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Development of targeted drugs
for diabetic retinopathy using
Mendelian randomized
pharmacogenomics
Guodan Liu*, Miao Tian, Xinge Li, Xichen Wang,
Songhao Zhang, Gali Bai and Xuyang Zhang

Department of Ophthalmology, The Fourth Affiliated Hospital of Harbin Medical University,
Harbin, China
Purpose: This study aims to utilize genetic instrumental variables - protein

quantitative trait loci (pQTL), and through analysis methods such as Mendelian

randomization (MR), systematically screen and validate druggable proteins that

have a causal relationship with diabetic retinopathy (DR), and further explore

related drug targets, providing genetic evidence and new directions for the drug

development of this disease.

Methods: The research was based on large-scale public databases to conduct

two-sample Mendelian randomization (MR) analysis. Firstly, 511 encoded proteins

were selected from the known 4,479 druggable genes as initial exposure factors,

with the summary data of GWAS for diabetic retinopathy as the outcome. MR

analysis was conducted using the inverse variance weighted (IVW) method and

the Wald ratio method, and strict screening was performed through Bonferroni

correction. For the significantly associated proteins, heterogeneity tests,

pleiotropy tests, leave-one-out analysis, and Steiger directionality tests were

further conducted to verify the robustness of the results. Additionally, summary

MR (SMR) analysis and colocalization analysis (coloc) were used to confirm the

reliability of the causal relationship. Finally, a protein-protein interaction (PPI)

network was constructed using the STRING database, and potential targeted

drugs were mined from the DrugBank and DSigDB databases.

Results: A preliminary analysis identified 37 proteins with potential causal

relationships to DR (p < 0.05). After more rigorous pQTL screening and

multiple testing corrections, it was found that Noggin (NOG) protein has a

significant negative causal relationship with the risk of DR (p.adjust < 0.05),

meaning that higher NOG protein levels may reduce the risk of disease. All

sensitivity analyses supported the robustness of this result (no heterogeneity, no

pleiotropy), and SMR and colocalization analyses (PP.H4 > 0.8) further confirmed

this causal association. PPI network analysis revealed that NOG interacts with 10

proteins (such as BMP2, BMP4, etc.). Drug mining identified DB01373 as a

corresponding drug for BMP4, and through DSigDB analysis, progesterone and

estradiol were found to be potential therapeutic compounds targeting the

NOG network.
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Conclusions: Through comprehensive genetic analysis, this study identified the

NOG protein as a novel potential protective drug target for DR. Its function may

be achieved by regulating the BMP signaling pathway. The research findings not

only provide a new perspective for understanding the pathogenesis of this

disease but also recommend existing drugs such as progesterone and estradiol

as potential therapies, which are worthy of further functional experiments and

clinical studies for verification.
KEYWORDS

diabetic retinopathy, drug target, Mendelian randomization, latest updated articles,
network analysis
1 Introduction

Diabetic retinopathy (DR), a microvascular complication of

diabetes affecting approximately one-third of diabetic patients, is a

leading cause of blindness (1). The In1ternational Diabetes Federation

estimated that by 2030, nearly 191 million individuals will suffer from

some degree of DR, with many at risk for loss of vision. In the early

stages of DR, hyperglycemia may lead to oxidative stress,

neurodegenerative diseases, alterations of the retinal blood vessel

wall, and blood rheology, leading to retinal ischemia and hypoxia,

retinal vascular leakage, and neovascularization. In the terminal stage

of diabetic retina, severe ischemia and hypoxia may cause

neovascularization, vitreous hemorrhage, and even retinal

detachment (2).At present, the gold standard for the examination of

DR remains fundus angiography, but ultra-wide-angle fundus

photography and artificial intelligence analysis are gradually being

applied (3). Martıńez-Garcıá I et al. previously published an article

indicating that non-invasive skin autofluorescence (SAF) could

potentially serve as an accessible, rapid, and straightforward

alternative for the screening and early diagnosis of diabetic

retinopathy (DR). Nevertheless, this examination method has not

been clinically implemented to date. If this approach can be translated

into clinical practice in the future, it will alleviate the suffering

associated with invasive procedures for patients with diabetic

retinopathy, thereby bringing them significant benefits (4). Current

treatments, such as control of blood glucose, blood pressure,

cholesterol, and other indicators; laser photocoagulation; anti-VEGF

injections; and vitrectomy are limited by their invasiveness, potential

side effects, and variable patient response (5, 6). For instance, retinal

laser photocoagulation is an invasive treatment that does not lead to

improvement in the patient’s vision. Anti-VEGF therapy and

vitrectomy are associated with high costs and often necessitate

repeated treatments. These limitations underscore the urgent need

to identify novel therapeutic targets for safer and more

effective interventions.

Identification of novel drugs to treat DR is complicated by its

multifactorial pathophysiology; hyperglycemia-induced metabolic
02
changes lead to retinal microvascular damage and inflammation.

Proteomic studies have revealed alterations in several proteins

associated with DR progression (7). Furthermore, genetic factors

contribute to individual susceptibility and disease severity.

Genome-wide association studies (GWAS) have identified

multiple loci associated with DR, but the causal relationships

between these genetic polymorphisms and the disease remain

largely unexplored (8).

Adding to the challenges in novel DR drug identification,

traditional statistical methods for inferring causality from

observational data are prone to confounding biases. Mendelian

randomization (MR), which involves using genetic variants as

instrumental variables for modifiable exposures, offers an

alternative approach that mitigates these biases owing to the

random assortment of alleles at conception (8, 9). In complex

diseases like DR, MR could provide robust evidence for causal

inference when randomized controlled trials are not feasible

or ethical.

In this study, we aimed to identify potential drug targets for DR

by employing a comprehensive bioinformatics approach. We

integrated druggable gene selection, protein quantitative trait

locus (pQTL) analysis, two-sample MR analysis, summary-data-

based MR (SMR), colocalization analyses, and drug target

validation through protein-protein interaction (PPI) networks

and pharmacological databases. On this basis, verification was

also conducted through external datasets, immune infiltration,

and laboratory experiments. By elucidating the causal relationship

between proteins implicated in DR and the disease itself, we sought

to identify novel therapeutic strategies that would lead to more

effective treatments.
2 Results

2.1 Technology roadmap

The analysis flow of this study is shown in Figure 1.
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MR, Mendelian Randomization; SMR, the Summary - data -

-based Mendelian Randomization. PPI, Protein-protein interaction;

pQTL, protein Quantitative Trait Locus.
2.2 MR analysis of pharmaceutically
available proteins

We first intersected the 734 proteins studied by Zheng et al. with

4479 proteins encoded by druggable genes to obtain 511 proteins

encoded by druggable genes. Then, we performed two-sample MR

analysis of the 511 proteins and DR by using two-sample MR. We

next performed initial screening using p.adjust < 0.05 for significant

causal filters. A total of 37 proteins are shown in Table 1 as a result

of the analysis of causal relationships between proteins and DR.

Owing to the presence of only one SNP in each of the 37

proteins, subsequent sensitivity analysis was not feasible. As a result,

we obtained pQTL files for the 37 proteins from the deCODE

database for further analysis. According to the cis-pQTL selection

criteria for this 37-filtered-proteins pQTL file, get 35 protein to cis -

pQTL (see Appendix Supplementary Table S3), and then of the 35

through two-sample MR protein and analyses using two-sample

MR with DR. For the secondary screening, we used the more strict
Frontiers in Endocrinology 03
inspection for with the Bonferroni correction, in which p.adjust <

0.05 was the significant causal filter condition, to determine whether

DR had any strong causal associated proteins. The findings

presented in Table 2 indicate a causal relationship between a

specific protein and DR, with noggin (NOG) protein showing a

negative correlation with the risk of developing the condition.

Finally, we created a scatter diagram showing the MR effect of

NOG protein and DR (Figure 2), showing that each model line on

the vertical intercept tends toward zero, and the slopes are all in the

same direction.
2.3 Sensitivity analysis of protein and DR

We conducted a heterogeneity analysis between NOG protein

and DR (Table 3). The findings indicated that there was no

significant heterogeneity in the MR results for NOG protein

related to DR (I² = 0, Cochran Q p.adjust > 0.05). Subsequently,

we carried out pleiotropy assessments for NOG protein and DR

(Table 4). The results presented in the table demonstrate that the

p.adjust values for pleiotropy tests of all proteins exceeded 0.05, and

the intercepts were near zero. This suggests that horizontal

pleiotropy did not influence the causal inference.

Sensitivity analysis of the results with the use of one-by-one

exclusion tests did not show a significant change in the estimates of

the protein NOG effect, suggesting stability of the results (Appendix

Supplementary Table S4). Leave-one-out analysis was used to

remove each instrumental variable and examine the causal effect

of NOG protein on DR, and no significant deviation was found

from the lump effect of instrumental variables. To ensure that the

causal effect of protein on the pathogenesis of DR was in the correct

direction, we used Steiger directionality test for analysis. We found

that the p.adjust for NOG protein and DR was far less than 0.05,

indicating the correct direction (Table 5).
2.4 SMR analysis and colocalization
analysis

We aimed to gather further evidence through the analysis of the

SMR pleiotropic presence. Table 6 shows that the SMR analysis results

of NOG protein p_SMR < 0.05, indicating a causal relationship. Based

on the results of colocalization analysis (Table 7), we observed a

relationship between NOG and DR (PP.H4 > 0.8).
2.5 Drug targets

We extended the PPI analysis of druggable targets (such as

NOG) using the STRING database and constructed a network of 10

related proteins (BMP2, BMP4, BMP5, BMP6, BMP7, GDF5,

GDF6, GDF7, SHH, SHH, BMP2, BMP4, BMP5, BMP6, and

BMP7) after retaining the targets that had connections with other

nodes. RSPO1) in the protein-protein interaction network
FIGURE 1

Technology roadmap.
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TABLE 1 Mendelian randomization causal effect estimates of protein in the pathogenesis of diabetic retinopathy.

exposure outcome nsnp b se OR (95% CI) P value method

ADAM23 Diabetic retinopathy 1 0.080536913 0.030779912 0.92 (0.87, 0.98) 8.88 e-03 Wald ratio

CFH Diabetic retinopathy 1 0.21691678 0.03574352 0.80 (0.75, 0.86) 1.29 e-09 Wald ratio

PLA2G2A Diabetic retinopathy 1 0.029691328 0.014306712 0.97 (0.94, 1.00) 3.80 e-02 Wald ratio

LY9 Diabetic retinopathy 1 0.063503475 0.031152648 1.07 (1.00, 1.13) 4.15 e-02 Wald ratio

GSTA1 Diabetic retinopathy 1 0.08082752 0.031031994 1.08 (1.02, 1.15) 9.20 e-03 Wald ratio

WFIKKN2 Diabetic retinopathy 1 0.044083882 0.020970458 1.05 (1.00, 1.09) 3.55 e-02 Wald ratio

COL18A1 Diabetic retinopathy 1 0.215060241 0.081927711 1.24 (1.06, 1.46) 8.66 e-03 Wald ratio

GP1BA Diabetic retinopathy 1 0.138677233 0.064614447 1.15 (1.01, 1.30) 3.19 e-02 Wald ratio

CHL1 Diabetic retinopathy 1 0.126801153 0.063400576 0.88 (0.78, 1.00) 4.55 e-02 Wald ratio

CRTAM Diabetic retinopathy 1 0.119915254 0.055508475 0.89 (0.80, 0.99) 3.07 e-02 Wald ratio

TGFB1 Diabetic retinopathy 1 0.114671815 0.054440154 1.12 (1.01, 1.25) 3.52 e-02 Wald ratio

HSPB1 Diabetic retinopathy 1 0.089166667 0.043333333 0.91 (0.84, 1.00) 3.96 e-02 Wald ratio

F13B Diabetic retinopathy 1 0.097074954 0.027787934 1.10 (1.04, 1.16) 4.77 e-04 Wald ratio

CTSH Diabetic retinopathy 1 0.043330427 0.016826504 1.04 (1.01, 1.08) 1.00 e-02 Wald ratio

COL6A1 Diabetic retinopathy 1 0.170524327 0.060935286 0.84 (0.75, 0.95) 5.13 e-03 Wald ratio

RNASE3 Diabetic retinopathy 1 0.181775701 0.076168224 1.20 (1.03, 1.39) 1.70 e-02 Wald ratio

CD59 Diabetic retinopathy 1 0.08480663 0.040331492 1.09 (1.01, 1.18) 3.55 e-02 Wald ratio

CPM Diabetic retinopathy 1 0.161377084 0.081764389 0.85 (0.72, 1.00) 4.84 e-02 Wald ratio

NQO1 Diabetic retinopathy 1 0.073086156 0.022005868 1.08 (1.03, 1.12) 8.96 e-04 Wald ratio

IL7R Diabetic retinopathy 1 0.073446328 0.030838041 1.08 (1.01, 1.14) 1.72 e-02 Wald ratio

PAM Diabetic retinopathy 1 0.093053173 0.028945111 0.91 (0.86, 0.96) 1.31 e-03 Wald ratio

FGFR3 Diabetic retinopathy 1 0.175706215 0.081920904 0.84 (0.71, 0.98) 3.20 e-02 Wald ratio

CST5 Diabetic retinopathy 1 0.052675585 0.023968785 1.05 (1.01, 1.10) 2.80 e-02 Wald ratio

DUT Diabetic retinopathy 1 0.166076696 0.078761062 0.85 (0.73, 0.99) 3.50 e-02 Wald ratio

PPT1 Diabetic retinopathy 1 0.046978309 0.022851177 1.05 (1.00, 1.10) 3.98 e-02 Wald ratio

CFHR1 Diabetic retinopathy 1 0.037606178 0.017142857 1.04 (1.00, 1.07) 2.83 e-02 Wald ratio

BST1 Diabetic retinopathy 1 0.034295124 0.013245507 0.97 (0.94, 0.99) 9.62 e-03 Wald ratio

NOG Diabetic retinopathy 1 0.174306735 0.049074299 0.84 (0.76, 0.92) 3.82 e-04 Wald ratio

LAMC2 Diabetic retinopathy 1 0.045166531 0.021933387 1.05 (1.00, 1.09) 3.95 e-02 Wald ratio

NID2 Diabetic retinopathy 1 0.064941654 0.032724505 1.07 (1.00, 1.14) 4.72 e-02 Wald ratio

CHRDL2 Diabetic retinopathy 1 0.150490731 0.049384639 0.86 (0.78, 0.95) 2.31 e-03 Wald ratio

NEGR1 Diabetic retinopathy 1 0.171621622 0.087162162 0.84 (0.71, 1.00) 4.90 e-02 Wald ratio

CLEC4C Diabetic retinopathy 1 0.032105263 0.015052632 0.97 (0.94, 1.00) 3.29 e-02 Wald ratio

CFHR4 Diabetic retinopathy 1 0.102442748 0.021526718 1.11 (1.06, 1.16) 1.95 e-06 Wald ratio

RTN4R Diabetic retinopathy 1 0.120354488 0.043453402 1.13 (1.04, 1.23) 5.61 e-03 Wald ratio

CPA4 Diabetic retinopathy 1 0.03139475 0.011408475 0.97 (0.95, 0.99) 5.93 e-03 Wald ratio

ENPP5 Diabetic retinopathy 1 0.040805981 0.018121911 1.04 (1.01, 1.08) 2.43 e-02 Wald ratio
F
rontiers in Endocrin
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(Figure 3) We used 11 target proteins to analyze the potential drugs

of target proteins by using the DURGBANK database. Table 8

shows that BMP4 encoded proteins corresponding to DB01373

drugs, NOG, BMP2, BMP5, BMP6, BMP7, GDF5, GDF6, GDF7,
Frontiers in Endocrinology 05
SHH, DB01373 drugs, NOG, BMP2, BMP5, BMP6, BMP7, GDF5,

GDF6, GDF7, SHH, there is no corresponding drug for RSPO1

encoded protein, which could be further explored. We then used

DSigDB on the Enrichr platform to screen results, with p.adjust
TABLE 2 Mendelian randomization causal effect estimates of druggable proteins on the onset of DR from deCODE.

exposure outcome nsnp b se OR (95% CI) p.adjust method

CFH Diabetic retinopathy 1 0.036337 0.066134 1.04 (0.91, 1.18) 1 Wald ratio

RTN4R Diabetic retinopathy 4 0.107451 0.045161 1.11 (1.02, 1.22) 0.589775 Inverse variance weighted

CHRDL2 Diabetic retinopathy 4 0.08449 0.077789 0.92 (0.79, 1.07) 1 Inverse variance weighted

LAMC2 Diabetic retinopathy 1 0.036124 0.038645 1.04 (0.96, 1.12) 1 Wald ratio

FGFR3 Diabetic retinopathy 2 0.19247 0.070028 0.82 (0.72, 0.95) 0.203554 Inverse variance weighted

CD59 Diabetic retinopathy 3 0.107684 0.089652 1.11 (0.93, 1.33) 1 Inverse variance weighted

NID2 Diabetic retinopathy 4 0.08841 0.035632 1.09 (1.02, 1.17) 0.445223 Inverse variance weighted

CTSH Diabetic retinopathy 5 0.04626 0.02296 1.05 (1.00, 1.10) 1 Inverse variance weighted

HSPB1 Diabetic retinopathy 3 0.07702 0.051606 1.08 (0.98, 1.20) 1 Inverse variance weighted

BST1 Diabetic retinopathy 9 0.01613 0.017309 0.98 (0.95, 1.02) 1 Inverse variance weighted

CRTAM Diabetic retinopathy 5 0.07001 0.073212 0.93 (0.81, 1.08) 1 Inverse variance weighted

ENPP5 Diabetic retinopathy 3 0.01044 0.071669 0.99 (0.86, 1.14) 1 Inverse variance weighted

ADAM23 Diabetic retinopathy 3 0.04646 0.038872 0.95 (0.88, 1.03) 1 Inverse variance weighted

LY9 Diabetic retinopathy 5 0.026926 0.027517 1.03 (0.97, 1.08) 1 Inverse variance weighted

CPA4 Diabetic retinopathy 4 0.0138 0.015279 0.99 (0.96, 1.02) 1 Inverse variance weighted

DUT Diabetic retinopathy 1 0.115906 0.223181 1.12 (0.73, 1.74) 1 Wald ratio

PPT1 Diabetic retinopathy 2 0.074389 0.130506 1.08 (0.83, 1.39) 1 Inverse variance weighted

CHL1 Diabetic retinopathy 5 0.0815 0.05138 0.92 (0.83, 1.02) 1 Inverse variance weighted

CFHR4 Diabetic retinopathy 8 0.024325 0.023215 1.02 (0.98, 1.07) 1 Inverse variance weighted

CPM Diabetic retinopathy 2 0.23203 0.112093 0.79 (0.64, 0.99) 1 Inverse variance weighted

COL6A1 Diabetic retinopathy 8 0.00681 0.02485 0.99 (0.95, 1.04) 1 Inverse variance weighted

F13B Diabetic retinopathy 2 0.02774 0.159561 0.97 (0.71, 1.33) 1 Inverse variance weighted

PAM Diabetic retinopathy 2 0.04469 0.035197 0.96 (0.89, 1.02) 1 Inverse variance weighted

RNASE3 Diabetic retinopathy 5 0.057573 0.042397 1.06 (0.97, 1.15) 1 Inverse variance weighted

CST5 Diabetic retinopathy 2 0.050544 0.031303 1.05 (0.99, 1.12) 1 Inverse variance weighted

NEGR1 Diabetic retinopathy 1 0.26061 0.259151 0.77 (0.46, 1.28) 1 Wald ratio

WFIKKN2 Diabetic retinopathy 5 0.040372 0.031884 1.04 (0.98, 1.11) 1 Inverse variance weighted

NQO1 Diabetic retinopathy 3 0.059827 0.023121 1.06 (1.01, 1.11) 0.328598 Inverse variance weighted

COL18A1 Diabetic retinopathy 2 0.118148 0.101691 1.13 (0.92, 1.37) 1 Inverse variance weighted

NOG Diabetic retinopathy 3 0.15746 0.045523 0.85 (0.78, 0.93) 0.018434 Inverse variance weighted

GP1BA Diabetic retinopathy 3 0.116146 0.08927 1.12 (0.94, 1.34) 1 Inverse variance weighted

PLA2G2A Diabetic retinopathy 3 0.03449 0.022879 0.97 (0.92, 1.01) 1 Inverse variance weighted

GSTA1 Diabetic retinopathy 5 0.092417 0.039726 1.10 (1.01, 1.19) 0.679957 Inverse variance weighted

CFHR1 Diabetic retinopathy 4 0.032898 0.036886 1.03 (0.96, 1.11) 1 Inverse variance weighted
SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
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<0.05 (Table 9), and we identified 00006624 estradiol and

progesterone CTD CTD 00005920 NOG as potential drugs.
2.6 Validation of the expression
discrepancies of key genes in the normal
group and diseases group

To investigate the expression variations of key genes (Key

Genes) in the GEO dataset GSE60436 (Figure 4), the differential

analysis results of the expression levels of the 10 key genes (Key

Genes) in the DR group and the normal (Normal) group in the

GEO dataset GSE60436 were presented via group comparison

graphs and ROC curves. The differential results revealed that the

expression quantities of the 10 key genes (Key Genes) in the DR

group and the Normal group of the GEO dataset GSE60436 were

dissimilar. In the GEO dataset GSE60436, the expressions of the key

genes (Key Genes) NOG, BMP4, BMP5, BMP7, and RSPO1

exhibited significant differences (pvalue < 0.05).

Ultimately, the ROC curves were plotted based on the

expression levels of the key genes (Key Genes) in the DR group

using the R package pROC. In the GEO dataset GSE60436

(Figures 1B-D), the ROC curves demonstrated that the expression

levels of the key genes (Key Genes) NOG, BMP4, BMP5, BMP7, and

RSPO1 in the DR group presented high accuracy (AUC > 0.9) in

discriminating between different groups; the expression level of the

key gene (Key Genes) BMP2 in the DR group presented certain

accuracy (0.7 < AUC < 0.9) in discriminating between different

groups; and the expression levels of the key genes (Key Genes)

BMP6, GDF5, GDF6, and GDF7 in the DR group presented low

accuracy (0.5 < AUC < 0.7) in discriminating between

different groups.
2.7 Immune infiltration analysis

The expression matrix of the GEO dataset GSE60436 was

employed to calculate the immune infiltration abundance of 28

types of immune cells via the ssGSEA algorithm. Firstly, the

expression discrepancies of the immune cell infiltration abundance

among different groups were displayed through a group comparison

chart (Figure 5A). The results demonstrated that the infiltration

abundances of six immune cells, including Activated CD4+ T cell,

Activated CD8+ T cell, CD56bright natural killer cell, Effector

memory CD8 +T cell, Natural killer T cell, and Regulatory T cell

exhibited statistically significant differences between the DR group

and the normal (Normal) group (p value < 0.05). Subsequently, the

correlation outcomes of the infiltration abundance of 28 immune
Frontiers in Endocrinology 06
cells in the GEO dataset GSE60436 were presented via a correlation

heatmap (Figure 5B). The results revealed that the majority of

immune cells were positively correlated. Then, the correlations

between 10 key genes and 28 immune cells were analyzed and

presented through a correlation heatmap (Figure 5C). The results

indicated that there was the strongest positive correlation between

the key gene GDF6 and the immune cell Activated B cell (r value =

0.82, p value < 0.05), and between the key gene BMP5 and the

immune cell Type 17 T helper cell (r value = 0.82, p value < 0.05); the

strongest negative correlation was observed between the key gene

GDF7 and the immune cell CD56dim natural killer cell (r value =

-0.94, p value < 0.01), between the key gene BMP7 and the immune

cell CD56dim natural killer cell (r value = -0.94, p value < 0.01),

between the key gene BMP4 and the immune cell CD56dim natural

killer cell (r value = -0.94, p value < 0.01), between the key gene NOG

and the immune cell Central memory CD8 T cell (r value = -0.94,

p value < 0.01), and between the key gene GDF7 and the immune

cell Gamma delta T cell (r value = -0.94, p value < 0.01).
2.8 Laboratory verification

We extracted blood from six patients with DR and six healthy

individuals. RNA was isolated from the blood and reverse

transcribed into cDNA, which was subsequently amplified using a

PCR apparatus. The obtained results were subjected to statistical

analysis via SPSS 18.0 (SPSS, Chicago, IL), revealing that the

expression of NOG protein in the blood of patients with DR was

significantly decreased compared to the normal group and the

expression levels of BMP2, BMP4, BMP6, GDF5, and GDF 6

were significantly elevated (Figure 6).
2.9 Molecular docking

Molecular docking of the Noggin protein encoded by the NOG

gene and the BMP pathway inhibitor LDN-193189 was performed

using CB-Dock2. The docking results between the Noggin protein

and its corresponding active component are presented in Figure 4.

The interaction analysis revealed a strong binding affinity between

Noggin and LDN-193189, with a Vina Score of -9.4 Kcal/mol.

Specifically, amino acids SER113, GLY114, ALA115, MET116,

PRO117, SER118, GLU119, ILE120, LEU123, LEU149, TRP150,

THR153, PHE154, CYS155, VAL157, TYR159, CYS184, SER185,

VAL186, PRO187, MET190, SER195, LYS196, SER226, GLU227,

CYS228, LYS229, and CYS230 participate in the molecular

interactions through hydrogen bonds, ionic bonds, and

hydrophobic interactions (Figure 7).
TABLE 3 Heterogeneity test of Mendelian randomization analysis of proteins on diabetic retinopathy.

exposure outcome Q Q_df Q_pval I2(%)

NOG Diabetic retinopathy 1.353852724 2 0.508176545 0
Q, Cochran Q test statistic; Q_df, Q test degree of freedom; Q_pval, Q test P values; I2 statistics reflect the heterogeneity of instrumental variable part of the proportion of the total variance in:2–0
or less, I set it to 0, showed no observed heterogeneity; I2 = 0 - 25%, suggesting mild heterogeneity; I2 = 25%-50%, indicating moderate heterogeneity; I2>50% indicated high heterogeneity. The
specific calculation formula is2 I=(q-df)/Q×100%.
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3 Discussion

DR is a serious complication of diabetes that profoundly

impacts patients’ quality of life and imposes a substantial social

and economic burden. To address the limitations of current

treatment options, we aimed to identify new drug targets for DR.

The strength of our study lies in the utilization of two-sample MR

analysis, which enables a more precise evaluation of the causal

relationship between proteins and the disease. On the basis of the

aforementioned work, we incorporated external dataset validation,

immune infiltration analysis, and laboratory experiments to verify

the correlation between the NOG protein and DR.

In this study, we leveraged a multi-faceted bioinformatics

approach. Key findings include the selection of genes with

therapeutic potential from a pool of 4479 druggable genes, the

identification of proteins related to DR through pQTL data analysis,

and the determination of causal relationships between several proteins

and the disease using two-sampleMendelian randomization (Tables 1,

2). We conducted a sensitivity analysis to establish the causal
Frontiers in Endocrinology 07
relationship between the proteins and DR (Tables 3–5). Further

validation was provided by performing SMR and colocalization

analyses (Tables 6, 7). The construction of a PPI network and

subsequent drug target analysis using DRUGBANK and DSigDB

databases have highlighted potential targets for future treatment

strategies (Tables 8, 9). These systematic explorations offer a

scientific basis for developing new therapeutic approaches for DR.

Our results indicate a robust inverse association between NOG protein

and DR, and we rigorously validated these results through diverse

sensitivity analyses.

Our study’s identification of NOG protein as a negative

regulator of DR is supported by previous research indicating its

involvement in angiogenesis and fibrosis, processes central to DR

pathology. Several researchers have reported that NOG protein

represents a potential protective factor against diabetes

complications, including retinopathy (10, 11), which aligns with

our findings (b=-0.15746, OR = 0.85, p.adjust=0.018434). These

studies, which used animal models and patient-derived samples,

reported that modulation of NOG expression influences vascular

and fibrotic pathways (12, 13). Our team, through the validation of

external datasets, immune infiltration analysis and experiments, has

demonstrated a negative correlation between the NOG protein and

DR. Conversely, some earlier studies reported no association

between NOG protein levels and diabetic complications (14),

which might be attributed to differences in study design, sample

size, or population genetics.

The NOG protein is a dimeric glycoprotein that is secreted and

encoded by the NOG gene, with a molecular weight of 64 kDa. The

NOG protein is recognized for its role in regulating BMPs (15).

Darwish et al. demonstrated an upregulation of BMP4 expression in

diabetic human patients as well as mice, which was found to impair

the function of the human retinal endothelial barrier. Furthermore,

NOG acts as an inhibitor of BMP/ALK signal transduction to

mitigate the detrimental effects of BMP4 (12). Using Akita mice

as a model, Humble J et al. conducted immunofluorescence analysis

of BMP4 and lectins in the eyes of humans and mice with and

without diabetes. The expression of BMP4 was found to be three

times higher in samples from patients with diabetes, and NOG

attenuated the effects of BMP4 on retinal endothelial cells (16). The

upregulation of BMP2 has been demonstrated in the retinas of

experimental diabetic animal models and human patients with

diabetes. It has also been shown that BMP2 is inhibited by NOG.

The inhibition of BMP2 signaling has been found to preserve retinal
TABLE 5 Protein Mendelian randomization analysis of diabetic retinopathy: Steiger directional inspection.

exposure outcome snp_r2.exposure snp_r2.outcome correct_causal_direction steiger_pval

NOG Diabetic retinopathy 0.029828269 6.14 e-05 TRUE 1.42 e-185
FIGURE 2

Scatter plots of effect estimates for different models of MR analysis
of proteins for DR. MR, Mendelian randomization; DR, Diabetic
retinopathy. Scatter plot of different Mendelian randomization
model effect estimates of NOG on diabetic retinopathy.
TABLE 4 Mendelian randomization analysis level pleiotropy test of proteins for diabetic retinopathy.

exposure outcome egger_intercept se pval

NOG Diabetic retinopathy 0.063481801 0.054578184 0.452079369
frontiersin.org

https://doi.org/10.3389/fendo.2025.1632691
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2025.1632691
endothelial cell barrier function in individuals with hyperglycemia

(17). The literature collectively suggests that NOG, as a BMP

inhibitor, effectively preserves the functional integrity of retinal

endothelial barrier and reduces the occurrence of DR. This

indirectly aligns with our experimental findings. Nevertheless, no

direct studies have reported the association between NOG and DR

prior to our investigation.

In conclusion, BMP is increasingly acknowledged as a

multifunctional regulator of angiogenesis, tissue homeostasis, and

tumorigenesis. The activation of BMP signal transduction activity

occurs in various disease contexts. There are four BMP-1 receptors:

Alk1/Acvrl1, Alk2/Acvr1, Alk3/Bmpr1a, and Alk6/Bmpr1b. BMP9/

10, which exhibits anti-angiogenic effects, demonstrates a higher

affinity for ALK1. The absence of ALK1 results in vigorous

angiogenesis, indicating that ALK1 regulates the vascular

inhibitory effect of BMP9/10 in endothelial cells. Furthermore,

ALK2, ALK3, and ALK6 bind to BMP2, BMP4, and BMP6,

respectively, to regulate angiogenic signaling. Additionally, NOG

protein serves as an inhibitory regulator of BMP and could

effectively inhibit the occurrence of DR. It could also serve as an

early diagnostic criterion for DR.

Our MR analysis has provided robust evidence for the

involvement of NOG protein in DR, suggesting a protective effect

against this complication of diabetes. Consistent estimates across

multiple models and a lack of significant bias in both heterogeneity

and pleiotropy tests reinforce the credibility of this inverse causal

relationship. The observed odds ratio of 0.85, with a 95% confidence

interval from 0.78 to 0.93 and an adjusted p-value of 0.018434,

suggests that elevated levels of NOG protein are linked to a lower

risk of developing DR. Mendelian randomization employs genetic

variants as instrumental variables to investigate whether risk factors

have a causal effect on health outcomes. However, the identified

causal relationship could potentially be influenced by reverse

causality, horizontal pleiotropy, or genetic confounding due to

linkage disequilibrium (LD). To address these concerns,

bidirectional MR was performed. The proteins initially identified

through MR analysis did not show evidence of reverse causality, a

conclusion reinforced by Steiger filtering.This approach ensures

that the observed associations are less likely to be confounded by

reverse causation or other biases, thereby strengthening the validity

of the causal inference.

Further substantiating our findings, summary data-based

Mendelian randomization (SMR) analysis yielded a significant p-

value (p_SMR = 3.62 e-04), reinforcing the notion that NOG
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expression exerts a causal influence on the pathogenesis of DR.

This is particularly noteworthy as it aligns with previous biological

insights into the role of NOG in tissue development and repair

processes, which could be pertinent to the vascular and neural

components affected in DR.

Colocalization analysis added another layer of support by

demonstrating shared genetic etiology between NOG expression

and DR (PP.H4.abf = 0.890). This high posterior probability

suggests that variants influencing NOG expression are likely to be

the same variants associated with disease risk, providing further

credence to our hypothesis.

The construction of a PPI network using the STRING database

identified several proteins related to bone morphogenetic proteins

(BMPs), including BMP2, BMP4, BMP5, BMP6, BMP7; growth

differentiation factors (GDFs) like GDF5, GDF6, GDF7; SHH; and

RSPO1. These proteins are interconnected and have known roles in

angiogenesis and tissue remodeling, processes which are critical in

the pathophysiology of DR. In addition, BMPs enhance

angiogenesis by promoting endothelial cell migration, invasion,

and proliferation. The interaction between BMP-SMAD and

Notch signaling pathways plays a critical role in determining

endothelial cell stemness during retinal angiogenesis in both

embryonic and postnatal development. Furthermore, in vitro and

in vivo studies have shown that BMP2 and BMP4 exert pro-

angiogenic effects via the VEGF-A/VEGFR2 and angiopoietin-1/

TIE2 signaling pathways. BMP signal transduction also plays a vital

role in regulating both physiological and pathological processes in

endothelial cells. It has been implicated in various conditions

characterized by vascular hyperpermeability, such as acute

inflammation and atherosclerosis.Tumor necrosis factor (TNF)-a
induces BMP2 expression in human umbilical vein endothelial cells

(HUVECs) and chondrocytes through the NFkB pathway,

indicating that BMP2 may have pro-inflammatory properties.

Elevated BMP2 expression is commonly observed in monocytes

from individuals with type 2 diabetes. Moreover, high glucose

exposure promotes human macrophages to adopt an M1

inflammatory phenotype. Consequently, increased BMP2 levels in

individuals with type 2 diabetes may contribute to heightened

inflammatory responses.These findings highlight the multifaceted

role of BMPs in both angiogenesis and inflammation, underscoring

their significance in various pathological conditions. Our research

leverages comprehensive datasets from the deCODE and MRC IEU

OpenGWAS databases to enhance the reliability of our findings.

Our multifaceted approach combining pQTL data set analysis with
TABLE 6 Results of SMR analysis of proteins for diabetic retinopathy.

Gene exposure outcome topSNP b_SMR se_SMR p_SMR

ENSG00000183691.4 NOG Diabetic retinopathy rs76164057 0.173837 0.0487455 3.62 e-04
SMR, Summary-data-based Mendelian Randomization. SNP, single nucleotide polymorphism.
TABLE 7 Results of colocalization analysis of protein and diabetic retinopathy.

exposure outcome PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf

NOG Diabetic retinopathy 4.9022 e-260 0.08559018 1.437 e-260 0.024 0.890
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GWAS data provides an integrated view of the genetic landscape

influencing DR. The use of advanced bioinformatics tools such as

the Two Sample MR package for Mendelian randomization analysis

further substantiates the credibility of our results.

After identifying the above-mentioned proteins, we conducted a

drug/compound - gene association analysis and determined that

progesterone CTD 00006624 and estradiol CTD 00005920 are

potential drugs for NOG. In our clinical work, we often find that

DR in men usually occurs earlier, is more severe, and has a worse

prognosis than in women. We consider this might be related to the

levels of estradiol and progesterone. Chen Ying et al. conducted

research on female and male mice and found that diabetes inflicts

less neurovascular damage in females. They also performed
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experiments on human females and observed that the prevalence

of DR in premenopausal women is significantly reduced. This study

strongly emphasizes the importance of estradiol in protecting the

retina (18). Regarding this aspect, our team will further conduct

clinical research.

In order to gain deeper insights into the relationship between

NOG protein and DR, our research group isolated RNA from blood

samples obtained from patients with confirmed diagnoses of DR.

Following this, we carried out reverse transcription and subsequently

performed quantitative PCR analysis on the extracted RNA. The

results indicated a significant reduction in the expression of NOG

protein among patients with DR, while the expression levels of BMP2,

BMP4, BMP6, GDF5, and GDF6 were notably elevated. Although the

sample size was limited, our observations aligned well with those

derived from earlier bioinformatics studies, thereby strengthening the

link between NOG protein and the development of DR. Additionally,

our findings validated previously reported experimental data,

establishing a negative correlation between NOG protein expression

and the expression levels of BMP2, BMP4, BMP6, GDF5, and GDF6.

Collectively, these outcomes provide support for the notion that NOG

protein could act as a protective factor in the context of DR. Of course,

we cannot directly determine the regulation of NOG on the retina by

collecting NOG mRNA from blood. However, blood sampling is a

relatively acceptable method for patients. Next, we may collect

vitreous humor for further experiments to increase the credibility of

the experiment.

To obtain more potential drugs that may act on the NOG

protein, we conducted molecular docking of the NOG protein with

BMP inhibitors and found that LDN-193189 has a strong binding

force with the NOG protein. This indicates that the NOG protein

and LDN-193189 have strong structural complementarity. Their

strong binding may alter the function and role of the NOG protein,

which might provide some new ideas for the treatment of DR.

Despite the promising results obtained, this study has several

limitations that should be acknowledged. First, the laboratory

experiments conducted had a limited number of samples, which
FIGURE 3

PPI network analysis. PPI network, Protein - Protein interaction
network. In the figure, nodes represent proteins, and the color of
the line from blue to red indicates the degree of correlation
between nodes from small to large.
TABLE 8 Drug information of patent drug-related targets in DRUGBAN.

target uniprot drugbank ID name durg group Pharmacological action actions

BMP2 P12643 NA NA NA NA NA

BMP4 P12644 DB01373 Calcium nutraceutical unknown NA

BMP5 P22003 NA NA NA NA NA

BMP6 P22004 NA NA NA NA NA

BMP7 P18075 NA NA NA NA NA

GDF5 P43026 NA NA NA NA NA

GDF6 Q6KF10 NA NA NA NA NA

GDF7 Q7Z4P5 NA NA NA NA NA

NOG Q13253 NA NA NA NA NA

SHH Q15465 NA NA NA NA NA

RSPO1 Q2MKA7 NA NA NA NA NA
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TABLE 9 Predicted drug candidates/compounds using DSigDB.

Term P.value Adjusted.P.value Old.P.value Old.Adjusted.P.value Odds.Ratio Combined.Score Genes

0 600.6015 12944.95 BMP4; BMP2; BMP7; BMP6

0 118.4107 1833.191 BMP4; BMP2; BMP7; BMP6

0 98.7528 1459.7 BMP4; BMP2; BMP7; BMP6

0 128.8642 1590.068 BMP4; BMP2; BMP6

0 113.1989 1354.532 BMP2; GDF5; BMP6

0 85.78448 957.7644 BMP4; BMP2; BMP7

0 403.596 4339.904 BMP2; SHH

0 53.16696 519.9225 BMP2; BMP7; BMP6

0 134.3838 1172.878 BMP2; BMP5

0 134.3838 1172.878 BMP2; BMP7

0 12.2007 96.76978 BMP4; BMP2; SHH; BMP6; BMP5

0 73.81111 559.4599 BMP4; BMP2

0 70.28571 526.1064 BMP2; BMP7

0 68.11624 505.7478 BMP4; BMP2

0 56.00563 394.663 BMP4; BMP2

0 53.94851 376.2673 BMP4; BMP2

0 17.55772 116.0492 BMP4; BMP2; BMP6

(Continued)
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Nandrolone phenpropionate BOSS 3.81 e-07 2.49 e-05 0

Electrocorundum CTD 00005364 4.38 e-06 0.000214 0
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Heparitin BOSS 1.42 e-05 0.000463 0

4-(2-Aminoethyl)benzenesulfonyl fluoride CTD
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may introduce potential biases. These experiments are essential for

verifying computational predictions in a biological setting. Second,

the relatively small sample size could affect the reliability and

broader applicability of the findings. Third, the absence of clinical

validation represents a significant gap, as such validation is critical

for corroborating the study’s outcomes. More importantly, this

study primarily utilized the GSE60436 dataset to analyze the

correlation between key genes and immune cells. However, the

lack of validation across additional datasets constitutes a limitation

of the current analysis.

In conclusion, we successfully identified potential drug targets

and associated drugs for the treatment of DR through a

comprehensive bioinformatics approach. By integrating pQTL

data, GWAS data, and PPI networks, we pinpointed proteins with

causal relationships to DR and high colocalization probabilities. The

identified drug candidates provide a promising starting point for

future therapeutic development. These findings could pave the way

for more targeted and effective treatments for DR, pending further

validation through wet lab experiments and clinical trials.
4 Methods

4.1 Druggable gene selection

We learned from the druggable genome and support for target

identification and validation in drug development (19) for

medicine, a total of 4479 genes (Appendix Supplementary Table

S1). We then divided the genes into three groups based on their

properties and functions. The first group comprised 1427 genes,

which included the efficacy targets of approved small molecule and

biological therapeutic drugs, as well as those of drug candidates in

clinical stages. The second group consisted of 682 genes that

encoded targets with known bioactive small molecule binding

partners and exhibited at least 50% sequence identity to approved

drug targets. The third group included 2370 genes encoding

proteins or extracellular proteins that showed lower similarity to

approved drug targets and were not part of the first or second

groups. These genes represent potential drug targets that have not

yet been extensively explored.This classification helps to stratify

genes based on their relevance and potential for therapeutic

intervention, highlighting those with established therapeutic

significance and those that warrant further investigation.
4.2 pQTL dataset

To investigate the correlation between genetic mutations and gene

expression using protein expression as a trait, we employed protein

quantitative trait loci (pQTL) analysis. For our preliminary analysis, we

utilized cis-pQTL data reported by Zheng et al. (20), which included

738 cis-SNPs associated with 734 proteins (see Appendix

Supplementary Table S2). This dataset helped us screen for

pharmaceutically viable proteins for further investigation.

Subsequently, we accessed filtered protein pQTL data from a large-
T
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scale integration of the plasma proteome with genetics and diseases

(20), specifically using the deCODE 4674 protein database. These data

served as the primary pQTL resource to identify potential drug targets

for DR.The selection criteria for cis-pQTL variants were as follows:

adjusted p-value < 5e-08; exclusion of SNPs within the major

histocompatibility complex (MHC) region; and identification of

SNPs located within 500KB upstream or downstream of the gene,

while removing those with linkage disequilibrium r² < 0.001. The

selected datasets were derived from individuals of European

ancestry.This approach allowed us to systematically evaluate genetic

associations with protein expression, thereby enhancing our ability to

pinpoint promising drug targets for DR.
4.3 Outcome dataset

We obtained the GWAS ID of DR (finn-b-DM_RETINOPATHY)

from the MRC IEU OpenGWAS (21) database, and standardized

association summary statistics were obtained from the R-packet
Frontiers in Endocrinology 12
TwoSampleMR (7) for use as outcomes. A total of 14584 DR

experimental samples and 20–082 control samples were included.
4.4 Two-sample MR

We performed a two-sampleMR analysis using the

TwoSampleMR package, with the pharmaceutically available

protein studied by Zheng et al (20) as the exposure factor and DR

as the outcome. We used Wald thewire method evaluation contains

only one SNP exposed Mendelian randomization results, using

inverse variance weighted (IVW) method to evaluate the samples

containing two or more exposed MR results of SNP. We used

TwoSampleMR heterogeneity inspection, pleiotropic test, and a

method of analysis, and then used the inspection for a Steiger

directionality test to judge the correctness of the causal direction.

After selecting the proteins with significant causal relationships

with DR, the pQTL data of the corresponding proteins were

downloaded from the deCODE database as the exposure factors
FIGURE 4

Differential expression validation of key genes in GSE60436 in DR and normal group. (A) The group comparison graph of key genes (Key Genes) in
the diabetic retinopathy (DR) group and the normal (Normal) group in GSE60436. B-D. The ROC curves of key genes (Key Genes) NOG, BMP2,
BMP4 and BMP5 (B), BMP6, BMP7, GDF5 and GDF6 (C), GDF7 and RSPO1 (D) in the DR group. DR, diabetic retinopathy; ROC, Receiver Operating
Characteristic; AUC, Area Under the Curve; TPR, True Positive Rate; FPR, False Positive Rate. * Denotes p value < 0.05, which is statistically
significant; ns denotes p value ≥ 0.05, which is not statistically significant. In the group comparison graph, blue represents the normal (Normal)
group and red represents the DR group. When the AUC exceeds 0.5, it suggests that the molecule’s expression is associated with a trend that
promotes the event’s occurrence. As the AUC approaches 1, the diagnostic performance improves. An AUC in the range of 0.5 to 0.7 indicates
limited accuracy, while an AUC between 0.7 and 0.9 suggests moderate accuracy. An AUC greater than 0.9 signifies high accuracy.
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and DR as the outcome, and then two-sample MR analysis was

performed. Using the same method, we used the Wald thewire

method evaluation contains only one SNP exposed Mendelian

randomization results, using the IVW method to evaluate contain

two or more exposed Mendelian randomization result of SNP. We

used TwoSampleMR heterogeneity inspection, pleiotropic test and a

method of analysis, and then used the inspection for directional

steiger, direction, judged the correctness of the causal direction.
4.5 Analysis of SMR

In prior studies, SMR (22) leverages GWAS summary data and

expression QTL studies to evaluate pleiotropic associations between

baseline protein expression levels and complex traits of interest. The

HEIDI (Heterogeneity in Dependent Instruments) test is employed

to assess potential horizontal pleiotropy by examining whether
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there is heterogeneity in the instrumental variable signals. For our

analysis, we downloaded the Linux version (1.3.1) of SMR from the

official website (https://yanglab.westlake.edu.cn/software/smr) and

performed the SMR analysis using default parameters.This

approach allows for a robust evaluation of genetic associations

between protein expression and complex traits while accounting for

potential pleiotropic effects.
4.6 Positioning analysis

We utilized the coloc package for conducting colocalization

analysis. This package employs a Bayesian approach to evaluate

support for five mutually exclusive hypotheses: first, SNP is

uncorrelated with trait1 and trait2; second, a relationship exists

between SNP and trait1; third, SNP is associated with trait2; fourth,

SNP is related to both trait1 and trait2 as independent SNPs; fifth,
FIGURE 5

Immune infiltration analysis by ssGSEA algorithm. (A) Group comparison chart of immune cells in the DR group and the normal (Normal) group in the
GEO dataset GSE60436. (B) Correlation heatmap of immune cell infiltration abundance in the GEO dataset GSE60436. (C) Correlation heatmap of
key genes (Key Genes) with immune cell infiltration abundance in the GEO dataset GSE60436. ssGSEA, single-sample Gene-Set Enrichment Analysis;
DR, diabetic retinopathy. ns indicates p value ≥ 0.05, no statistical significance; * indicates p value < 0.05, statistically significant; ** indicates p value
< 0.01, highly statistically significant; *** indicates p value < 0.001, extremely statistically significant. A correlation coefficient (r value) absolute value
below 0.3 is considered weak or not correlated, between 0.3 and 0.5 is weakly correlated, between 0.5 and 0.8 is moderately correlated, and above
0.8 is strongly correlated. In the group comparison chart, blue represents the normal (Normal) group and red represents the DR group. Red indicates
positive correlation and blue indicates negative correlation. The depth of color represents the strength of the correlation.
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common SNPs are linked to both trait1 and trait2. The posterior

probabilities for each hypothesis test are denoted as H0, H1, H2,

H3, and H4, respectively. Each tests the a posteriori probability of

H0, H1, H2, H3, and H4. To estimate the shared variable posterior
Frontiers in Endocrinology 14
probability, which is chosen for each protein, we retrieved its

topSNP upstream and downstream all SNPs within 500 KB for

positioning analysis, and we found that the PH4 > 0.8 for GWAS

and pQTL provided evidence of positioning.
FIGURE 6

The discrepancy of NOG, BMP4, BMP2, GDF5, BMP6, GDF6 expression in the blood between patients with diabetic retinopathy and normal
individuals(*p<0.05).
FIGURE 7

Molecular docking of noggin and LDN-193189. The visualization of the docking results of Noggin protein and LDN-193189, from left to right, are the
global docking map and the interaction force map. The color of the protein surface gradually changes from green, orange to red, indicating the
change of amino acid properties from hydrophilic to hydrophobic. Blue dotted line — hydrogen bond, light blue dotted line — weak hydrogen bond,
gray dotted line — hydrophobic interaction force, cyan dotted line — halogen bond, yellow dotted line — ionic bond.
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4.7 Drug targets

A protein-protein interaction (PPI) network comprises

individual proteins that interact with one another. The STRING

database (23) provides a platform for exploring both known and

predicted protein interactions. In this study, we utilized the

STRING database to construct a PPI network specific to human

proteins. We identified proteins that interacted with druggable

targets, using a minimum correlation coefficient of greater than

0.900 as the threshold. To build and visualize this network, we

employed the R packages `igraph` and `ggraph`.This methodology

allowed us to systematically identify and map high-confidence

interactions between proteins and druggable targets. By

visualizing these interactions, we aimed to gain deeper insights

into the functional relationships within the network, facilitating a

more comprehensive understanding of potential therapeutic targets.

After that, we searched DRUGBANK (24) and obtained the

drugs corresponding to all the proteins contained in PPI and their

modes of action. The selected drugs can be used for the later

treatment of DR. Characteristics of drug database (DSigDB) is an

Enrichr platform (https://maayanlab.cloud/Enrichr/) in the

database; it is mainly used for the correlation analysis of drugs

and compound with gene expression (25). Understanding the

effects of drugs on the expression of specific genes is promising

for determining the potential therapeutic effects of existing drugs

and compounds in new disease areas, thereby facilitating the

discovery and application of new drugs. All the proteins included

in PPI were input into DSigDB of the Enrichr platform, and their

associations with different drugs and compounds was analyzed.
4.8 Statistical methods

All data processing and statistical analyses in this study were

performed in the R software environment (version 4.2.2; https://

www.r-project.org/). The main analytical methods included two-

sample Mendelian randomization (MR), summary-data-based

Mendelian randomization (SMR), colocalization analysis (coloc),

and protein-protein interaction (PPI) network construction and

enrichment analysis. Specifically, in the MR analysis, we used the

Wald ratio method (for single instrumental variable) and the

inverse variance weighted (IVW) method (for multiple

instrumental variables) to estimate the causal relationship

between exposure (protein) and outcome (disease). Heterogeneity

among instrumental variables was assessed using Cochran’s Q test,

while horizontal pleiotropy was evaluated using MR-Egger

regression. Sensitivity analysis was conducted via leave-one-out

validation. The Steiger test was applied to verify the direction of

causality. SMR analysis incorporated the HEIDI test to exclude

potential pleiotropic effects and further validate the association

between protein and disease. Colocalization analysis was performed

using the coloc package with a Bayesian framework to determine

whether pQTL and GWAS signals shared the same causal variant

(26). The PPI network was constructed using the STRING database

with an interaction confidence threshold of > 0.900, and visualized
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using the igraph and ggraph packages. Drug-gene association

analysis was performed using the DSigDB database, with a

significance threshold of adjusted p-value (FDR) < 0.05. Unless

otherwise stated, the statistical significance level was set at P < 0.05,

and multiple testing correction was performed using the

Bonferroni method.
4.9 The verification of the expression
differences of key genes in the normal
group and diseases

To further verify the expression differences of key genes in the

DR group and the normal group in the GEO dataset GSE60436,

group comparison plots were drawn based on the expression levels

of key genes. Finally, the R package pROC (27) (Version 1.18.5) was

used to draw the ROC curves of key genes and calculate the area

under the curve (AUC) values to evaluate the diagnostic efficacy of

the expression levels of key genes for the occurrence of DR. The

AUC of the ROC curve is generally between 0.5 and 1. The closer

the AUC is to 1, the better the diagnostic effect. When the AUC is

between 0.5 and 0.7, the accuracy is low; when it is between 0.7 and

0.9, the accuracy is moderate; and when it is above 0.9, the accuracy

is high.
4.10 Immune infiltration analysis

Single-Sample Gene Set Enrichment Analysis (ssGSEA) (28) is a

method used to quantify the relative abundance of immune cell

infiltration in individual samples. In this study, we first identified

and labeled various human immune cell subtypes, including

activated CD8 T cells, activated dendritic cells, gd T cells, natural

killer cells, regulatory T cells, and others. Using ssGSEA, we

calculated enrichment scores to represent the relative abundance

of each immune cell type in each sample, generating an immune cell

infiltration matrix.Next, we utilized the R package `ggplot2`

(version 3.4.4) to create comparison plots that highlighted the

differences in immune cell expression between the DR group and

the normal control group within the GEO dataset GSE60436.

Immune cells showing significant differences between these two

groups were selected for further analysis.To explore the

relationships among immune cells, we computed their

correlations using the Spearman algorithm and visualized the

results with a heatmap generated by the R package `pheatmap`

(version 1.0.12). This heatmap displayed the correlation analysis

outcomes among the immune cells themselves.Additionally, we

assessed the correlation between model genes and immune cells

using the Spearman algorithm, retaining only those results with a p-

value < 0.05. Finally, we used `ggplot2` (version 3.4.4) to generate a

correlation bubble chart, illustrating the relationships between

model genes and immune cells.This comprehensive approach

allowed us to systematically analyze and visualize the interactions

between immune cells and model genes, providing valuable insights

into the immune landscape in DR.
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4.11 Molecular docking

To further analyze the interaction mechanism between the

NOG gene-encoded Noggin protein and the BMP pathway

inhibitor: LDN-193189, we conducted molecular docking of the

NOG gene-encoded Noggin protein and its corresponding small

molecule compound using the CB-Dock2 website. CB-Dock2 is an

improved version of the CB-Dock server for protein-ligand blind

docking, integrating cavity detection, docking, and homology

template fitting. Based on the three-dimensional (3D) structures

of the protein and ligand, we predicted their binding sites and

affinities, thereby achieving computer-aided drug discovery.

Firstly, we downloaded the molecular structure of the drug

LDN-193189 (CID: 25195294) from the PubChem database

(https://pubchem.ncbi.nlm.nih.gov). Subsequently, we obtained

the X-ray crystal structure of Noggin (PDB code: 1M4U) from

the PDB (Protein Data Bank) structure database (https://

www.rcsb.org/). Finally, we used the AutoDock vina program on

the CB-Dock2 website to perform blind docking and visualization

of the NOG gene-encoded Noggin protein and its corresponding

small molecule compound. The docking score of AutoDock Vina,

Vina Score, indicates the strength of the binding force. A Vina Score

> -4 Kcal/mol is considered to have a very weak binding force or no

binding force; -7 Kcal/mol < Vina Score < -4 Kcal/mol is defined as

a moderate binding force; and a Vina Score < -7 Kcal/mol is defined

as a standard with a strong binding force.
4.12 Laboratory validation

Patients hospitalized in our hospital in December 2024 were

recruited. The research subjects comprised 6 cases in the type 2 DR

(DM) group; 6 patients who underwent cataract surgery in our

hospital during the same period were selected as the blank control

group. 1. Inclusion criteria: All enrolled patients were diagnosed

with type 2 DR (DM) after mydriasis and ophthalmoscopy by

professional ophthalmologists in our hospital. 2. Exclusion criteria:

(1) Type 1 diabetes, special type diabetes or accompanied by acute

complications of diabetes; (2) Acute or chronic infections, patients

with severe traumas; (3) Tumors, hematological diseases,

cardiovascular and cerebrovascular disorders; (4) History of

treatment with corticosteroids or immunosuppressants and

rheumatism and immune-related diseases or other endocrine and

metabolic disorders; (5) Pregnancy, lactation or long-term use of

contraceptives; (6) Uveitis, glaucoma, retinal diseases and macular

degeneration and other ocular diseases.

Sample pretreatment for RNA extraction from blood samples:

The blood samples placed in the collection tubes containing

anticoagulants were stored in an -80°C freezer. Thus, the blood

samples should be retrieved in advance and thawed at

room temperature.
Fron
1. Sample processing: Prepare a 1.5 mL centrifuge tube (EP),

add 300 mL of whole blood and 800 mL of RNA extraction

reagent (Trizol) (Cayin Innovation Biotechnology Co., Ltd.)
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into it. Vigorously vortex for more than 30 seconds and let

it stand on ice at 0°C for 5 minutes.

2. Separation: Add 160 mL of chloroform substitute BCP

(Cayin Innovation Biotechnology Co., Ltd.), vigorously

vortex for 15 seconds, and let it stand on ice at 0°C for 2

minutes. Then, centrifuge at 12,000 g and 4°C for

10 minutes.

3. Precipitation: Transfer the upper aqueous phase to a new

EP tube. Precipitate the RNA in the aqueous phase with

isopropanol by adding 400 mL of isopropanol. Let it stand at
room temperature for 10 minutes, and centrifuge at 12,000

g and 4°C for 10 minutes. Discard the supernatant carefully

while retaining the precipitate on the sides and bottom of

the tube.

4. Washing: Wash the RNA precipitate with 75% ethanol

(prepared with DEPC water). For every 1 mL of

RNAkeyTM Reagent used, add 1 mL of 75% ethanol.

Gently mix by pipetting, centrifuge at 12,000 g and 4°C

for 10 minutes. Discard the supernatant carefully while

retaining the precipitate on the sides and bottom of the

tube. Open the tube cap and let it stand at room

temperature for 5 to 10 minutes to air-dry the

RNA precipitate.

5. Dissolution: Add an appropriate amount of RNase-free

H2O or DEPC H2O and gently pipette several times to

dissolve the RNA. Store at -80°C.

6. RNA reverse transcription reaction: Utilize the kit (Wuhan

Saiwei Biotechnology Co., Ltd.). According to the manual,

the preparation of the reverse transcription reaction system

must be conducted on ice. Prepare a 20 mL system as per the

instructions. Mix well by repeated pipetting. Then, place

the samples in the reverse transcription instrument for the

reverse transcription reaction (reaction conditions: 5

minutes at 25°C, 20 minutes at 42°C, and 5 seconds at

85°C). The resulting samples are cDNA.

7. Real-time fluorescence quantitative PCR: Employ the kit

(Cayin Innovation Biotechnology Co., Ltd.). Based on the

manual, prepare the PCR reaction system on ice (see

Table 10 below), mix uniformly, and then promptly

transfer it to the PCR instrument. The amplification

reaction conditions are carried out as per the

instructions.HPRT1 was utilized as the internal reference

gene. With b-actin serving as the internal reference gene,

the required primer sequences are as follows: b-actin:
u p s t r e am 5 ´ -AAGGCCAACCGCGAGAA- 3 ´ ,

downstream 5´-ATGGGGGAGGGCATACC-3´; NOG:

upstream 5´-CGCCCTGGAGTAATTTCGGA-3´,

downstream 5´-GCGGAAGAAAGGCACACAAG-3´;

Gdf5: upstream 5´-GCTGGGAGGTGTTCGACATC-3´,

downstream 5´-CACGGTCTTATCGTCCTGGC-3´;

Gdf6: upstream 5´-CACGAGTACATGCTGTCAATCT-

3´, downstream 5´-CGTATTAGCCGACTTGGAAGAC-

3´; Bmp2: upstream 5´-ACCCGCTGTCTTCTAGCGT-

3´, downstream 5´-TTTCAGGCCGAACATGCTGAG-3´;

Bmp4: upstream 5´-ATGATTCCTGGTAACCGAATGC-
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Fron
3´, downstream 5´-CCCCGTCTCAGGTATCAAACT-3´;

Bmp6: upstream 5´-AGCGACACCACAAAGAGTTCA-

3´, downstream 5´-GCTGATGCTCCTGTAAGACTTGA-

3´. The relative expression level of NOG, BMP2,BMP4,

BMP6, GDF5, and GDF 6 were calculated by the 2-DDCt
method. Three replicate wells were set for each sample, and

the average of the three measurement results was taken.

8. Statistical analysis was conducted using SPSS 18.0 (SPSS,

Chicago, IL) statistical software. The qPCR measurement

results of each group were represented as x ± s. The t-test

was employed for the comparison of means between

groups. The significance level for statistical tests was set

at 0.05. GraphPad Prism 10.1.2 software was utilized

for plotting.
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TABLE 10 The PCR reaction system.

reagent volume final concentration

2×SYBRGreenqPCRMasterMixII 10UL 1×

ForwardPrimer(10uM) 0.4UL 0.20uM

ReversePrimer(10uM) 0.4UL 0.20uM

TemplateDNA Variable Asrequired

Nuclease-FreeWater Upto20uL
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10. Csősz É, Deák E, Kalló G, Csutak A, Tőzsér J. Diabetic retinopathy: Proteomic
approaches to help the differential diagnosis and to understand the underlying
molecular mechanisms. J Proteom. (2017) 150:351–8. doi: 10.1016/j.jprot.2016.06.034

11. Yurekli BS, Kocabas GU, Aksit M, Kutbay NO, Suner A, Yurekli I, et al. The low
levels of bone morphogenic protein-4 and its antagonist noggin in type 2 diabetes.
Hormones (Athens). (2018) 17:247–53. doi: 10.1007/s42000-018-0041-5

12. Darwish NHE, Hussein KA, Elmasry K, Ibrahim AS, Humble J, Moustafa M,
et al. Bone morphogenetic protein-4 impairs retinal endothelial cell barrier, a potential
role in diabetic retinopathy. Cells. (2023) 12:1279. doi: 10.3390/cells12091279

13. Al-Shabrawey M, Hussein K, Wang F, Wan M, Elmasry K, Elsherbiny N, et al.
Bone morphogenetic protein-2 induces non-canonical inflammatory and oxidative
pathways in human retinal endothelial cells. Front Immunol. (2021) 11:568795.
doi: 10.3389/fimmu.2020.568795

14. Abhary S, Hewitt AW, Burdon KP, Craig JE. A systematic meta-analysis of
genetic association studies for diabetic retinopathy. Diabetes. (2009) 58:2137–47.
doi: 10.2337/db09-0059
Frontiers in Endocrinology 18
15. Krause C, Guzman A, Knaus P. Noggin. Int J Biochem Cell Biol. (2011) 43:478–
81. doi: 10.1016/j.biocel.2011.01.007

16. Humble J, Darwish N, Elmasry K, Moustafa M, Awadalla F, Ibrahim A, et al. Bone
Morphogenic Protein 4 (BMP4); a potential player in diabetic retinopathy[J. Invest
Ophthalmol Visual Sci. (2023) 64:937–7.

17. Al-Shabrawey M, Hussein K, Wang F, Wan M, Elmasry K, Elsherbiny N, et al.
Bone morphogenetic protein-2 induces non-canonical inflammatory and oxidative
pathways in human retinal endothelial cells[J. Front Immunol. (2021) 11:568795.
doi: 10.3389/fimmu.2020.568795

18. Chen Y, Schlotterer A, Lin J, Dietrich N, Fleming T, Lanzinger S, et al. Sex
differences in the development of experimental diabetic retinopathy. Sci Rep. (2024)
14:22812. doi: 10.1038/s41598-024-73279-x

19. Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J, et al. The
druggable genome and support for target identification and validation in drug
development. Sci Transl Med . (2017) 9(383):eaag1166. doi : 10.1126/
scitranslmed.aag1166

20. Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, et al.
Phenome-wide Mendelian randomization mapping the influence of the plasma
proteome on complex diseases. Nat Genet. (2020) 52:1122–31. doi: 10.1038/s41588-
020-0682-6

21. Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, et al. The MRC
IEU OpenGWAS data infrastructure. bioRxiv. (2020) 2020.08.10.244293. doi: 10.1101/
2020.08.10.244293

22. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of
summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat
Genet. (2016) 48:481–7. doi: 10.1038/ng.3538

23. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al.
STRING v11: protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic Acids
Res. (2019) 47:D607–13. doi: 10.1093/nar/gky1131

24. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank
5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. (2018) 46
(D1):D1074–82. doi: 10.1093/nar/gkx1037

25. Yoo M, Shin J, Kim J, Ryall KA, Lee K, Lee S, et al. DSigDB: drug signatures
database for gene set analysis. Bioinformatics. (2015) 31:3069–71. doi: 10.1093/
bioinformatics/btv313

26. Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI,
Styrmisdottir EL, et al. Large-scale integration of the plasma proteome with
genetics and disease. Nat Genet. (2021) 53:1712–21. doi: 10.1038/s41588-021-
00978-w

27. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an
open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf.
(2011) 12:77. doi: 10.1186/1471-2105-12-77

28. Xiao B, Liu L, Li A, Xiang C,Wang P, Li H, et al. Identification and verification of
immune-related gene prognostic signature based on ssGSEA for osteosarcoma. Front
Oncol. (2020) 10:607622. doi: 10.3389/fonc.2020.607622
frontiersin.org

https://doi.org/10.2337/dc11-1909
https://doi.org/10.1016/S0140-6736(09)62124-3
https://doi.org/10.1016/S2213-8587(19)30411-5
https://doi.org/10.1002/dmrr.3721
https://doi.org/10.1016/j.ajo.2018.07.030
https://doi.org/10.1111/jdi.12655
https://doi.org/10.1016/j.xcrm.2023.101174
https://doi.org/10.1093/hmg/ddr121
https://doi.org/10.1093/hmg/ddu328
https://doi.org/10.1093/hmg/ddu328
https://doi.org/10.1016/j.jprot.2016.06.034
https://doi.org/10.1007/s42000-018-0041-5
https://doi.org/10.3390/cells12091279
https://doi.org/10.3389/fimmu.2020.568795
https://doi.org/10.2337/db09-0059
https://doi.org/10.1016/j.biocel.2011.01.007
https://doi.org/10.3389/fimmu.2020.568795
https://doi.org/10.1038/s41598-024-73279-x
https://doi.org/10.1126/scitranslmed.aag1166
https://doi.org/10.1126/scitranslmed.aag1166
https://doi.org/10.1038/s41588-020-0682-6
https://doi.org/10.1038/s41588-020-0682-6
https://doi.org/10.1101/2020.08.10.244293
https://doi.org/10.1101/2020.08.10.244293
https://doi.org/10.1038/ng.3538
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/bioinformatics/btv313
https://doi.org/10.1093/bioinformatics/btv313
https://doi.org/10.1038/s41588-021-00978-w
https://doi.org/10.1038/s41588-021-00978-w
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.3389/fonc.2020.607622
https://doi.org/10.3389/fendo.2025.1632691
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Development of targeted drugs for diabetic retinopathy using Mendelian randomized pharmacogenomics
	1 Introduction
	2 Results
	2.1 Technology roadmap
	2.2 MR analysis of pharmaceutically available proteins
	2.3 Sensitivity analysis of protein and DR
	2.4 SMR analysis and colocalization analysis
	2.5 Drug targets
	2.6 Validation of the expression discrepancies of key genes in the normal group and diseases group
	2.7 Immune infiltration analysis
	2.8 Laboratory verification
	2.9 Molecular docking

	3 Discussion
	4 Methods
	4.1 Druggable gene selection
	4.2 pQTL dataset
	4.3 Outcome dataset
	4.4 Two-sample MR
	4.5 Analysis of SMR
	4.6 Positioning analysis
	4.7 Drug targets
	4.8 Statistical methods
	4.9 The verification of the expression differences of key genes in the normal group and diseases
	4.10 Immune infiltration analysis
	4.11 Molecular docking
	4.12 Laboratory validation

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


