratory verification
	2.9 Molecular docking

	3 Discussion
	4 Methods
	4.1 Druggable gene selection
	4.2 pQTL dataset
	4.3 Outcome dataset
	4.4 Two-sample MR
	4.5 Analysis of SMR
	4.6 Positioning analysis
	4.7 Drug targets
	4.8 Statistical methods
	4.9 The verification of the expression differences of key genes in the normal group and diseases
	4.10 Immune infiltration analysis
	4.11 Molecular docking
	4.12 Laboratory validation

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


