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Machine learning-based
prediction of hypoglycemia
severity in hospitalized
diabetic patients
Hongjian Jia and Jietao Zhang*

Department of General Practice, The Affiliated Hospital of Qingdao University, Qingdao, China
Objective: To identify risk factors for hypoglycemia in hospitalized patients with

type 2 diabetes mellitus (T2DM) and develop predictive models for hypoglycemia

severity based on machine learning algorithms.

Methods: Adult non-pregnant hospitalized patients diagnosed with T2DM were

retrospectively enrolled from the electronic medical record system of the

Affiliated Hospital of Qingdao University. Patients were categorized into

hypoglycemia groups (mild, moderate-to-severe) or a non-hypoglycemia

group based on inpatient venous plasma glucose levels. After data

preprocessing, univariate and multivariate analyses were conducted to identify

significant predictors. Three predictive models (XGBoost, Random Forest [RF],

and Logistic Regression) were subsequently constructed and validated to

evaluate their predictive performances.

Results: From an initial cohort of 8,947 patients, 1,798 patients were included

after data screening. Among the evaluated models, the RF model demonstrated

the highest predictive accuracy (93.3%) and Kappa coefficient (0.873), followed

by XGBoost (accuracy: 92.6%, Kappa: 0.860). Logistic regression exhibited

comparatively lower performance (accuracy: 83.8%, Kappa: 0.685). The

macro-average area under the ROC curve (AUC) values for RF, XGBoost, and

logistic regression were 0.960, 0.955, and 0.788, respectively, highlighting the

superior discriminative capability of the RF model. While both XGBoost and RF

models identified glycemic control metrics and glucose variability as core

predictors for hypoglycemia, the RF model additionally emphasized medication

usage, whereas XGBoost prioritized basal metabolic parameters.

Conclusions: The RF model outperformed XGBoost and conventional logistic

regression in predicting hypoglycemia severity among hospitalized T2DM

patients. The results emphasize the importance of closely monitoring glucose

levels and glucose variability during diabetes management to prevent

hypoglycemia. The developed model provides a foundation for implementing

preventive strategies to reduce hypoglycemia occurrence in hospitalized

patients with T2DM.
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Introduction

Diabetes mellitus (DM) is a major chronic disease worldwide,

with prevalence rates steadily rising over recent decades (1).

Diabetes and its associated complications pose significant threats

to patient health and quality of life, greatly impacting patients’ daily

activities and potentially leading to mortality in severe cases.

Among these complications, hypoglycemia is particularly critical

to prevent and manage due to its frequent occurrence and

substantial health risks for diabetic patients (2). Hypoglycemic

events in diabetic patients are multifactorial, influenced by

medications, diet, lifestyle, and comorbidities (3–5). Recently,

stringent glycemic control strategies have been associated with an

increased risk of hypoglycemia. However, hypoglycemia can

undermine the long-term benefits gained from good glycemic

management, underscoring the importance of carefully balancing

the benefits and risks of intensive glucose management.

Hospitals play a central role in glycemic control, adjustments of

antidiabetic medications, and individualized care for diabetic

patients, placing heightened responsibilities on healthcare

professionals. Patients with diabetes commonly exhibit multiple

comorbidities that contribute independently to hypoglycemia risk.

Studies have identified older age, renal impairment, liver

dysfunction, poor nutritional status, inappropriate medication

use, and debilitating diseases as critical risk factors for

hypoglycemia. Clinical practitioners thus must analyze these risk

factors systematically to accurately assess the probability of

hypoglycemia and implement effective preventive measures.

Predicting hypoglycemia accurately, however, remains

challenging due to the complex interplay of various clinical and

biological factors. Although multiple studies have confirmed insulin

therapy (6), impaired renal function, and suboptimal glycemic

control as significant predictors of hypoglycemia, reliably

forecasting such events remains difficult. Traditional logistic

regression models have been widely employed to identify risk

factors but are limited by their assumption of linear relationships

between predictors and outcomes.

Given the limitations of traditional statistical methods in

capturing complex clinical relationships, this study was motivated

to explore advanced machine learning algorithms for predicting

hypoglycemia severity in hospitalized T2DM patients. Thus, the

current study aimed to develop and systematically compare three

predictive models—multinomial logistic regression, XGBoost, and

RF—to identify independent risk factors and predict hypoglycemia

severity. We further conducted a feature importance analysis to

highlight clinically significant predictors of hypoglycemia risk. This

comparative approach is expected to improve early clinical

intervention and personalized management. The paper is

structured as follows: the methods section describes the study

population, data collection, and model development; the results

section presents patient characteristics and model performances;

the discussion elaborates clinical implications and comparative

insights from the modeling results; finally, limitations and future

research directions are provided.
Frontiers in Endocrinology 02
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Hypoglycemia remains a significant challenge in managing

hospitalized patients with type 2 diabetes mellitus (T2DM), often

resulting from complex interactions among clinical factors such as

medication usage, renal function, and glycemic variability.

Traditionally, logistic regression models have been widely

employed to identify predictors of hypoglycemia risk due to their

interpretability and simplicity. However, these models assume

linear relationships and may not effectively capture intricate

interactions among clinical variables, limiting their predictive

capabilities in clinical practice.

With advancements in machine learning techniques, models

such as Extreme Gradient Boosting (XGBoost) and Random Forest

(RF) have shown remarkable performance in predicting complex

clinical outcomes due to their ability to capture nonlinear

interactions and handle high-dimensional data. Several previous

studies have explored machine learning approaches to predict

hypoglycemia in diabetic patients. For instance, Melih Agraz et al.

used multi-view collaborative training of machine learning models

on imbalanced datasets to improve hypoglycemia prediction (7).

Harald Witte et al. used XGBoost alone to train models related to

glycemic decompensation (8). Christopher Duckworth et al. also

used XGBoost alone to predict glycemic decompensation

(hyperglycemia and hypoglycemia) (9). Mai Shi et al. developed a

multidimensional ML model based on electronic health records

(EHR) to predict hypoglycemia in the elderly population (10).

However, most of these studies have focused solely on

hypoglycemia or hyperglycemia, lacking analysis of the severity of

hypoglycemia. Additionally, few studies have used real hospital

patient data to comprehensively compare multiple models. This

study addresses this shortcoming by evaluating logistic regression,

random forest, and XGBoost models to perform multi-class

classification of hypoglycemia severity using clinical variables.
Methods

Study design and population

This retrospective study was conducted using data from the

electronic medical record system of the Affiliated Hospital of

Qingdao University. Initially, 8,947 adult, non-pregnant

hospitalized patients with a confirmed diagnosis of T2DM were

identified. After applying inclusion and exclusion criteria, a total of

1,798 patients were included in the final analysis.
Data collection

Clinical and demographic data were extracted from electronic

medical records, including demographic characteristics, clinical

features, laboratory findings, and antidiabetic medication use.

Variables collected were age, gender, body mass index (BMI)
frontiersin.org
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classification, Charlson Comorbidity Index (CCI), glycated

hemoglobin (HbA1c), mean blood glucose levels, serum

creatinine, C-peptide, lipid profile, and use of antidiabetic

medications (e.g., insulin, metformin, DPP - 4 inhibitors).
Patient grouping

Patients were categorized into three groups based on venous

plasma glucose levels measured during hospitalization:
Fron
• Normal glycemia: >3.9 mmol/L

• Mild hypoglycemia: 3.0 – 3.9 mmol/L

• Moderate-to-severe hypoglycemia: <3.0 mmol/L
Statistical analysis

Univariate analyses were conducted using the chi-square test for

categorical variables and the Kruskal-Wallis test for continuous

variables. Variables with a P-value <0.05 were entered into a

multivariate multinomial logistic regression analysis. Model

performance was evaluated using overall accuracy, Kappa statistic,

the area under the receiver operating characteristic (ROC) curve

(AUC), and confusion matrices. All statistical analyses were

performed using R software and SPSS.
Machine learning model development

Three predictive models were developed and evaluated:

multinomial logistic regression, XGBoost, and Random Forest.

Hyperparameters for the XGBoost and RF models were optimized

using cross-validation. Multiclass ROC curves were constructed

using a One-vs-Rest approach to visualize and compare the models’

predictive capabilities.

No independent testing set was separated in this study. Model

development and evaluation were entirely conducted using 5-fold

cross-validation on the full dataset . During training,

hyperparameters of XGBoost and Random Forest were optimized

within each fold using grid search. For XGBoost, the number of

boosting rounds (nrounds), tree depth (max_depth), and learning

rate (eta) were tuned. For Random Forest, the number of trees

(ntree) and the number of variables randomly selected at each split

(mtry) were adjusted. The best parameter set in each case was

selected based on the highest average accuracy and Kappa

coefficient across the cross-validation folds. Final performance

metrics, including accuracy, Kappa coefficient, and area under the

ROC curve (AUC), represent the average results across the cross-

validation folds. This strategy ensured internal validation while

minimizing overfitting and allowing fair comparison across models.
tiers in Endocrinology 03
Model performance evaluation

Model performance evaluation was based on three key metrics:

overall accuracy, Cohen’s Kappa coefficient, and area under the

receiver operating characteristic curve (AUC). These metrics were

calculated for each fold and averaged to obtain the final

performance results. Additionally, multiclass ROC curves were

generated using a One-vs-Rest approach to evaluate model

discrimination across the three hypoglycemia severity classes.
Results

Patient characteristics

A total of 1,798 hospitalized diabetic patients were included in

the final analysis. Based on inpatient blood glucose measurements,

patients were divided into three groups: normoglycemic, mild

hypoglycemia, and moderate-to-severe hypoglycemia. Significant

differences were observed among the three groups in age, Charlson

Comorbidity Index (CCI), the number of glucose-lowering

medication classes, triglycerides (TG), serum creatinine, glycated

hemoglobin (HbA1c), C-peptide, mean glucose levels, cholesterol,

gender distribution, BMI classification, and use of various glucose-

lowering medications (including SGLT2 inhibitors, a-glucosidase
inhibitors, metformin, thiazolidinediones, and insulin) (all P <

0.05). Baseline characteristics of the study population are detailed

in Table 1.

To visualize the distributional characteristics of numeric clinical

variables across hypoglycemia severity groups, boxplots were

generated (Figure 1). These plots provide an intuitive depiction of

intergroup variability and outliers, complementing the statistical

summary presented in Table 1. Categorical variables were not

included in this visualization due to the nature of boxplots being

suited for continuous variables only.
Univariate and Multivariate Logistic
Regression Analyses

In the univariate logistic regression analysis (Table 2), gender,

Charlson comorbidity index, number of glucose-lowering

medication classes, BMI classification, triglycerides (TG), serum

creatinine, HbA1c, C-peptide, mean glucose levels, cholesterol, and

use of specific hypoglycemic drugs (metformin, a-glucosidase
inhibitors, insulin) were significantly associated with the risk of

hypoglycemia (P < 0.05). Specifically, an increased Charlson index,

lower BMI, reduced C-peptide levels, decreased TG, elevated

HbA1c, elevated creatinine levels, and insulin use were linked to a

higher risk of hypoglycemia.

In the multivariate multinomial logistic regression analysis

(Table 3), independent factors associated with mild hypoglycemia
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TABLE 1 Baseline characteristics of patients by hypoglycemia severity group.

Variables Total (n = 1798) Normal (n = 1046)
Mild hypoglycemia
(n = 593)

Moderate-to-severe
hypoglycemia (n = 159)

P

Age, M (Q1, Q3) 62.00 (54.00, 68.00) 61.00 (54.00,67.00) 63.00 (54.00,69.00) 62.00 (56.00,71.00) 0.012

Charlson, M (Q1, Q3) 1.00 (1.00, 1.00) 1.00 (1.00,1.00) 1.00 (1.00,3.00) 2.00 (1.00,3.00) <.001

DrugClassCount, M (Q1,
Q3)

2.00 (1.00, 3.00) 2.00 (1.00,3.00) 3.00 (2.00,3.00) 2.00 (1.00,3.00) <.001

TG, M (Q1, Q3) 1.10 (0.77, 1.67) 1.15 (0.79,1.75) 1.04 (0.75,1.48) 1.02 (0.68,1.63) <.001

Creatinine, M (Q1, Q3) 76.60 (57.00, 93.00) 73.00 (55.00,90.25) 79.50 (59.00,97.00) 90.00 (64.80,133.22) <.001

HbA1c, M (Q1, Q3) 6.20 (5.90, 7.30) 6.10 (5.80,6.30) 7.70 (6.50,9.50) 7.60 (6.50,9.45) <.001

C Peptide, M (Q1, Q3) 1.67 (0.70, 2.67) 2.10 (1.45,3.04) 0.69 (0.33,1.63) 0.73 (0.24,2.00) <.001

GlucoseAvg, M (Q1, Q3) 4.92 (3.84, 5.63) 5.19 (4.78,5.65) 3.73 (3.48,4.45) 4.77 (2.79,8.49) <.001

Cholesterol, M (Q1, Q3) 4.25 (3.42, 5.03) 4.21 (3.39,4.95) 4.35 (3.51,5.28) 4.06 (3.28,4.98) 0.005

Sex, n(%) 0.014

M 999 (55.56) 609 (58.22) 301 (50.76) 89 (55.97)

W 799 (44.44) 437 (41.78) 292 (49.24) 70 (44.03)

BMI Class, n(%) <.001

Overweight 708 (39.38) 439 (41.97) 227 (38.28) 42 (26.42)

Obese 339 (18.85) 232 (22.18) 88 (14.84) 19 (11.95)

Underweight 49 (2.73) 14 (1.34) 22 (3.71) 13 (8.18)

Normal 702 (39.04) 361 (34.51) 256 (43.17) 85 (53.46)

DPP4, n(%) 0.869

Not used 1063 (59.12) 615 (58.80) 351 (59.19) 97 (61.01)

Used 735 (40.88) 431 (41.20) 242 (40.81) 62 (38.99)

GLP1, n(%) 0.056

Not used 1753 (97.50) 1012 (96.75) 584 (98.48) 157 (98.74)

Used 45 (2.50) 34 (3.25) 9 (1.52) 2 (1.26)

SGLT2, n(%) 0.027

Not used 1560 (86.76) 894 (85.47) 518 (87.35) 148 (93.08)

Used 238 (13.24) 152 (14.53) 75 (12.65) 11 (6.92)

AGI, n(%) <.001

Not used 796 (44.27) 519 (49.62) 214 (36.09) 63 (39.62)

Used 1002 (55.73) 527 (50.38) 379 (63.91) 96 (60.38)

Metformin, n(%) <.001

Not used 740 (41.16) 346 (33.08) 298 (50.25) 96 (60.38)

Used 1058 (58.84) 700 (66.92) 295 (49.75) 63 (39.62)

TZD, n(%) 0.013

Not used 1700 (94.55) 975 (93.21) 571 (96.29) 154 (96.86)

Used 98 (5.45) 71 (6.79) 22 (3.71) 5 (3.14)

Insulin, n(%) <.001

Not used 931 (51.78) 811 (77.53) 96 (16.19) 24 (15.09)

Used 867 (48.22) 235 (22.47) 497 (83.81) 135 (84.91)
F
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Values highlighted in red indicate statistical significance (P < 0.05). Values in black indicate no significant difference.
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included older age (OR = 0.966, 95% CI: 0.951 – 0.981, P < 0.001),

higher Charlson comorbidity index (OR = 2.684, 95% CI:

2.121 – 3.398, P < 0.001), increased creatinine (OR = 1.005, 95%

CI: 1.003 – 1.007, P < 0.001), elevated HbA1c (OR = 10.570, 95% CI:

7.554 – 14.789, P < 0.001), lower mean glucose levels (OR = 0.545,

95% CI: 0.479 – 0.619, P < 0.001), and insulin use (OR = 0.205, 95%

CI: 0.127 – 0.332, P < 0.001).

For moderate-to-severe hypoglycemia, independent predictors

included older age (OR = 0.973, 95% CI: 0.954 – 0.993, P = 0.007),

elevated Charlson comorbidity index (OR = 2.744, 95% CI:

2.141 – 3.517, P < 0.001), increased serum creatinine

(OR = 1.005, 95% CI: 1.003 – 1.007, P < 0.001), elevated HbA1c

(OR = 10.047, 95% CI: 7.127 – 14.163, P < 0.001), lower mean

glucose levels (OR = 0.633, 95% CI: 0.554 – 0.723, P < 0.001), and

insulin use (OR = 0.170, 95% CI: 0.086 – 0.336, P < 0.001).

Additionally, overweight status was a protective factor against

moderate-to-severe hypoglycemia (OR = 0.511, 95% CI:

0.302 – 0.865, P = 0.012), while underweight status significantly

increased the risk (OR = 3.654, 95% CI: 1.045 – 12.781, P = 0.043).

Overall , the multivariate logistic regression model

demonstrated good fit (c² = 1585.430, df = 40, P < 0.001; Cox-

Snell R² = 0.586; Nagelkerke R² = 0.703; McFadden R² = 0.492).
Machine learning model evaluation

The predictive performances of multinomial logistic regression,

XGBoost, and random forest (RF) models were evaluated using

receiver operating characteristic (ROC) curves constructed through
Frontiers in Endocrinology 05
a One-vs-Rest approach. ROC curves for each model are illustrated

individually in Figures 2–4, and a direct comparative analysis

among the three models is presented in Figure 5.

The multinomial logistic regression model yielded area under

the curve (AUC) values of 0.938 for predicting normoglycemia,

0.889 for mild hypoglycemia, and 0.754 for moderate-to-severe

hypoglycemia. The XGBoost model demonstrated notably higher

AUCs of 0.991, 0.980, and 0.943, respectively. Similarly, the RF

model achieved AUCs of 0.991, 0.983, and 0.952 for the three

respective severity categories.

Comparative ROC analysis (Figure 5) clearly indicated superior

discriminative performance of both XGBoost and RF models across

all hypoglycemia severity categories compared to logistic regression.
Model performance comparison

To comprehensively evaluate predictive performances, we

compared the overall accuracy, Kappa coefficient, and macro-

average AUC of the three models (Table 4). The RF model

achieved the highest accuracy (93.3%) and Kappa coefficient

(0.873), followed closely by XGBoost (accuracy: 92.6%, Kappa:

0.860). Logistic regression demonstrated relatively lower

performance, with an accuracy of 83.8% and Kappa of 0.685.

Consistently, the macro-average AUC values for RF, XGBoost,

and logistic regression were 0.960, 0.955, and 0.788, respectively,

further emphasizing the superior predictive capability of the tree-

based machine learning algorithms.
FIGURE 1

Boxplots of eight clinical variables across hypoglycemia severity groups (Normal, Mild, and Moderate-to-severe).
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To further evaluate the consistency and robustness of model

performance, we applied 5-fold cross-validation and visualized the

distribution of prediction accuracy and Kappa coefficient for each

model (Figure 6). The Random Forest model consistently

demonstrated the highest predictive performance (mean accuracy

≈ 93.2%, Kappa ≈ 0.872), followed closely by XGBoost (accuracy ≈

92.6%, Kappa ≈ 0.860). Logistic regression showed comparatively

lower performance (accuracy ≈ 84.0%, Kappa ≈ 0.682). These values

were consistent with the results in Table 4, confirming the

superiority of tree-based models in this context.

Note: The boxplot metrics are derived from 5-fold cross-

validation, while Table 4 reports final model performance on

evaluation sets.
Feature importance analysis

Feature importance analysis (Figure 7) identified mean blood

glucose level and HbA1c as the two most critical predictors in both

XGBoost and RF models. Subsequent important predictors in the

XGBoost model included creatinine, C-peptide, and triglycerides

(TG). In the RF model, following mean glucose and HbA1c,
Frontiers in Endocrinology 06
important predictors included C-peptide, insulin usage, and the

Charlson comorbidity index.
Discussion

In the present study, we developed and systematically compared

three predictive models—multinomial logistic regression, XGBoost,

and random forest (RF)—to identify key predictors of

hypoglycemia severity among hospitalized patients with diabetes.

Our results demonstrated that both machine learning models

(XGBoost and RF) exhibited superior discriminative performance

compared to traditional logistic regression, especially for detecting

moderate-to-severe hypoglycemia, this has some modeling studies

with the same results (11). We utilized the One-vs-Rest strategy, a

standard and effective approach for generating ROC curves in

multiclass classification problems, allowing robust evaluation and

comparison of each model’s predictive performance across

hypoglycemia categories.

As detailed in Table 4, the random forest model demonstrated

the best overall predictive performance, with the highest accuracy

(93.3%), Kappa coefficient (0.873), and macro-average AUC
TABLE 2 Univariate multinomial logistic regression analysis for predictors of hypoglycemia severity.

Variables
Mild hypoglycemia vs
normal (OR [95%CI])

P value
Moderate-to-severe
hypoglycemia vs normal
(OR [95%CI])

P value

Sex (Male vs Female) 0.74 (0.60 – 0.91) 0.004 0.91 (0.65 – 1.28) 0.593

Age (per year) 1.01 (1.00 – 1.02) 0.156 1.01 (1.00 – 1.03) 0.133

Charlson score 3.81 (3.18 – 4.56) <0.001 4.07 (3.35 – 4.94) <0.001

Drug Class Count 1.59 (1.44 – 1.75) <0.001 1.28 (1.09 – 1.51) 0.002

BMI Overweight vs Normal 0.73 (0.58 – 0.91) 0.006 0.41 (0.27 – 0.60) <0.001

BMI Obese vs Normal 0.54 (0.40 – 0.72) <0.001 0.35 (0.21 – 0.59) <0.001

BMI Underweight vs Normal 2.22 (1.11 – 4.41) 0.024 3.94 (1.79 – 8.70) 0.001

TG (mmol/L) 0.85 (0.77 – 0.94) 0.002 0.95 (0.83 – 1.09) 0.454

HbA1c (%) 10.15 (7.76 – 13.27) <0.001 10.07 (7.65 – 13.26) <0.001

Creatinine (umol/L) 1.005 (1.003 – 1.007) <0.001 1.006 (1.004 – 1.008) <0.001

GlucoseAvg (mmol/L) 0.77 (0.72 – 0.83) <0.001 1.11 (1.04 – 1.18) 0.003

C-Peptide (ng/mL) 0.68 (0.63 – 0.74) <0.001 0.87 (0.80 – 0.95) 0.002

Cholesterol (mmol/L) 1.15 (1.07 – 1.23) <0.001 0.99 (0.88 – 1.11) 0.811

DPP4i (No vs Yes) 1.02 (0.83 – 1.25) 0.876 1.10 (0.78 – 1.54) 0.597

GLP1-RA (No vs Yes) 2.18 (1.04 – 4.58) 0.039 2.64 (0.63 – 11.09) 0.186

SGLT2i (No vs Yes) 1.17 (0.87 – 1.58) 0.289 2.29 (1.21 – 4.32) 0.011

AGI (No vs Yes) 0.57 (0.47 – 0.70) <0.001 0.67 (0.47 – 0.94) 0.019

Metformin (No vs Yes) 2.04 (1.66 – 2.51) <0.001 3.08 (2.19 – 4.34) <0.001

TZD (No vs Yes) 1.89 (1.16 – 3.08) 0.011 2.24 (0.89 – 5.64) 0.086

Insulin (No vs Yes) 0.06 (0.04 – 0.07) <0.001 0.05 (0.03 – 0.08) <0.001
Values highlighted in red indicate statistical significance (P < 0.05). Values in black indicate no significant difference.
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(0.960). These values reflect excellent classification agreement and

discrimination for hypoglycemia severity prediction. The XGBoost

model showed slightly lower but still robust performance (accuracy

92.6%, Kappa 0.860, AUC 0.955), confirming its strength in

handling complex nonlinear data. In contrast, the logistic
Frontiers in Endocrinology 07
regression model yielded lower accuracy (83.8%) and Kappa

(0.685), along with a substantially lower AUC (0.788), possibly

due to its linear assumptions and inability to capture complex

feature interactions. These findings highlight the superior

performance of ensemble learning models in identifying subtle
TABLE 3 Multivariate multinomial logistic regression results for mild and moderate-to-severe hypoglycemia.

Variables
Mild hypoglycemia vs
normal (OR [95%CI])

P value
Moderate-to-severe
hypoglycemia vs normal
(OR [95%CI])

P value

Age 0.966 (0.951 – 0.981) <0.001 0.973 (0.954 – 0.993) 0.007

Charlson Score 2.684 (2.121 – 3.398) <0.001 2.744 (2.141 – 3.517) <0.001

Drug Class Count 0.788 (0.571 – 1.086) 0.146 0.791 (0.520 – 1.202) 0.272

TG 0.857 (0.712 – 1.033) 0.105 0.904 (0.717 – 1.139) 0.391

Creatinine 1.005 (1.003 – 1.007) <0.001 1.005 (1.003 – 1.007) <0.001

HbA1c 10.570 (7.554 – 14.789) <0.001 10.047 (7.127 – 14.163) <0.001

C-Peptide 1.023 (0.945 – 1.108) 0.570 1.092 (0.994 – 1.200) 0.067

Glucose Avg 0.545 (0.479 – 0.619) <0.001 0.633 (0.554 – 0.723) <0.001

Cholesterol 1.021 (0.894 – 1.166) 0.758 0.856 (0.728 – 1.006) 0.059

Sex (Male) 0.995 (0.692 – 1.431) 0.980 1.086 (0.682 – 1.730) 0.728

SGLT2 Not Used 0.953 (0.500 – 1.817) 0.883 1.809 (0.714 – 4.580) 0.211

AGI Not Used 0.680 (0.425 – 1.089) 0.109 0.680 (0.362 – 1.277) 0.230

Metformin Not Used 1.034 (0.628 – 1.701) 0.895 1.162 (0.607 – 2.223) 0.651

TZD Not Used 1.640 (0.673 – 3.999) 0.277 1.601 (0.475 – 5.390) 0.447

Insulin Not Used 0.205 (0.127 – 0.332) <0.001 0.170 (0.086 – 0.336) <0.001

BMI Class - Overweight 1.043 (0.699 – 1.557) 0.836 0.511 (0.302 – 0.865) 0.012

BMI Class - Obese 1.254 (0.765 – 2.057) 0.370 0.747 (0.380 – 1.470) 0.399

BMI Class - Underweight 1.964 (0.600 – 6.427) 0.265 3.654 (1.045 – 12.781) 0.043
Values highlighted in red indicate statistical significance (P < 0.05). Values in black indicate no significant difference.
FIGURE 2

One-vs-rest ROC curves for multinomial logistic regression model.
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FIGURE 4

One-vs-rest ROC curves for random forest model.
FIGURE 3

One-vs-rest ROC curves for the XGBoost model.
FIGURE 5

Comparison of ROC curves across logistic regression, XGBoost, and random forest models.
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patterns and interactions in clinical data, and support their

potential value in hypoglycemia risk stratification.

The dataset used to construct our predictive models comprised

common clinical and laboratory variables routinely available for

hospitalized patients with type 2 diabetes mellitus (T2DM). The

logistic regression model identified seven statistically significant

predictors (P < 0.05), while both XGBoost and RF models
Frontiers in Endocrinology 09
highlighted the top 10 most influential variables. Notably, six

predictors—age, Charlson Comorbidity Index (CCI), serum

creatinine, HbA1c, mean glucose levels, and insulin use—emerged

consistently as significant factors across all three models. A number

of previous modeling studies and factor analysis studies have

similarly given the same conclusions for one or more of these

factors (12–14). While previous studies have individually confirmed

the significance of one or several of these factors, our research

uniquely integrated multiple models for comprehensive

comparison, offering a broader perspective than single-model

studies previously reported.

A key advantage of our study lies in its reliance on routinely

collected clinical data. This facilitates rapid assessment of

hypoglycemia risk without additional specialized testing, thus

granting medical staff valuable time to implement preventive

strategies and appropriate treatments.
TABLE 4 Performance comparison of three models: Accuracy, AUC, and
Kappa.

Model Accuracy Kappa Macro AUC

Logistic Regression 0.838 0.6845 0.7878

XGBoost 0.9255 0.8603 0.9553

Random Forest 0.9330 0.8729 0.9596
FIGURE 6

Boxplots comparing model performance (Accuracy and Kappa coefficient) across three classifiers using 5-fold cross-validation.
FIGURE 7

Top 10 feature importance.
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Regarding predictive variables, HbA1c has consistently been

identified as a crucial factor in hypoglycemia research. Prior studies

have reported that both excessively high HbA1c levels (>9%) and

overly stringent glycemic control (HbA1c <7%) are associated with

increased hypoglycemia risk (15). Additionally, insulin use within

these HbA1c ranges further exacerbates hypoglycemia risk. Both

our univariate and multivariate analyses supported these findings,

reinforcing that elevated HbA1c levels and insulin therapy are

critical risk factors for hypoglycemia in diabetic patients.

In recent years, growing attention has focused on the

association between the Charlson Comorbidity Index (CCI) and

hypoglycemia. Most prior studies investigating comorbidities

typically examined only one or a few components of the CCI,

such as cardiovascular disease, renal impairment, or malignancy

(16). These comorbid conditions have been associated with glucose

instability and heightened risk of adverse glycemic events. Patients

with multiple chronic diseases often experience altered drug

metabolism, polypharmacy, and malnutrition, potentially

interfering with glucose regulation and insulin sensitivity.

Incorporating the CCI into all three predictive models in our

study enhances its utility as a comprehensive clinical indicator.

Unlike individual diagnoses, the CCI provides an aggregated

measure of overall disease burden, capturing complex interactions

between comorbidities and thereby improving the generalizability

and interpretability of the predictive models. Integrating the CCI

into predictive assessments may assist clinicians in accurately

stratifying risk, particularly among elderly hospitalized patients or

those with multiple chronic diseases, who inherently have higher

susceptibility to hypoglycemic episodes (17). Early identification of

high-CCI patients could facilitate personalized monitoring,

medication adjustments, and tailored nutritional plans, thereby

mitigating hypoglycemia risk.

Lastly, we conducted feature importance analyses for the top ten

variables in the XGBoost and RF models. Both models consistently

identified glycemic control and glucose variability as key predictors.

Additionally, XGBoost emphasized basal metabolic parameters

(e.g., creatinine and C-peptide), whereas the RF model placed

greater emphasis on medication use. These findings highlight

nuanced differences between machine learning approaches,

underscoring their ability to provide targeted clinical insights into

managing and preventing hypoglycemic events in hospitalized

diabetic patients.
Conclusions

In this study, we developed and compared three prediction

models - multinomial logistic regression, XGBoost, and random

forest - to identify factors associated with hypoglycemia severity in

hospitalized diabetic patients. Our results showed that both

machine learning models outperformed the traditional logistic

regression model in terms of predictive performance, with higher

accuracy and AUC values in all hypoglycemia categories. This time,
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the three models were designed with all commonly used clinical

indicators, without the need for special tests, to prevent

hypoglycemia as early as possible in type 2 diabetic patients and

to avoid the adverse consequences caused by hypoglycemia. In a

comparison of the three models and the focus of the models, the six

variables of age, Charlson comorbidity index, creatinine,

glycosylated hemoglobin, mean blood glucose level, and insulin

use were consistently identified as core predictors in almost all

models (7, 18, 19), This further enhances their clinical relevance.

Future studies should focus on the prospective validation and

practical application of these models to assess their clinical utility

and impact on patient safety.
Strengths and limitations

This study has several strengths. First, it comprehensively compared

the performance of traditional and ensemble machine learning models

in predicting hypoglycemia severity, highlighting the superior capability

of tree-based algorithms. Second, it utilized a multiclass classification

approach to stratify hypoglycemia into different severity levels, which

has greater clinical relevance than binary classification. Third, model

performance was rigorously evaluated using stratified 5-fold cross-

validation, and visual comparisons were provided through ROC

curves and boxplots, enhancing interpretability. Finally, the study was

based on a large cohort of hospitalized patients with diabetes, offering

real-world insights.

However, some limitations should be acknowledged. The data

were derived from a single center, which may limit the

generalizability of the findings. External validation using

independent datasets from other institutions is needed.

Additionally, the reliance on internal cross-validation without a

separate test set may lead to optimistic performance estimates.

Some potentially important predictors, such as postprandial glucose

or nutritional interventions, were not available in the dataset.

Moreover, the models have not yet been tested in real-time

clinical settings, and their clinical utility remains to be validated.
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Martıńez Tamés G, Lambert C, et al. Hypoglycemia in patients with type 2 diabetes
mellitus during hospitalization: associated factors and prognostic value. Diabetol Metab
Syndr. (2023) 15(1):249. doi: 10.1186/s13098-023-01212-9

14. Akirov A, Amitai O, Masri-Iraqi H, Diker-Cohen T, Shochat T, Eizenberg Y,
et al. Predictors of hypoglycemia in hospitalized patients with diabetes mellitus. Intern
Emerg Med. (2018) 13(3):343–50. doi: 10.1007/s11739-018-1787-0

15. Lipska KJ, Warton EM, Huang ES, Moffet HH, Inzucchi SE, Krumholz HM, et al.
HbA1c and risk of severe hypoglycemia in type 2 diabetes. Diabetes Care. (2013) 36
(15): 3535–42. doi: 10.2337/dc13-0610

16. Pratiwi C, Mokoagow MI, Made Kshanti IA, Soewondo P. The risk factors of
inpatient hypoglycemia: A systematic review. Heliyon. (2020) 6(5):e03913.
doi: 10.1016/j.heliyon.2020.e03913

17. Al-Azayzih A, Kanaan RJ, Altawalbeh SM, Alzoubi KH, Kharaba Z, Jarab A.
Prevalence and predictors of hypoglycemia in older outpatients with type 2 diabetes
mellitus. PloS One. (2024) 19(8):e0309618. doi: 10.1371/journal.pone.0309618

18. Zhang RT, Liu Y, Sun C, Wu QY, Guo H, Wang GM, et al. Predicting
hypoglycemia in elderly inpatients with type 2 diabetes: the ADOCHBIU model.
Front Endocrinol. (2024) 15:1366184. doi: 10.3389/fendo.2024.1366184

19. Ruan Y, Bellot A, Moysova Z, Tan GD, Lumb A, Davies J, et al. Predicting the
risk of inpatient hypoglycemia with machine learning using electronic health records.
Diabetes Care. (2020) 43(7):1504–11. doi: 10.2337/dc19-1743

20. Jia H, Zhang J. Machine learning-based prediction of hypoglycemia severity in
hospitalized diabetic patients. Res Square. (2025). doi: 10.21203/rs.3.rs-6619286/v1
frontiersin.org

https://doi.org/10.21203/rs.3.rs-6619286/v1
https://doi.org/10.21203/rs.3.rs-6619286/v1
https://doi.org/10.1016/S0140-6736(23)01301-6
https://doi.org/10.1038/s41598-023-43459-2
https://doi.org/10.1530/EC-15-0044
https://doi.org/10.1007/s11739-018-1787-0
https://www.diabetesresearchclinicalpractice.com/article/S0168-8227(16)00069-3/abstract
https://www.diabetesresearchclinicalpractice.com/article/S0168-8227(16)00069-3/abstract
https://doi.org/10.1111/dom.12689
https://doi.org/10.1038/s41598-024-69844-z
https://doi.org/10.2196/36176
https://doi.org/10.2196/36176
https://doi.org/10.1177/19322968221103561
https://doi.org/10.1371/journal.pmed.1004369
https://journals.lww.com/inr/fulltext/2025/03000/machine_learning_based_prediction_model_for.4.aspx
https://journals.lww.com/inr/fulltext/2025/03000/machine_learning_based_prediction_model_for.4.aspx
https://doi.org/10.3390/jpm12010067
https://doi.org/10.1186/s13098-023-01212-9
https://doi.org/10.1007/s11739-018-1787-0
https://doi.org/10.2337/dc13-0610
https://doi.org/10.1016/j.heliyon.2020.e03913
https://doi.org/10.1371/journal.pone.0309618
https://doi.org/10.3389/fendo.2024.1366184
https://doi.org/10.2337/dc19-1743
https://doi.org/10.21203/rs.3.rs-6619286/v1
https://doi.org/10.3389/fendo.2025.1634358
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Machine learning-based prediction of hypoglycemia severity in hospitalized diabetic patients
	Introduction
	Literature review
	Methods
	Study design and population
	Data collection
	Patient grouping
	Statistical analysis
	Machine learning model development
	Model performance evaluation

	Results
	Patient characteristics
	Univariate and Multivariate Logistic Regression Analyses
	Machine learning model evaluation
	Model performance comparison
	Feature importance analysis

	Discussion
	Conclusions
	Strengths and limitations
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References




