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Objectives: Trauma-induced coagulopathy (TIC) is an acute coagulation
disorder characterized by massive bleeding following trauma and is a leading
cause of mortality. However, current clinical methods are inadequate for
predicting TIC onset, and reliable biomarkers for early diagnosis are lacking.
This study aimed to identify potential biomarkers with high sensitivity and
specificity for TIC using an untargeted metabolomics approach.

Methods: We analyzed serum samples from 54 trauma patients (27 with TIC and
27 without TIC) and 27 healthy controls. All samples were collected within 24
hours post-trauma. Metabolomic profiling was conducted using liquid
chromatography-tandem mass spectrometry (LC-MS).

Results: Metabolite profiles differed significantly between the TIC and non-TIC
groups. Two metabolites, LysoPE(20:4(82,117,147,177)/0:0) (AUC = 0.933, 95%
Cl: 0.849-0.995) and LysoPE(0:0/18:2(97,127)) (AUC = 0.916, 95% Cl: 0.818-
0.914), were identified as potential biomarkers for distinguishing TIC. The
diagnostic performance of these metabolites surpassed that of both
conventional coagulation tests and admission assessment scores.

Conclusion: Two LysoPE metabolites were identified as promising biomarkers
for the early detection of TIC.

KEYWORDS

liquid chromatography-tandem mass spectrometry (LC-MS), lysophosphatidylethanolamine
(LysoPE), metabolomics, trauma, trauma-induced coagulopathy (TIC)
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1 Introduction

Trauma is a leading cause of mortality worldwide (1).
Uncontrolled hemorrhage, which is closely associated with trauma-
induced coagulopathy (TIC), is the most common cause of early post-
traumatic death (2-4). TIC is a coagulation disorder syndrome
occurring in the early phase following trauma (5), characterized
initially by a hypocoagulable state presenting as massive bleeding,
followed by a late hypercoagulable phase manifesting as excessive
coagulation associated with venous thrombosis and multiple organ
failure (6). TIC is significantly correlated with increased mortality,
greater transfusion requirements, and multiple organ dysfunction (4,
7). Epidemiological studies indicate that approximately 25%-33% of
severely injured patients present with TIC upon hospital admission
(8). The case fatality rate is four to six times higher than that of
patients without coagulation disorders (9), with its pathogenesis
involving multiple factors, including endothelial injury, coagulation
factor depletion, hyperfibrinolysis, and metabolic disturbances (6).

Clinical diagnosis of TIC primarily relies on conventional
coagulation tests (e.g., PT, APTT). While these methods are well-
established, they have notable limitations: prolonged turnaround
times and an inability to comprehensively assess thrombin
generation and fibrinolytic system status (6, 10). Consequently,
identifying early diagnostic biomarkers for TIC using metabolomics
holds significant promise for improving patient outcomes and
reducing mortality (11, 12).

Studies have shown that traumatic brain injury (TBI) is
associated with enriched gene expression in coagulation/
complement cascades and neuronal markers, as well as elevated
levels of glycolytic metabolites and conjugated bile acids (13). In
TBI patients with dural invasion, significant increases were
observed in blood metabolites involved in late glycolysis, cysteine
and one-carbon metabolism, as well as those related to endothelial
dysfunction, arginine metabolism, and hypoxia response (14).
Currently, no metabolomics studies have focused specifically on
whether trauma patients develop TIC. The pathogenesis of TIC
leads to alterations in peripheral blood metabolites, and
metabolomics research could facilitate further investigation into
TIC's pathological mechanisms, potentially uncovering novel
mechanisms. Furthermore, no reliable biomarkers are currently
available to identify trauma patients who develop TIC, and the
associated metabolic pathways remain largely unexplored.
Metabolomics, an interdisciplinary approach that systematically
analyzes the dynamic changes of small molecule metabolites
within biological systems, can reveal aberrant metabolic pathways
underlying disease initiation and progression, and has been widely
employed to explore diagnostic or prognostic biomarkers for
various diseases (15). Existing detection methods fail to predict
TIC onset, posing challenges for early diagnosis. The identification

Abbreviations: TIC, Trauma-induced coagulopathy; PCA, principal component
analysis; OPLS-DA, orthogonal partial least-squares discrimination analysis;
PLS-DA, partial least-squares discrimination analysis; VIP, variable importance
in projection; FC, fold change; ROC, receiver operating characteristic; AUC, area

under the curve; LysoPE, lysophosphatidylethanolamine.
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of robust biomarkers is crucial for early clinical recognition of TIC
patients and improvement of their outcomes. This study employs
metabolomics to investigate clinically meaningful biomarkers for
early TIC identification. Furthermore, based on differential
metabolites, we aim to elucidate significant metabolic pathways
involved in TIC pathogenesis.

2 Methods
2.1 Clinical samples

This study was conducted in accordance with the Declaration of
Helsinki and approved by the Ethics Committee of Hunan
Provincial People's Hospital, Changsha, China ([2024]-01).
Between September 2022 and December 2023, a total of 81 serum
samples were collected at the Yuelushan Branch of Hunan
Provincial People's Hospital, including 54 from trauma patients
(27 with TIC and 27 without TIC) and 27 from healthy controls. All
trauma patient samples were obtained within 24 hours after trauma.

This study employed a retrospective case-control design. The case
group (TIC group) consisted of all eligible TIC patients (n = 27). To
construct a comparable control group, an individual matching strategy
was adopted. From trauma patients admitted during the same period
who met the inclusion criteria but did not develop TIC, one non-TIC
control was matched to each TIC patient based on the following key
prognostic factors strongly associated with TIC occurrence: age,
diabetes, hypertension, coronary heart disease, and admission scores
for trauma patients. However, due to limitations in the available sample
pool, matching for sex was not feasible, resulting in a difference in sex
distribution between the two groups (Table 1).

Diagnostic criteria for TIC (16) (1): Laboratory findings (meeting
at least one of the following): PT > 18 s, APTT > 60 s, TT > 15 s, PTr >
1.6; (2) Clinical presentation: Active or potential bleeding requiring
blood product transfusion or replacement therapy.

Inclusion criteria: (1) Age 18-80 years; (2) Documented trauma
with hemorrhage or blood loss; (3) Time from injury to admission <
24 h; (4) Complete clinical records.

Exclusion criteria: (1) Hematologic disorders or congenital/
acquired coagulation abnormalities; (2) Use of corticosteroids,
immunosuppressants, or anticoagulants within the past 6 months;
(3) Malignancies, severe liver cirrhosis, or other major comorbidities.

The Glasgow Coma Scale (GCS), Trauma Index (TI), Injury
Severity Score (ISS) and Abbreviated Injury Scale (AIS) of trauma
patients were evaluated upon admission (17-19). Scoring was
performed in a single-masked manner by two or more physicians,
and the average score was used for analysis.

2.2 Sample preparation
Prior to extraction, a mixture of internal standards (10 UL of a
cocktail containing stable isotope-labeled compounds such as LPC

(17:0)-d5 and PE(17:0/17:0)-d5 at a concentration of 1 pug/mL in
methanol) was added to each 100 pUL serum aliquot to monitor and
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TABLE 1 Cohort characteristics of trauma-induced coagulopathy (TIC) and non-traumatic coagulopathy (Non-TIC) groups.

Characteristics TIC (n = 27) Non-TIC (n = 27) P value
Male, n (%) 15 (55.6%) 22 (81.5%) 0.040*
Age, years, median (P25, P75) 51 (21 - 61) 52 (36 - 59) 0.516
Diabetes, n (%) 2 (7.4%) 3 (11.1%) 1.000
Hypertension, n (%) 8 (29.6%) 3 (11.1%) 0.091
Coronary heart disease, n (%) 2 (7.4%) 0 (0%) 0.471
Hepatitis B, n (%) 1 (3.7%) 4 (14.8%) 0.348
TI trauma index, median (P25, P75) 10 (5 - 12) 8(5-11) 0.424
GCS Coma Index, median (P25, P75) 15 (10 - 15) 15 (14 - 15) 0.070
ISS score, median (P25, P75) 12 (9-17) 9(5-18) 0.488
AIS score, median (P25, P75) 3(3-4) 3(2-4) 0.192
PT, median (P25, P75), (S) 14.4 (13.2 - 16.6) 12.6 (12.3 - 14.3) 0.005**
PT-INR, median (P25, P75) 1.19 (1.06 - 1.39) 1.04 (1 - 1.18) 0.005**
PT%, mean + SD 70.207 + 25.4751 89.189 + 14.9870 0.004**
APTT, median (P25, P75), (S) 304 (27.2 - 33.2) 26.4 (24.5 - 30.8) 0.04*
TT, median (P25, P75), (S) 12.6 (11.4 - 13.8) 12.6 (11.8 - 13.3) 0.952
FIB, median (P25, P75), (g/L) 1.89 (1.62 - 2.15) 2.01 (1.83 - 2.45) 0.180
DD, mean * SD, (mg/L) 7102.85 + 4459.620 6197.56 + 4283.781 0.378
FDP, median (P25, P75), (mg/L) 31.82 (10.87 - 54.31) 18.41 (9.26 - 35.89) 0.483
AT-3, median (P25, P75) 70.9 (35.8 - 82.8) 88.2 (67.9 - 102.2) 0.045*
K, mean + SD, (mmol/L) 3.8426 + 0.78655 3.8925 + 0.46483 0.431
Na, median (P25, P75), (mmol/L) 139.6 (137 - 143) 139.2 (136.6 - 140.2) 0.188
Cl, median (P25, P75), (mmol/L) 106.8 (102.9 - 109.2) 106.6 (103 - 107.8) 0.979
Ga, median (P25, P75), (mmol/L) 2.17 (1.97 - 2.25) 2.17 (2.09 - 2.24) 0.665
BUN, median (P25, P75), (mmol/L) 49 (41-74) 5.8 (4.7 - 6.2) 0.545
Creatinine, median (P25, P75), (umol/L) 70.74 (52.38 - 94.98) 65.98 (54.04 - 79.3) 0.822
Total bilirubin, mean + SD, (umol/L) 16.233 + 7.7852 14.311 + 5.7901 0.308
Direct bilirubin, median (P25, P75), (umol/L) 5.8 (3.4 - 8.0) 4.4 (2.8 -5.9) 0.117
Indirect bilirubin, mean + SD, (umol/L) 10.507 + 5.7432 9.615 + 3.6842 0.500
ALT, median (P25, P75), (U/L) 21 (17 - 42) 29 (20 - 43) 0.562
AST, median (P25, P75), (U/L) 38 (22 - 122) 32 (23 -49) 0.441
Death, n (%) 6(22.2%) 2(7.4%) 0.250

“p < 0.05 **p < 0.01.

correct for variations in sample preparation and instrument
analysis. Subsequently, the samples were processed as follows: a
100 pL aliquot, mixed with 400 UL of an 80% methanol aqueous
solution, vortexed thoroughly, and incubated on ice for 5 minutes.
After centrifugation at 15,000 x g for 20 minutes at 4 °C, the
supernatant was collected and diluted with MS-grade water to a
final methanol concentration of 53%. A second centrifugation step
(15,000 x g, 4 °C, 20 minutes) was performed, and the resulting
supernatant was used for LC-MS analysis.

Frontiers in Endocrinology

2.3 LC-MS analysis

Metabolite profiling was performed using a Vanquish UHPLC
system coupled to an Orbitrap Q Exactive " HF-X mass
spectrometer. Samples were injected onto a Hypersil Gold column
(100 x 2.1 mm, 1.9 um) at a flow rate of 0.2 mL/min. In positive ion
mode, mobile phase A consisted of 0.1% formic acid in water, while
mobile phase B was methanol; in negative ion mode, mobile phase
A comprised 5 mM ammonium acetate (pH 9.0) and mobile phase
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B was methanol. The gradient elution program was as follows: 2% B
(0-1.5 min), 2-85% B (1.5-3 min), 85-100% B (3-10 min), 100-2%
B (10-10.1 min), and 2% B (10.1-12 min). MS parameters included:
spray voltage = 3.5 kV, capillary temperature = 320 °C, sheath gas
flow = 35 psi, auxiliary gas flow = 10 L/min, S-lens RF level = 60,
and auxiliary gas heater temperature = 350 °C.

2.4 Data processing and quality assurance

The raw data files were processed using Compound Discoverer
(CD) 3.1 software. Metabolic peaks were aligned across samples
with tolerances of < 0.2 minutes for retention time (RT) deviation
and < 5 ppm for mass deviation. Peak extraction criteria included a
mass deviation of 5 ppm, signal intensity deviation of 30%, and a
signal-to-noise ratio (S/N) > 3. Ion peaks with more than 50%
missing values within sample groups were removed from the
dataset. The remaining missing values were imputed with half of
the minimum detected value.

Molecular formulas were predicted based on molecular ions and
fragment ions, and matched against the mzCloud (https://
www.mzcloud.org/), mzVault, and a custom local database. A
matching score higher than 36 out of 60 was required for the MS/
MS fragment ion spectra to enhance identification confidence.

To ensure data quality and instrumental stability, a pooled quality
control (QC) sample was prepared by combining equal aliquots(10 uL)
from every individual serum sample in the study. This QC sample was
injected repeatedly at the beginning of the analytical sequence to
condition the system, and then after every 10 experimental samples
throughout the run. The relative standard deviations (RSDs) of the
peak areas for the detected metabolites in the QC samples were
calculated. Metabolites with an RSD > 30% in the QC samples were
considered unstable and were removed from subsequent data analysis,
ensuring the reliability of the dataset. The repeated analysis of the same
QC sample throughout the run served as a technical replicate to assess
the reproducibility of the entire analytical platform.

Subsequent statistical data processing was performed on a
Linux (CentOS 6.6) platform using R and Python. Finally, data
from positive and negative ion modes were merged into a
comprehensive data matrix containing all relevant features
extracted from the raw spectra. All subsequent statistical analyses
were conducted using this integrated dataset.

2.5 Statistical analysis

Clinical data were analyzed using SPSS 26. Normally distributed
continuous variables were expressed as mean + SD and compared
using independent t-tests. Non-normally distributed data were
presented as median (P25, P75) and analyzed using nonparametric
tests. Categorical variables were reported as counts (%) and compared
via chi-square tests. A two-tailed P < 0.05 was considered
statistically significant.

To further evaluate the independence of the identified
differential metabolites, multivariable logistic regression analysis
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was performed. The analysis used TIC status as the dependent
variable and was adjusted for the confounding factor of sex. After
adjusting for this potential confounder, both LysoPE(20:4
(82,117,147,177)/0:0) and LysoPE(0:0/18:2(9Z,12Z)) remained
significant independent predictors of TIC (P < 0.05). (see
Appendix, Tables 1, 2).

2.6 Metabolomics analysis

The data matrix was uploaded to MetaboAnalyst 6.0 (https://
www.metaboanalyst.ca/). Data preprocessing on the MetaboAnalyst
platform included: normalization by the sum method to adjust for
systematic differences; logl0 transformation to approximate a
normal distribution; and Pareto scaling. Subsequently, t-tests,
fold-change (FC) analysis, and volcano plot generation were
conducted, along with the construction of PCA, PLS-DA, and
OPLS-DA models. The data matrix was then imported into
SIMCA14.1 software for a 200-permutation test of the OPLS-DA
model. Finally, ROC curve analysis and metabolic pathway analysis
were performed on the MetaboAnalyst 6.0 platform. Leave-one-out
cross-validation (LOOCV) was performed using R software
(version 4.4.3) to obtain an unbiased estimate of the AUC and
avoid overoptimism.

3 Results
3.1 Study cohort and patient characteristics

The clinical characteristics of the trauma group (Tra) and
control group (H) are presented in Table 2, with no significant
difterences observed between the groups. The clinical features of the
trauma-induced coagulopathy (TIC) and non-TIC cohorts are
shown in Table 1. Notably, the TIC group contained significantly
fewer male patients. No significant differences were observed in the
incidence of other underlying conditions or in the admission
assessment scores between the groups.

TABLE 2 Cohort characteristics of trauma (Tra) and healthy control (H)
groups.

Tra (n = 54)

Characteristics H(n=27) Pvalue

Male, n (%) 37 (68.5%) 14 (51.9%) 0.143
Age, years, median (P25, P75) = 51 (32 - 59.25) 47 (31 - 55) 0.630
Diabetes, n (%) 5(9.3%) 1 (3.7%) 0.653
Hypertension, n (%) 11 (20.4%) 7 (25.9%) 0.571
Coronary heart disease, n (%) | 2 (3.7%) 0 (0.0%) 0.550
Hepatitis B, n (%) 5 (9.3%) 4 (14.8%) 0.708
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FIGURE 1

Multivariate statistical analysis of the three groups: (A) Principal Component Analysis (PCA), (B) Partial Least Squares Discriminant Analysis (PLS-DA);
Multivariate statistical analysis of the Tra and H groups: (C) Principal Component Analysis (PCA), (D) Partial Least Squares Discriminant Analysis (PLS-
DA), (E) Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), (G) 200 permutation tests of OPLS-DA; Multivariate statistical analysis of
the TIC and Non-TIC groups: (F) Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), (H) 200 permutation tests of OPLS-DA.

3.2 Metabolomics study

A total of 81 serum samples were analyzed, comprising 27 from
TIC patients, 27 from non-TIC trauma patients, and 27 from

healthy participants. Liquid chromatography-mass spectrometry

Frontiers in Endocrinology

(LC-MS) detected 7,433 metabolic features and identified
1,479 metabolites.

Preprocessed data were imported into MetaboAnalyst 6.0 for
multivariate pattern analysis. Principal component analysis (PCA)
revealed small intra-group but significant inter-group differences in
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serum metabolite profiles among all three groups (Figure 1A).
Partial least squares-discriminant analysis (PLS-DA), a supervised
method, enhanced inter-group separation while minimizing intra-
group variation, demonstrating distinct metabolomic patterns
across groups (Figure 1B).

PCA, PLS-DA, and orthogonal PLS-DA (OPLS-DA) models
consistently showed minimal intra-group but marked inter-group
differences between the trauma (Tra) and healthy control (H) groups
(Figures 1C-E). OPLS-DA further improved model specificity by
filtering out classification-unrelated noise. Application of OPLS-DA
to the TIC versus non-TIC comparison revealed clear separation
between the groups, indicating significant metabolomic disparities
(Figure 1F). A 200-permutation test confirmed the reliability of all
OPLS-DA models (Figures 1G, H). Metabolites with variable
importance in projection (VIP) scores >1.5 were selected as
biologically significant.

3.3 Analysis of differential metabolites

Student's t-test and fold-change (FC) analysis were performed
on the metabolic data of the Tra and H groups, as well as the TIC
and non-TIC groups, and volcano plots were generated. Differential
metabolites between the two groups were identified. Based on FC >
2 and adjusted P < 0.05, 496 differential metabolites were screened
in the Tra and H groups, of which 144 were significantly down-
regulated and 352 were significantly up-regulated (Figure 2A). In
the TIC and non-TIC groups, 212 differential metabolites were
identified, of which 7 were significantly down-regulated and 205
were significantly up-regulated (Figure 2B).

By integrating multivariate and univariate analyses (FC > 2.0,
adjusted P < 0.05, and VIP > 1.5), we identified 186 differential
metabolites between the Tra and H groups (69 down-regulated, 117
up-regulated). For the TIC versus non-TIC comparison, 74
metabolites were selected (2 down-regulated, 72 up-regulated).
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L P-value
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3.4 Metabolic pathway analysis

Next, receiver operating characteristic (ROC) curve analysis was
used to evaluate the diagnostic efficacy of the differential
metabolites. The area under the curve (AUC) values of the 74
differential metabolites for distinguishing the TIC and non-TIC
groups were all > 0.7 (see appendix). To elucidate the potential
association between these differential metabolites and traumatic
coagulopathy, metabolic pathway analysis was performed on the
screened differential metabolites using MetaboAnalyst 6.0. Using
-log10(p) > 1.0 and Pathway Impact > 0.10 as screening criteria, the
analysis revealed that the key metabolic pathways differentiating the
TIC and non-TIC groups were inositol phosphate metabolism and
alanine, aspartate, and glutamate metabolism (Figure 3).

3.5 Screening of potential biomarkers

Using FC > 2.0, adjusted P < 0.05, VIP > 1.5, and AUC > 0.9 as
criteria, five differential metabolites were identified as candidate
biomarkers for distinguishing TIC from non-TIC. After excluding
three exogenous compounds, two metabolites—LysoPE(20:4
(87,117,14Z,17Z2)/0:0) and LysoPE(0:0/18:2(9Z,12Z))—were
selected as potential biomarkers with high diagnostic value
(Figures 4A, B).

LysoPE(20:4(8Z,11Z,14Z,17Z)/0:0) yielded an AUC of 0.933
(95% CI: 0.849-0.995), with a sensitivity and specificity of 0.963
and 0.815, respectively. LysoPE(0:0/18:2(9Z,127)) had an AUC of
0.916 (95% CI: 0.818-0.914), with a sensitivity and specificity of
0.963 and 0.852, respectively (Table 3). Leave-one-out cross-
validation yielded the following AUC values: 0.929 for LysoPE
(20:4(8Z7,117,147,177)/0:0) and 0.885 for LysoPE(0:0/18:2
(9Z,127)) (see Appendix; Figure 1).

Current admission assessments for trauma patients—including
the Trauma Index (TI), Glasgow Coma Scale (GCS), Injury Severity

Log2(FC)
3

log2(FC)

FIGURE 2

log2(FC)

The volcano plot of the Tra and H groups (A), and the volcano plot of the TIC and Non-TIC groups (B); The X-axis corresponds to log 2 (FC), and

the Y-axis corresponds to -log 10 (P value).
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Score (ISS), and Abbreviated Injury Scale (AIS)—showed no
statistical differences between TIC and non-TIC groups (P > 0.05)
and demonstrated poor ability to predict TIC onset. Presently, the
clinical diagnosis of TIC primarily relies on conventional
coagulation tests such as PT and APTT.
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Although PT, PT-INR, PT%, and APTT values differed
significantly between TIC and non-TIC groups (P < 0.05), their
diagnostic efficacy was markedly inferior to that of the two
differential metabolites identified in this study (Figure 5). These
metabolites demonstrated significantly higher sensitivity and
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specificity, as well as superior overall diagnostic performance
(Table 3). The AUC values of LysoPE(20:4(8Z,11Z,147,177)/0:0)
and LysoPE(0:0/18:2(9Z,12Z)) were significantly higher than those
of PT, PT-INR, PT%, and APTT (P < 0.05).

4 Discussion

Although conventional coagulation tests such as prothrombin
time (PT) and activated partial thromboplastin time (APTT)
remain the standard diagnostic tools for trauma-induced
coagulopathy (TIC) in clinical practice, these parameters lack the
sensitivity to detect early TIC onset and fail to reliably predict
subsequent coagulation deterioration. Consequently, there is an
urgent unmet need for clinical methods to anticipate TIC

TABLE 3 Performance characteristics of biomarkers and routine coagulation

development in trauma patients. This study aimed to address this
need by employing a metabolomics approach to identify highly
sensitive and specific biomarkers for the early diagnosis of TIC.
Our metabolomic analysis revealed that two
lysophosphatidylethanolamines—LysoPE(20:4(8Z,11Z,14Z,17Z)/0:0)
and LysoPE(0:0/18:2(9Z,12Z))—serve as novel biomarkers for TIC,
demonstrating exceptional diagnostic performance in early-stage
detection. These metabolites represent novel quantitative indicators
for TIC diagnosis, exhibiting significantly higher AUC values,
sensitivity, and specificity than traditional coagulation assays
(Table 3). The superior diagnostic accuracy of these biomarkers
(AUC > 0.9) highlights their potential to revolutionize clinical
practice by enabling earlier intervention, thereby improving patient
outcomes. Furthermore, their high predictive capacity suggests utility
in identifying at-risk patients prior to overt coagulopathy, facilitating

indicators.

Indicator Sensitivity Specificity AUC (95% cl) Youden index
LysoPE(20:4(8Z,11Z,14Z,17Z)/0:0) | 0.092 0.963 0815 0.933 (0.849, 0.995) <001 0.778
LysoPE(0:0/18:2(97,127)) 0.185 0.963 0.852 0.916 (0.818, 0.914) <001 0815
PT 1278 0.852 0.519 0.724 (0.587, 0.860) 0.005 0371
PT-INR 1.045 0.852 0.519 0.725 (0.588, 0.862) 0.005 0.371
PT% 63.85 0.519 0.074 0.272 (0.135, 0.409) 0.004 0.407
APTT 27.15 0.778 0.556 0.663 (0.517, 0.808) 0.040 0.334
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preemptive therapeutic strategies. Additionally, inositol phosphate
metabolism and alanine, aspartate, and glutamate metabolism were
also associated with TIC.

LysoPE(20:4(8Z,11Z,147,17Z)/0:0) and LysoPE(0:0/18:2(9Z,12Z))
are two distinct lysophosphatidylethanolamine (LysoPE) molecules.
Previous research on increased cardiovascular disease risk under
hypercholesterolemia found that the oxidized low-density lipoprotein
(ox-LDL) group exhibited significantly reduced APTT and PT, along
with markedly elevated levels of seven LysoPEs in plasma
metabolomics (20). Our observation of significantly elevated serum
levels of LysoPE(20:4(8Z,11Z,14Z,17Z)/0:0) in patients with TIC
provides direct evidence that an increase in LysoPE can lead to
coagulation dysfunction, supporting its potential role in inducing a
hypercoagulable state. However, LysoPE(0:0/18:2(9Z,12Z)) levels were
significantly decreased in TIC patient plasma, a phenomenon that may
be closely related to the essential pathogenesis of TIC. Specifically, TIC
progresses acutely through different pathological stages
(hypocoagulability, hyperfibrinolysis, and hypercoagulability), with
transitions from hypocoagulability to hypercoagulability potentially
occurring within minutes or hours. These dynamic changes result in
a unique mixed bleeding-thrombosis phenotype throughout the
disease course.

Metabolic pathway analysis revealed that the most significantly
altered pathways in the TIC/non-TIC comparison were inositol
phosphate metabolism and alanine, aspartate, and glutamate
metabolism. The inositol phosphate metabolism pathway
generates inositol trisphosphate (IP3), which promotes the release
of intracellular stored calcium ions and extracellular calcium influx,
thereby increasing intracellular calcium concentration (21, 22).
Elevated calcium levels lead to platelet activation and thrombosis.
Existing studies have demonstrated the important role of inositol
phosphate metabolism in TIC pathogenesis (22, 23). Our results
further support the upregulation of this pathway in TIC patients,
suggesting its contribution to coagulation abnormalities.

This was a single-center study with a relatively limited sample
size, which may restrict the generalizability and statistical power of
our findings. For example, the gender difference between the TIC
and non-TIC groups likely resulted from the limited sample size.
Although the case-control design employed is suitable for early-
stage biomarker screening, it does not allow for an accurate
evaluation of the biomarker's actual diagnostic performance (such
as sensitivity and specificity) in a consecutively enrolled prospective
cohort. This study preliminarily identified two LysoPEs that
exhibited significant alterations in TIC patients and demonstrated
promising discriminative ability in the initial cohort. External
validation in larger independent cohorts is warranted to further
assess their diagnostic efficacy and clinical applicability.
Furthermore, all samples were collected within 24 hours post-
trauma, which precluded continuous dynamic monitoring of the
two LysoPEs and thus limited the exploration of their time-
dependent dynamic characteristics. The specific pathways and
functional roles by which the differential metabolites influence
coagulation function will need to be further validated through in
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vitro experiments, such as endothelial cell models. Moreover, the
cost of detecting the two LysoPEs currently offers no distinct
advantage over routine coagulation tests, and their use has not
been widely adopted in clinical practice.

By exploring metabolomic differences in emergency severe
trauma patients with or without TIC, we identified potential
biomarkers with excellent diagnostic value and determined key
metabolic pathways that may play crucial roles in disease
progression. This study lays the foundation for future research,
which should involve multiple clinical centers and larger sample
sizes, as well as integrate transcriptomics and proteomics to
elucidate the metabolic-coagulation interaction network and
conduct more in-depth investigations.
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