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A novel deep learning model 
based on multimodal contrast-
enhanced ultrasound dynamic 
video for predicting occult 
lymph node metastasis in 
papillary thyroid carcinoma 
Rongwei Liu1,2, Fengqin Yuan1, Biaoyang Wang1, Weihua Chen1, 
Jun Ye1* and Yun He2* 

1Department of Medical Ultrasound, The First Affiliated Hospital of Gannan Medical University, 
Ganzhou, Jiangxi, China, 2Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi 
Medical University, Nanning, Guangxi Zhuang Autonomous Region, China 
Objective: This study aimed to evaluate the value of constructing a multimodal 
deep-learning video model based on 2D ultrasound and contrast-enhanced 
ultrasound (CEUS) dynamic video for the preoperative prediction of OLNM in 
papillary thyroid carcinoma (PTC) patients. 

Methods: A retrospective analysis was conducted on 396 cases of clinically 
lymph node-negative PTC cases with ultrasound images collected between 
January and September 2023. Five representative deep learning architectures 
were pre-trained to construct deep learning static image models (DL_image), 
CEUS dynamic video models (DL_CEUSvideo), and combined models 
(DL_combined). The area under the receiver operating characteristic curve 
(AUC) was used to evaluate model performance, with comparisons made using 
the  Delong  tes t .  A  P-va lue  of  less  than  0.05  was  cons idered  
statistically significant. 

Results: The DL_CEUSvideo, DL_image, and DL_combined models were 
successfully developed and demonstrated. The AUC values were 0.826 (95% 
CI: 0.771-0.881), 0.759 (95% CI: 0.690-0.828), and 0.926 (95% CI: 0.891-0.962) 
in the training set, and 0.701 (95% CI: 0.589-0.813), 0.624 (95% CI: 0.502-0.745), 
and 0.734 (95% CI: 0.627-0.842) in the test set. Finally, sensitivity, specificity, and 
accuracy for the DL_CEUSvideo, DL_image, and DL_combined models were 
0.836, 0.671, 0.704; 0.673, 0.716, 0.707; and 0.818, 0.902, 0.886 in the training 
set, and 0.556, 0.775, 0.724; 0.556, 0.674, 0.647; and 0.704, 0.663, 0.672 in the 
test set, respectively. 
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Conclusion: These results demonstrated that the multimodal deep learning 
dynamic video model could preoperatively predict OLNM in PTC patients. The 
DL_CEUSvideo model outperformed the DL_image model, while the 
DL_combined  model  s ign i  fi cant ly  enhanced  sens i t iv i ty  without  
compromising specificity. 
KEYWORDS 

papillary thyroid carcinoma, occult lymph node metastasis, dynamic video, deep 
learning, contrast-enhanced ultrasound 
1 Introduction 

Papillary thyroid carcinoma (PTC) is the most prevalent 
pathological type of malignant thyroid tumors, accounting for 
approximately 84% of cases, with its incidence rising globally (1). 
Earlier studies have established that despite the generally favorable 
prognosis of PTC patients, approximately 30%–65% of patients 
experience occult lymph node metastasis (OLNM) (2–4), which has 
been established as a risk factor for postoperative local recurrence 
and distant metastasis that directly affects preoperative surgical 
decision-making (3, 5, 6). More importantly, the lack of 
preoperative imaging and clinical evidence for OLNM poses 
challenges in detecting OLNM preoperatively. At present, OLNM 
is primarily diagnosed in clinically lymph node-negative PTC 
patients through prophylactic central lymph node dissection 
(CLND) (7). However, CLND increases the risk of surgical 
complications, such as recurrent laryngeal nerve injury and 
hypocalcemia (8), leading to debate over the necessity of 
prophylactic lymph node dissection (9–12). Therefore, there is a 
pressing need to develop non-invasive and accurate preoperative 
methods for predicting OLNM to optimize treatment strategies and 
individualize prognostic assessment in PTC patients. 

The 2015 American Thyroid Association guidelines 
recommend preoperative ultrasound examination to initially 
assess lymph node metastasis in PTC patients (9). However, the 
anatomical complexity of central lymph nodes poses challenges in 
routine ultrasound, making it difficult to identify OLNM 
preoperatively (13, 14). Numerous studies have concluded that 
conventional ultrasound features of PTC, such as tumor size, 
location, microcalcifications, and extrathyroidal extension, are 
closely related to OLNM (4, 15, 16). Noteworthily, the advent of 
Contrast-Enhanced Ultrasound (CEUS) in thyroid imaging has 
introduced features such as peak enhancement intensity, 
enhancement direction, presence of ring enhancement, and 
enhancement components to offer additional diagnostic 
information for OLNM in PTC patients (17, 18). However, these 
ultrasound features typically rely on the examiner’s subjective 
judgment, lacking objective predictive indicators. 

Artificial intelligence (AI) excels in the quantitative evaluation 
of imaging data, demonstrating significant potential in assisting 
02 
physicians to achieve more accurate and reproducible results. In 
recent years, deep learning (DL) has garnered widespread attention 
for its outstanding performance in medical image recognition tasks. 
For instance, it can effectively enhance the accuracy of medical 
image interpretation, thereby increasing the objectivity of disease 
diagnosis (19–21). Previous studies (22–26) have primarily focused 
on generating deep-learning models using single-frame ultrasound 
images to predict lymph node metastasis. However, both lymph 
node lesions and primary PTC lesions exhibit heterogeneity, and 
single-frame static images fail to comprehensively capture their 
features, leading to the loss of critical tumor characteristics. 
Utilizing CEUS dynamic video to construct deep learning models 
for predicting OLNM can partially address this shortcoming. 
Previous studies (27–30) have demonstrated that DL models 
incorporating CEUS have achieved favorable performance in 
predicting microvascular invasion (MVI) of hepatocellular 
carcinoma (HCC), identifying high-risk patients for early 
postoperative HCC recurrence, differentiating pancreatic ductal 
adenocarcinoma from chronic pancreatitis, and assessing the 
vulnerability of carotid atherosclerotic plaques. At present, 
multimodal DL models integrating conventional two-dimensional 
ultrasound and CEUS dynamic video have not been applied to 
predict OLNM in PTC. At present, multimodal deep learning 
models integrating conventional two-dimensional ultrasound and 
CEUS dynamic video have not been applied to predict OLNM in 
papillary thyroid carcinoma. Thus, the present study aimed to 
evaluate the value of a multimodal deep learning video model 
constructed from preoperative two-dimensional ultrasound and 
CEUS dynamic video of PTC primary lesions for predicting 
OLNM in clinically lymph node-negative PTC patients. 
2 Materials and methods 

2.1 Study design and patients 

This retrospective study was approved by the Institutional Ethics 
Review Board (2024-E0890), and the requirement for informed 
consent was waived. Between January 2023 and September 2023, 
ultrasound images from 396 clinically lymph node-negative PTC 
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patients were acquired from the thyroid ultrasound image database at 
the First Affiliated Hospital of Guangxi Medical University (center 1) 
and First Affiliated Hospital of Gannan Medical University (center 2). 
These patients were divided into a training set and a test set, with 280 in 
the training set and 116 in the test set. Inclusion criteria: 1. Patients who 
underwent surgical intervention and lymph node dissection; 2. 
Postoperative pathological diagnosis of unifocal PTC; 3. Underwent 
routine ultrasound and CEUS within one month before surgery; 4. No 
lymph node abnormalities on preoperative clinical and neck 
ultrasound. Exclusion criteria: 1. History of previous surgery or 
ablation; 2. Incomplete or poor-quality ultrasound images; 3. Lack of  
CEUS examination; 4. Postoperative pathology indicating benign 
nodules. The study inclusion flowchart is illustrated in Figure 1. 
 

2.2 Ultrasound and contrast-enhanced 
ultrasound examinations 

The ultrasound equipment used in this study included GE 
LOGIQ E9, Mindray Resona 7, and Philips EPIQ7. Routine 
ultrasound and CEUS were performed within one month prior to 
surgical intervention. Informed consent was obtained from each 
Frontiers in Endocrinology 03 
patient before CEUS examination. Patients were positioned in a 
supine position, maintained normal breathing, and were instructed 
to avoid swallowing. Initially, the L14–5 probe was used to scan the 
suspicious thyroid nodule from multiple angles, and the largest 
plane was selected for CEUS (CEUS parameters are shown in the 
Supplementary Material). 
2.3 Image preprocessing 

Following the completion of routine two-dimensional 
ultrasound and CEUS examinations, the highest-quality video 
recording and single-frame images with minimal artifacts were 
selected for analysis. All thyroid ultrasound dynamic videos 
extracted from the system were converted and stored in Audio 
Video Interleave (AVI) format. Upon obtaining the raw thyroid 
CEUS dynamic video data, the nodule region was extracted. Next, a 
physician with over five years of experience in thyroid CEUS 
reviewed  the video  to  determine nodule size and  boundaries,
ensuring  image  quality.  Thyroid  CEUS  videos  (lasting  
approximately 10–120 seconds) were downsampled at a rate of 
one frame per two seconds to extract keyframes. For each video, 1– 
FIGURE 1 

Patient recruitment and grouping for the study. A total of 396 patients with papillary thyroid carcinoma from two medical centers between January 
2023 and September 2023 were enrolled in our study. These patients were divided into a training set and a test set, with 280 in the training set and 
116 in the test set. 
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15 frames with clear nodule features were selected, and the final five 
keyframes were selected at equal time intervals. This method 
reduced the need for ultrasound specialists to delineate all nodule 
regions in the video, as minimal variation exists between adjacent 
frames within a two-second interval, allowing efficient capture of 
key nodule features. The downsampling rate for video keyframe 
extraction and the selection of five temporally equidistant peak 
frames were empirically determined based on the current study. 

Thereafter, the extracted video data images were preprocessed 
and normalized as follows: 1. Only the central lesion area was 
retained by cropping and excluding irrelevant edge information; 2. 
Ultrasound images were resized to 256×256 pixels, following which 
data augmentation methods such as random flipping and cropping 
were applied to enhance data diversity, model generalization, and 
robustness, thereby mitigating the risk of overfitting; 3. Ultrasound 
images were scaled to 224×224 pixels, and pixel values were 
normalized to a range of 0 to 1. 

Afterward, the preprocessed ultrasound images were loaded 
into ITK-SNAP software (version 3.8.0) for manual segmentation 
and precise annotation of nodule regions. Lastly, the masks were 
saved for subsequent model training and feature extraction. The 
detailed workflow is displayed in Figure 2. 
2.4 Development of 2D static images, 
CEUS dynamic video, and DL_combined 
models 

A total  of  five representative deep learning architectures, namely 
DenseNet121, DenseNet169, DenseNet201, ResNet18, and ResNet34, 
were employed for model pre-training. Transfer learning was 
employed using ImageNet (31) to overcome the limitations of small 
medical datasets, thereby enhancing generalization and accelerating 
model training. All architectures were implemented using the 
PyTorch 1.8.1 framework. Data augmentation was achieved through 
horizontal and vertical flipping and random cropping. 

Thyroid ultrasound data were categorized into single-frame and 
five-frame multi-channel inputs for constructing the 2D static 
image model (DL_image) and the CEUS dynamic video model 
(DL_CEUSvideo), respectively. The single-frame input was based 
on the slice with the largest diameter of the thyroid nodule, whereas 
the five-frame input included this slice and two additional slices 
above and below at equal time intervals. The best-performing 
models from both the 2D static image and CEUS dynamic video 
models were selected for deep learning feature extraction, which 
was then combined to construct the DL_combined model (See 
Supplementary Material for model training details). 
2.5 Interpretability of deep learning model 
results 

To enhance the interpretability of the deep learning model’s 
predictions, Gradient-weighted Class Activation Mapping (Grad-
Frontiers in Endocrinology 04
CAM) was employed to generate heat maps that display the areas 
most indicative of OLNM in the images. This technique involves 
applying global average pooling to the model’s final feature map, 
calculating the gradient of the top-class output with respect to the 
final feature map, and subsequently visualizing this gradient on the 
original image (32). 
2.6 Statistical analysis 

The area under the receiver operating characteristic curve 
(AUC) was used to assess the efficacy of the deep learning models 
in predicting OLNM in PTC patients. The DeLong test was 
employed for model comparisons. Additionally, sensitivity, 
specificity, positive predictive value, negative predictive value, and 
accuracy were calculated to evaluate and compare the diagnostic 
performance of  the  models. A P-value of less than  0.05 was

considered statistically significant. All statistical analyses were 
conducted using Python software (version 3.7.12) and the 
Statsmodels package (version 0.13.2). 
3 Results 

3.1 Clinical ultrasound characteristics 

In the training set, ultrasound images from 280 PTC cases were 
analyzed, with an average age of 42.31 ± 10.97 years, comprising 70 
males and 210 females. The average tumor diameter was 11.74 ± 
7.06 mm. Moreover, 55 cases had OLNM, whereas 225 did not. The 
test set included 116 patients, with an average age of 40.70 ± 10.58 
years, including 33 males and 83 females. Similarly, the average 
tumor diameter was 11.43 ± 7.02 mm. A total of 27 cases developed 
OLNM, whereas 89 did not. The analysis revealed significant 
differences in the prediction of PTC occult lymph node metastasis 
based  on  nodule  maximum  diameter,  nodule  margins,  
extracapsular extension, and CEUS peak intensity (P<0.05) 
(Table 1). There were no statistical differences in baseline 
characteristics between the training and test sets (Supplementary 
Table S1). 
3.2 Construction and selection of the 
optimal models for DL_image, 
DL_CEUSvideo, and DL_combined, 
respectively 

In this study, the DL_image and DL_CEUSvideo models were 
successfully constructed. Regarding the DL_image model, the 
DenseNet169 architecture demonstrated superior predictive 
performance in the test set (AUC = 0.624, 95% CI: 0.502–0.745) 
(Figures 3A, B). In contrast, among the DL_CEUSvideo model, the 
ResNet18 architecture showed superior predictive performance 
(AUC = 0.701, 95% CI: 0.589–0.813) (Figures 3C, D). 
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Subsequently, the best-performing models, DenseNet169 (from 
DL_image) and ResNet18 (from DL_CEUSvideo), were selected to 
extract DL features for fusion and construction of the DL_combined 
model. In the DL_combined model, the MLP architecture achieved 
the highest predictive performance in the test set (AUC = 0.734, 95% 
CI: 0.627–0.842) (Figures 3E, F). Overall, the optimal models for 
predicting OLNM in PTC across the three approaches were 
DenseNet169, ResNet18, and MLP, respectively. 
Frontiers in Endocrinology 05 
3.3 Comparison of predictive performance 
among DL_CEUSvideo, DL_image, and 
DL_combined models 

Furthermore, this study compared the performance of the best-
performing models constructed using the CEUS video DL model, 
2D static image DL model, and combined models, termed 
DL_CEUSvideo, DL_image, and DL_combined, respectively, for 
FIGURE 2 

Workflow of the deep learning analysis. The workflow includes tumor segmentation, feature extraction, feature selection, model evaluation, and 
clinical implications of the interpretable deep learning signature. 
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TABLE 1 Clinical patient characteristics and US features in the training set and test set. 

Characteristics And 
US features 

Training set (n=280) 

P value 

Test set (n=116) 

P value OLNM­
(n=225) 

OLNM+ 
(n=55) 

OLNM­
(n=89) 

OLNM+ 
(n=27) 

Age 42.84 ± 10.97 40.13 ± 10.81 0.107 41.72 ± 10.30 37.33 ± 11.01 0.059 

Size 10.77 ± 6.30 15.69 ± 8.55 <0.001 10.45 ± 6.77 14.67 ± 6.98 0.001 

Gender 0.019 0.17 

Male 49 (21.78) 21 (38.18) 22 (24.72) 11 (40.74) 

Female 176 (78.22) 34 (61.82) 67 (75.28) 16 (59.26) 

Location 0.449 0.448 

Upper 55 (24.44) 9 (16.36) 26 (29.21) 4 (14.81) 

Mid 105 (46.67) 29 (52.73) 41 (46.07) 14 (51.85) 

Lower 56 (24.89) 13 (23.64) 18 (20.22) 8 (29.63) 

sthmus 9 (4.00) 4 (7.27) 4 (4.49) 1 (3.70) 

Composition >0.99 0.493 

Solid 215 (95.56) 53 (96.36) 87 (97.75) 25 (92.59) 

Predominately solid 10 (4.44) 2 (3.64) 2 (2.25) 2 (7.41) 

Echogenicity 0.399 >0.99 

Hypoechoic 217 (96.44) 54 (98.18) 88 (98.88) 27 (100.00) 

Isoechoic 6 (2.67) 0 1 (1.12) 0 

Hyperechoic 2 (0.89) 1 (1.82) 0 0 

Echotexture >0.99 >0.99 

Heterogeneous 225 (100.00) 55 (100.00) 89 (100.00) 27 (100.00) 

Orientation 0.151 >0.99 

Horizontal 125 (55.56) 24 (43.64) 46 (51.69) 14 (51.85) 

Vertical 100 (44.44) 31 (56.36) 43 (48.31) 13 (48.15) 

Echogenic_foci 0.054 0.131 

No 73 (32.44) 11 (20.00) 34 (38.20) 5 (18.52) 

Microcalcifications 138 (61.33) 43 (78.18) 54 (60.67) 22 (81.48) 

Macrocalcifications 14 (6.22) 1 (1.82) 1 (1.12) 0 

Margin <0.001 <0.001 

Ill-defined 80 (35.56) 51 (92.73) 25 (28.09) 27 (100.00) 

Irregular margin 145 (64.44) 4 (7.27) 64 (71.91) 0 

ETE <0.001 <0.001 

No 225 (100.00) 22 (40.00) 88 (98.88) 12 (44.44) 

Yes 0 33 (60.00) 1 (1.12) 15 (55.56) 

Halo 0.399 0.267 

Present halo 7 (3.11) 0 1 (1.12) 2 (7.41) 

Absent halo 218 (96.89) 55 (100.00) 88 (98.88) 25 (92.59) 

CDFI 0.143 0.703 

Avascularity 12 (5.33) 0 5 (5.62) 3 (11.11) 

(Continued) 
F
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predicting OLNM in PTC patients. In the training set, the AUC 
values for the DL_CEUSvideo, DL_image, and DL_combined 
models were 0.826 (95% CI: 0.771-0.881), 0.759 (95% CI: 0.690­
0.828), and 0.926 (95% CI: 0.891-0.962), respectively (Figure 4A). In 
the test set, the corresponding AUC values were 0.701 (95% CI: 
0.589-0.813), 0.624 (95% CI: 0.502-0.745), and 0.734 (95% CI: 
0.627-0.842), respectively (Figure 4D). 

In the training set, the sensitivity, specificity, and accuracy of the 
DL_CEUSvideo, DL_image, and DL_combined models were 0.836, 
0.671, and 0.704; 0.673, 0.716, and 0.707; and 0.818, 0.902, and 
0.886, respectively. In the test set, these metrics were 0.556, 0.775, 
and 0.724; 0.556, 0.674, and 0.647; and 0.704, 0.663, and 0.672, 
respectively (Table 2). 

Furthermore, model performance was assessed using 
calibration curves, which delineated that the DL_CEUSvideo, 
DL_image, and DL_combined models displayed satisfactory 
calibration in both training and test sets, as depicted in 
Figures 4B, E. Additionally, decision curve analysis (DCA) 
indicated that the DL_CEUSvideo and DL_combined models 
offered greater clinical benefit for the preoperative prediction of 
OLNM in PTC patients. The DCA for the DL_CEUSvideo, 
DL_image, and DL_combined models is delineated in Figures 4C, F. 
Frontiers in Endocrinology 07 
3.4 Grad-CAM heatmap visualization 

Grad-CAM was utilized to generate heatmaps to visualize the 
recognition patterns of the deep transfer learning models. Heatmap 
visualizations for both the five-frame CEUS dynamic Videos and 
single-frame static images were created  for OLNM-negative

(Figures 5A, B) and OLNM-positive patients (Figures 5C, D). As 
anticipated, in most OLNM-positive ultrasound images, the 
response regions were typically located at the tumor margins. On 
the other hand, in OLNM-negative images, the response regions 
were generally distributed evenly within the tumors. 
4 Discussion 

In recent years, significant advances in deep learning have 
enabled machines to learn and process multi-scale, multi-level 
abstract data (33, 34) and automatically analyze and interpret 
complex datasets. Herein, the DL_CEUSvideo, DL_image, and 
DL_combined models were successfully developed to predict 
OLNM  in  PTC  pat ients .  The  DL_CEUSvideo  model  
demonstrated superior performance in predicting OLNM in PTC 
TABLE 1 Continued 

Characteristics And 
US features 

Training set (n=280) 

P value 

Test set (n=116) 

P value OLNM­
(n=225) 

OLNM+ 
(n=55) 

OLNM­
(n=89) 

OLNM+ 
(n=27) 

Mainly peripheral vascularity 187 (83.11) 44 (80.00) 78 (87.64) 22 (81.48) 

Mainly central vascularity 4 (1.78) 2 (3.64) 1 (1.12) 0 

Mixed vascularity 22 (9.78) 9 (16.36) 5 (5.62) 2 (7.41) 

Enhancement_pattern 0.717 >0.99 

Homogeneous 4 (1.78) 0 1 (1.12) 0 

Heterogeneous 221 (98.22) 55 (100.00) 88 (98.88) 27 (100.00) 

Peak_intensity 0.019 0.018 

Hypoenhancement 157 (69.78) 48 (87.27) 63 (70.79) 26 (96.30) 

Isoenhancement 53 (23.56) 7 (12.73) 19 (21.35) 0 

Hyperenhancement 15 (6.67) 0 7 (7.87) 1 (3.70) 

Ring_enhancement 0.738 >0.99 

Absent 221 (98.22) 53 (96.36) 88 (98.88) 27 (100.00) 

Present 4 (1.78) 2 (3.64) 1 (1.12) 0 

Nodule_composition_ 
at_CEUS 

0.874 0.883 

Solid 209 (92.89) 51 (92.73) 83 (93.26) 26 (96.30) 

Predominately solid 15 (6.67) 4 (7.27) 4 (4.49) 1 (3.70) 

Predominately cystic 1 (0.44) 0 1 (1.12) 0 

Cystic 0 0 1 (1.12) 0 
fr
ETE, Extrathyroidal extension; CDFI, Color Doppler flow imaging; CEUS, Contrast-enhanced ultrasound; US, Ultrasound; OLNM, Occult lymph node metastasis; Mid, Middle. 
The bolded values in Table 1 indicate p-values < 0.05 for easier identification. 
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patients compared to the DL_image model, which was based on 
single-frame typical ultrasound images, achieving favorable results 
in the test set. These findings collectively validate the feasibility of 
using multimodal ultrasound dynamic video deep learning models 
to predict OLNM in PTC patients. 

Of note, ultrasound is the preferred method for preoperative 
evaluation of cervical lymph node status. However, due to the 
Frontiers in Endocrinology 08
unique anatomy of cervical lymph nodes, particularly the complex 
structure of central lymph nodes obscured by the esophagus, 
trachea, and mediastinal regions, ultrasound is less effective in 
detecting central lymph nodes compared to lateral ones (9, 14). 
Thus, timely and accurate preoperative prediction of central lymph 
node status is crucial. Earlier studies have identified tumor location, 
size (>5mm), microcalcifications, and extrathyroidal extension as 
FIGURE 3 

Receiver Operating Characteristic (ROC) Curves for the DL Models. ROC curves for the DL_image model in the training set (A) and test set (B). ROC 
curves for the DL_CEUSVideo model in the training set (C) and test set (D). ROC curves of the DL_Combined model in the training set (E) and test 
set (F). ROC, Receiver Operating Characteristic; DL, Deep learning; CEUS, Contrast-enhanced ultrasound. 
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independent predictors of OLNM (2, 16, 35). A recent study (36) 
using CEUS for lymph node evaluation described its accuracy in 
assessing LNM in PTC patients as unsatisfactory. Although these 
studies evaluated the utility of conventional ultrasound features for 
Frontiers in Endocrinology 09
predicting OLNM in PTC patients, they relied on subjective visual 
assessments based on personal expertise and experience, inevitably 
leading to the loss of key information and reduced predictive 
performance. With advancements in artificial intelligence, deep 
FIGURE 4 

Model performance evaluation in the training (A-C) and test (D-F) cohorts. (A, D) ROC curves of five predictive models. (B, E) Calibration curves 
comparing predicted vs. actual probability across all models. (C, F) DCA demonstrates the clinical utility of each model. The ROC curve 
demonstrated that the DL_combined model achieved the highest AUC value. The calibration curve indicated that the predicted probabilities of the 
DL_combined model were in closer agreement with the actual probabilities. Decision curve analysis revealed that the DL_combined model provided 
higher clinical net benefit. ROC, Receiver Operating Characteristic; AUC, Area under the curve; DCA, Decision curve analysis; DL, Deep learning. 
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learning surpasses traditional two-dimensional ultrasound by 
identifying subtle textures and details overlooked by radiologists, 
thus demonstrating superior diagnostic performance (20, 37). 

Herein, the DL_image model achieved an AUC of 0.759 (95% 
CI: 0.690-0.828) in the training set and 0.624 (95% CI: 0.502-0.745) 
in the test set, consistent with the findings of previous studies (26, 
38, 39). While it aids in improving the detection rate of OLNM in 
preoperative PTC patients, the results remain suboptimal. This may 
be ascribed to single-frame static images, merely representing a 
fraction of the tumor and the high heterogeneity of PTC tumors. 
Indeed, a single image cannot fully capture tumor heterogeneity and 
microenvironment changes. Extracting multiple keyframes from 
the CEUS dynamic video of the primary PTC lesion and using 
multi-channel inputs in the deep learning model effectively 
addressed the loss of key information from single static images, 
thereby achieving superior predictive performance. The 
DL_CEUSvideo model achieved an AUC of 0.826 (95% CI: 0.771­
0.881) in the training set and 0.701 (95% CI: 0.589-0.813) in the test 
set, demonstrating outstanding predictive performance and 
improving OLNM detection rates in PTC patients preoperatively. 
Notably, the AUC was in line with that of previous studies (40, 41) 
on 2D image dynamic videos, despite being marginally lower than 
Zhao HN’s study (18), which focused on CEUS video based lymph 
node lesions. This discrepancy may be attributed to studies based on 
lymph node lesions being more direct, thereby providing more 
valuable key information. However, this study focused on 
predicting OLNM, and the lymph nodes of PTC patients typically 
do not manifest abnormalities during the preoperative period, 
leading to prediction models based on features derived from the 
primary lesion. Nevertheless, satisfactory predictive performance 
was achieved. 

Interestingly, the DL_CEUSvideo and DL_image models 
exhibited low sensitivity, at 0.556, for predicting OLNM in PTC 
patients in the test set. This may be due to imprecise labeling of 
training data or a lack of data augmentation during training. To 
address this shortcoming, feature  fusion  was employed by

integrating DL features extracted from both models to construct 
the DL_combined model, which achieved a sensitivity and 
specificity of 0.818 and 0.902, respectively, in the training set, and 
0.704 and 0.663, respectively, in the test set. Compared to either 
individual models, sensitivity was significantly higher in the 
DL_combined model (0.704 vs. 0.556) without compromising 
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specificity. Importantly, this  finding indicates that the 
DL_combined model, through deep learning feature fusion, can 
overcome the limitations of individual models and enhance 
predictive performance. Thus, developing deep learning models 
from dynamic video can effectively optimize OLNM prediction in 
PTC patients, offering a novel, non-invasive, and accurate 
preoperative predictive method that can assist in personalized 
treatment decision-making and benefit patients. 

To overcome the “black box” nature of deep learning models 
(42), Grad-CAM was utilized to develop heatmaps, allowing better 
interpretation of the decision-making process. Through the 
observation of Grad-CAM visualization results, it was found that 
when analyzing the aggressiveness of thyroid nodules, the deep 
learning model autonomously assigned greater weight to the solid 
components of the nodules. This finding is highly consistent with 
clinicians’ prioritization of solid components in clinical practice. 
The echogenicity, margin characteristics, morphological features, 
and calcification status of the solid components constitute critical 
radiological characteristics for diagnosing thyroid nodule 
aggressiveness (43). This phenomenon indicates that the 
optimized deep learning video model can, to some extent, 
effectively simulate clinicians’ diagnostic reasoning patterns. 
Interestingly, it was also observed that for thyroid nodules with 
calcifications, the model intelligently assigned higher weight to 
calcified regions, which aligns with the findings reported by 
Zhang C et al. (44). Previous studies have confirmed that different 
types of echogenic foci observed in ultrasound imaging, including 
microcalcifications, coarse calcifications, and peripheral 
calcifications, correlate well with the probability of thyroid nodule 
malignancy (43, 44). Herein, the response areas were typically 
located at the tumor margins in the ultrasound images of most 
OLNM-positive patients. In contrast, in OLNM-negative images, 
the response areas were generally evenly distributed within the 
tumor. This signals that the DL model primarily focused on areas of 
interest similar to those evaluated by clinicians to predict OLNM, 
thereby enhancing the interpretability of the deep learning model, 
reinforcing the credibility of the model training process, and 
increasing clinicians’ confidence in adopting these models for 
decision-making. 

Currently, the management of cervical lymph node metastasis 
in preoperative lymph node-negative PTC remains controversial, 
especially concerning the need for intraoperative prophylactic 
TABLE 2 Comparison of the performance of the DL_CEUSvideo, DL_image, and DL_combined models in predicting OLNM in patients with PTC. 

Model AUC (95% CI) Sensitivity Specificity PPV NPV Accuracy Cohort 

DL_image 0.759 (0.690 - 0.828) 0.673 0.716 0.366 0.899 0.707 Train 

DL_CEUSvideo 0.826 (0.771 - 0.881) 0.836 0.671 0.383 0.944 0.704 Train 

DL_combined 0.926 (0.891 - 0.962) 0.818 0.902 0.672 0.953 0.886 Train 

DL_image 0.624 (0.502- 0.745) 0.556 0.674 0.341 0.833 0.647 Test 

DL_CEUSvideo 0.701 (0.589 - 0.813) 0.556 0.775 0.429 0.852 0.724 Test 

DL_combined 0.734 (0.627 - 0.842) 0.704 0.663 0.388 0.881 0.672 Test 
DL, Deep learning; AUC, Area under the curve; CI, Confidence interval; PPV, Positive predictive value; NPV, Negative predictive value; CEUS, Contrast-enhanced ultrasound; OLNM, Occult 
lymph node metastasis; PTC, Papillary thyroid carcinoma. 
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central neck lymph node dissection (CLND). The clinical challenge 
is to limit the risk of surgical complications from CLND while 
minimizing recurrence and poor prognosis associated with central 
neck lymph node metastasis in PTC patients. Mounting evidence 
suggests that surgery is no longer the sole treatment option for 
malignant nodules, with local ablation therapy being an alternative 
modality for appropriately selected patients (45, 46). However, 
Frontiers in Endocrinology 11 
failure to accurately identify OLNM preoperatively may lead to 
recurrence and unfavorable prognosis (47). The developed 
DL_CEUSvideo and DL_combined models can predict OLNM in 
PTC patients preoperatively through non-invasive examination, 
potentially identifying a larger number of OLNM cases. This 
further highlights the clinical value of the DL video models for 
predicting OLNM in PTC patients. 
FIGURE 5 

Grad-CAM Visualization of DL_image and DL_CEUSvideo Models. Single-frame heatmap visualization is labeled from 0.2 to 1.0, multi-frame 
heatmap visualization is labeled from -1.0 to 0, with positive values indicating OLNM positivity and negative values indicating OLNM negativity. In 
OLNM-positive ultrasound images, the response area is usually located at the edge of the tumor(C, D). In contrast, in OLNM-negative images, the 
response area is generally evenly distributed within the tumor(A, B). Grad-CAM, Gradientweighted Class Activation Mapping; DL, Deep learning; 
CEUS, Contrast-enhanced ultrasound; OLNM, Occult lymph node metastasis. 
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Nevertheless, this study has some limitations that merit 
acknowledgment. Firstly, as a retrospective study, the results 
relied on limited retrospectively collected data, which may 
introduce inherent bias. Future studies should include more 
modalities and adopt prospective designs to enhance the 
diagnostic performance of the model. Secondly, although all 
ultrasound examinations were performed by experienced 
physicians, intra-operator variability in image acquisition might 
have compromised image consistency. Lastly, this was a two-center 
study that lacked sufficient external validation. Future studies are 
warranted to collect multi-center data for external validation to 
enhance the generalizability and robustness of the model. 

In summary, this study demonstrated that the multimodal deep-
learning video model can accurately predict OLNM status in PTC 
patients. The DL_CEUSvideo model outperformed the DL_image 
model, while the DL_combined model addressed the limitations of 
single models, further improving predictive performance and 
concomitantly increasing OLNM detection rates in PTC patients. 
This novel approach has the potential to serve as an effective 
alternative for preoperative OLNM screening in clinically lymph 
node-negative PTC patients and aid in clinical decision-making. 
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