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Type 2 diabetes mellitus (T2DM) remains a significant and multifaceted challenge

for modern healthcare. This issue becomes even more pressing during times of

armed conflict and the subsequent recovery period, as research indicates an

increased incidence of T2DM among combat veterans, largely due to post-

traumatic stress disorder. Although numerous antidiabetic drugs are currently

available, achieving optimal control of hyperglycemia continues to be

problematic. In this context, and as part of a focused search for biologically

active substances within the class of substituted and condensed [1,2,4]triazino

[2,3-c]quinazolines, we explored the hypoglycemic effects of a newly synthesized

series of such compounds. The study involved 21 synthesized compounds bearing

the [1,2,4]triazino[2,3-c]quinazoline core. Experiments were conducted using white

Wistar rats weighing between 260 and 280 grams. Prescreening of hypoglycemic

activity was evaluated based on changes in blood glucose levels before and after

compound administration by rats with normoglycemia. Compounds that

demonstrated the most pronounced activity were selected for extended

pharmacological evaluation using oral glucose tolerance test, adrenaline test, and

rapid insulin tests in rats with dexamethasone-induced insulin resistance. Initial

pharmacological screening under normoglycemic conditions showed that seven

studied compounds significantly lowered blood glucose levels. Follow-up

investigations validated the high hypoglycemic effect of 1,2,2-trimethyl-3-(3-

methyl-2-oxo-2H- [1,2,4]triazino[2,3-c]quinazolin-6-yl)cyclopentane-1-

carboxylic acid. Among the tested substances, compound 3-phenyl-6-

(phenylamino)-2H-[1,2,4]triazino[2,3-c]quinazolin-2-one was the only one to
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exhibit moderate activity in the adrenaline tolerance test. None of the compounds

enhanced insulin sensitivity in the liver or peripheral tissues. The findings suggest

that substituted [1,2,4]triazino[2,3-c]quinazolines constitute a promising scaffold for

the development of new hypoglycemic agents. 11b-Hydroxysteroid dehydrogenase

is themost likelymolecular target for lead-compound 1,2,2-trimethyl-3-(3-methyl-

2-oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)cyclopentane-1-carboxylic acid.
KEYWORDS

[1,2,4]triazino[2,3-c]quinazolines, hypoglycemic activity, diabetes mellitus, insulin
resistance, molecular docking
1 Introduction

The issue of type 2 diabetes mellitus (T2DM) represents one of the

most complex challenges for modern medical science (1–4). The issue

of diabetes becomes particularly urgent during wartime and in the

postwar period (5–8), as it has been shown that combat veterans are at

increased risk of developing type 2 diabetes due to the consequences of

post-traumatic stress disorder (9–12). Despite the continuous

improvement of prevention strategies and pharmacological

interventions, the incidence of this pathology demonstrates a

persistent upward trend (13–16). Diabetes mellitus, as both a social

and economic problem, is primarily associated with substantial

societal expenditures—not only for the management of

hyperglycemic conditions (17–19), but also for the treatment of a

wide range of comorbidities (20–24). Furthermore, the high rate of

disability associated with diabetes significantly increases the financial

burden related to the support of individuals who have lost their ability

to work (25–27). The current therapeutic paradigm for T2DM

involves the early use of hypoglycemic agents in order to prevent

disease progression (13, 28–30). The arsenal of drugs used to manage

hyperglycemic states in patients with T2DM is fairly extensive and

includes sulfonylurea derivatives, thiazolidinediones, and biguanides,

among others (13, 31). Based on their mechanisms of action,

additional agents include a-glucosidase inhibitors, dipeptidyl

peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1)

receptor agonists, and prandial glucose regulators (13, 32–34).

Despite the availability of numerous agents in this therapeutic

group, the problem of effectively treating hyperglycemia remains

unresolved (35–38). This is due to the diversity of pathological

manifestations of hyperglycemia, combined with the individual

physiological characteristics of patients, which necessitates the

development of drugs with improved pharmacotherapeutic

profiles (39–41). The search for novel hypoglycemic agents is

being actively pursued among various classes of organic

compounds (42), including quinazoline and triazine derivatives

(43–46).

Particular attention in modern approaches to the treatment of

T2DM is directed toward metformin—a biguanide that has long

remained the “gold standard” of first-line pharmacotherapy (47–
02
50). Its high efficacy in reducing blood glucose levels is

complemented by a favorable safety profile, a low risk of

hypoglycemia, and beneficial effects on body weight (51–54). The

primary mechanism of action of metformin involves the

suppression of hepatic glucose production, enhancement of

peripheral insulin sensitivity, and improvement of glucose uptake

(55–57). In addition to its antihyperglycemic properties, metformin

exhibits several pleiotropic effects, including anti-inflammatory,

cardioprotective, and potentially neuroprotective actions (58–61).

Recent studies also suggest its potential role in reducing the risk of

certain malignancies (62–65). In the context of wartime and

postwar periods, when a significant proportion of patients present

with comorbid psycho-emotional and somatic disorders,

metformin may play a pivotal role in comprehensive therapy (66–

69). Its capacity to modulate metabolic and inflammatory pathways

positions metformin as a promising agent not only in the

management of hyperglycemia but also in addressing systemic

consequences of stress and chronic inflammation (70–73).

In this context, special interest is being directed toward novel

heterocyclic compounds, particularly [1,2,4]triazino[2,3-c]

quinazoline derivatives (74–77). These molecules exhibit

promising hypoglycemic and anti-inflammatory properties,

making them attractive candidates for further investigation as

multi-target agents in the treatment of T2DM, especially in

patients with stress-related metabolic disturbances (78–81).

Aim. In view of the above, and within the framework of a targeted

search for biologically active agents among substituted [1,2,4]triazino

[2,3-c]quinazolines, we investigated the hypoglycemic activity of a

series of compounds that are derivatives of abovementioned

heterocyclic core.
2 Materials and methods

2.1 Studied compounds

A total of 21 compounds (Figure 1) containing the [1,2,4]triazino

[2,3-c]quinazoline fragment were selected for the investigation of

hypoglycemic activity. These compounds were obtained using
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previously described methods (77, 82–85) and exhibited identical

spectral and physical characteristics. Selected compounds differ in

the substituents at positions 3 and 6, the degree of saturation of the

pyrimidine fragment, and the presence or absence of a fused or spiro-

fused moiety. Such structural diversity provides a rational basis for

identifying promising classes of compounds for further investigation.
2.2 Pharmacological studies

247White maleWistar rats, each weighing between 260 and 280 g

and aged 3.5 months, were employed in the experimental

investigations. These animals were procured from the

“Biomodelservis” nursery and maintained on a standard diet under

a regular light–dark cycle, with unrestricted access to food and water.

All experimental procedures were conducted in strict accordance with

the “Regulations on the Use of Animals in Biomedical Research” (86).

After a quarantine period, the individually identified animals were

randomly allocated into groups of six male rats, ensuring uniformity

in body weight (within a ±15% range) and the absence of external

disease indicators.
Frontiers in Endocrinology 03
2.2.1 Preliminary screening
Prior to the commencement of the experiments, the rats were

fasted overnight, and each animal was weighed. The test substances

were administered intragastrically in either an aqueous solution or

as a finely dispersed suspension stabilized with Tween 80, at a

dosage of 50 mg/kg. The hypoglycemic potential of the synthesized

compounds was determined by assessing the alterations in blood

glucose levels before and following administration. For each

compound, glucose levels were measured in six rats at 2-, 4-, 6-,

and 8-hours post-administration. The evaluation of the potential

hypoglycemic activity was based on the observed change in blood

glucose concentration after a single oral dose, with measurements

obtained via a “One Touch Select” blood glucose meter. A dynamic

area under the curve (AUC) was calculated, where the time intervals

(0, 2, 4, 6, and 8 hours) served as the z-coordinate and the

percentage decrease in glucose levels as the y-coordinate.

2.2.2 Induction of primary insulin resistance
Primary insulin resistance was induced by administering daily

intramuscular injections of dexamethasone at a dosage of 0.125 mg/

kg over a period of 13 days (87, 88). The studied compounds in dose
FIGURE 1

Structures of studied compounds.
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10 mg/kg were administrated daily simultaneously with injection of

dexamethasone. Control groups of animals were also administered

dexamethasone at the same dose and period, but instead of the

suspension of the studied substance, they were administered an

equivalent volume of water. The glucose homeostasis was then

assessed by evaluating basal glycemia and carbohydrate tolerance.

This assessment was performed using an oral glucose tolerance test,

as well as adrenaline tests and rapid insulin test (87, 88). As

reference standards, “Metformin” (administered at doses of 50

mg/kg) and “Gliclazide” (administered at 50 mg/kg) were used.

2.2.3 Oral glucose tolerance test
Glucose was administered intragastrically at a dosage of 3 g/kg

using a noninvasive probe. Blood samples for glucose determination

were collected immediately before administration and subsequently

at 15, 30, 60, and 120 minutes thereafter. A dynamic area under the

curve (AUC) was calculated, where the time intervals (0, 0.25, 0.5, 1,

1.5 hours) served as the z-coordinate and the percentage increase in

glucose levels as the y-coordinate.

2.2.4 Adrenaline test
Rats received an intragastric dose of a 0.18% adrenaline solution

at 0.5 mg/kg. Blood samples were collected for glucose analysis

immediately before the administration, and at 30 and 90 minutes

after the dose.

2.2.5 Rapid Insulin test
Insulin was administered intraperitoneally at a dosage of 1 unit/

kg. Glucose levels were measured immediately before and 30

minutes after injection.

2.2.6 Statistical analysis
Data were processed using standard statistical software packages,

specifically “Microsoft Office Excel 2003” and “STATISTICA® for

Windows 6.0” (StatSoft Inc., № AXXR712D833214FAN5). For each

parameter, the arithmetic mean (M) and the standard error of the

mean (± m) were calculated. The Mann-Whitney test was performed

to prove the difference between studied groups of animals. The null

hypothesis was rejected when the statistical criterion yielded a value of

p < 0.05.
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2.3 Docking study

Docking was carried out using the CB-Dock service (89, 90),

which applies a protein-surface-curvature-based cavity detection

approach to guide molecular docking with AutoDock Vina. a-
Amylase (PDB ID: 1HNY), glucokinase (PDB ID: 1V4S), 11b-
hydroxysteroid dehydrogenase (PDB ID: 2BEL), a-glucosidase
(PDB ID: 3WY1), maltase-glucoamylase (PDB ID: 3TOP),

fructose-1,6-bisphosphatase (PDB ID: 2JJK), and PPAR-g (PDB

ID: 2PRG) models were used as possible molecular targets.

3 Results

3.1 Pharmacological studies

At the initial stage, in order to identify promising candidates for

further in-depth investigation of hypoglycemic activity, the blood

glucose-lowering effect of a series of synthesized compounds was

assessed using a normoglycemic model. The selection of doses for the

experimental compounds was based on the efficacy of structurally

related drugs or those with similar mechanisms of hypoglycemic

action, as recommended by established guidelines. Based on these

considerations, a dose of 50 mg/kg was chosen. Each compound was

tested on a group of six rats during the screening phase. To evaluate the

glucose-lowering effect over time, the percentage reduction in blood

glucose was measured every two hours following oral administration of

the test compound. Based on these data, the area under the curve (AUC)

was calculated for the mean percentage decrease in blood glucose over

time. The results of the hypoglycemic activity assessment in the

normoglycemic model (Table 1) indicated that compounds 3, 12, and

17–21 demonstrated ability to reduce blood glucose levels in conditions

of normoglycemic test.

Based on the results of the primary screening of hypoglycemic

activity, compounds 3, 17, 18, and 20 were selected for further in-

depth investigation using a dexamethasone-induced diabetes

model. The selection of compounds was based on their

pronounced glucose-lowering activity under normoglycemic

conditions, as well as their belonging to different classes of

triazino[2,3-c]quinazoline derivatives. Specifically, compound 17

contains the simplest substituent at 6th position, compound 3
TABLE 1 Effect of the tested compounds on blood glucose levels in rats under normoglycemic conditions.

Compound AUC, %↓*h. Compound AUC, %↓*h. Compound AUC, %↓*h.

1 83.62 8 12.51 15 155.1

2 105.3 9 54.92 16 33.71

3 271.3 10 25.30 17 266.6

4 17.36 11 185.1 18 395.0

5 125.7 12 284.1 19 220.5

6 106.0 13 126.1 20 265.1

7 34.62 14 126.1 21 238.4
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incorporates pharmacophoric sulfo-group, compound 18 bears a

camphoric acid moiety, and compound 20 can be considered a

structural analogue of biguanides. This model reproduces key

pathological features such as impaired secretory function of

pancreatic b-cells, development of insulin resistance, reduced

carbohydrate tolerance, and decreased sensitivity of peripheral

tissues to insulin action. Glucose homeostasis parameters were

assessed using the oral glucose tolerance test (OGTT), the

adrenaline test, and the short insulin test. These tests allow for

the evaluation of basal glycemia, insulinemia, and carbohydrate

tolerance. The results of the studies are presented in0 Tables 2-4.

As can be seen, the obtained results confirmed the data from the

primary pharmacological screening regarding the pronounced

hypoglycemic activity of compound 18. In the group of animals

treated with compound 18, the average increase in blood glucose

levels at 15, 30, 60, and 90 minutes after glucose loading increased to

42.8%, 52.4%, 46.4%, and –1.7%, respectively. Moreover, the area

under the glucose-time curve (AUC) was the lowest among all

tested groups, reaching 53.16%*h (Table 2). Hypoglycemic activity

was also observed for compound 3. As shown by the results

(Table 3), compound 20 was the only one among the tested

substances to exhibit moderate hypoglycemic activity under the

conditions of this model.

The short insulin tolerance test was performed to evaluate the

sensitivity of both the liver and peripheral tissues to insulin.

Analysis of the obtained results demonstrated that none of the
Frontiers in Endocrinology 05
tested compounds were capable of enhancing liver or peripheral

tissue sensitivity to insulin. The average reduction in blood glucose

levels 30 minutes after insulin administration in all groups treated

with the test compounds showed only minor differences compared

to the control group (Table 4).
3.2 Docking studies

Considering that biological studies have identified a promising

hypoglycemic agent—namely, 1,2,2-trimethyl-3-(3-methyl-2-oxo-

2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)cyclopentane-1-carboxylic

acid (compound 18)—a investigation was initiated to determine the

compound’s potential molecular mechanism of action. To achieve

this goal, preliminary molecular docking studies were performed for

compound 18 against the most common molecular targets of

hypoglycemic drugs: a-amylase (PDB ID: 1HNY), glucokinase

(PDB ID: 1V4S), 11b-hydroxysteroid dehydrogenase (PDB ID:

2BEL), a-glucosidase (PDB ID: 3WY1), maltase-glucoamylase

(PDB ID: 3TOP), fructose-1,6-bisphosphatase (PDB ID: 2JJK),

and PPAR-g (PDB ID: 2PRG).

Docking was carried out using the CB-Dock service (89, 90),

which applies a protein-surface-curvature-based cavity detection

approach to guide molecular docking with AutoDock Vina. For

each target, five distinct binding cavities were identified, and

AutoDock Vina affinity scores were calculated for each site.
TABLE 2 Hypoglycemic activity of the synthesized compounds in the glucose tolerance model.

Compound
Glucose level, mmol/l

AUC, ↑%*h
Initial 15 min 30 min 60 min 90 min

Control 4,6 ± 0,1 10,8 ± 0,1 11,0 ± 0,2 10,2 ± 0,2 7,3 ± 0,2 162.6

Metformin** 5,3 ± 0,3 12,1 ± 0,3* 11,3 ± 0,9 9,1 ± 0,4* 7,2 ± 0,6 118.7

Gliclazide** 4,0 ± 0,3 7,5 ± 0,8* 9,8 ± 1,2 10,4 ± 1,5 6,1 ± 0,3* 167.3

3*** 5,5 ± 0,3* 10,0 ± 0,3* 9,1 ± 0,9* 7,9 ± 0,8 5,9 ± 0,4* 69.83

17*** 5,1 ± 0,2* 8,5 ± 0,4* 10,2 ± 0,7 8,7 ± 1,1 5,4 ± 0,2* 89.10

18*** 5,1 ± 0,3 7,2 ± 0,2* 7,7 ± 0,2* 7,4 ± 0,4* 5,0 ± 0,1* 53.16

20*** 4,9 ± 0,2 8,9 ± 0,2* 11,2 ± 0,5 8,7 ± 0,8 7,0 ± 0,5 117.0
*р≤0.05 in comparison to control group of rats; **in dose 50 mg/kg; ***in dose 10 mg/kg.
TABLE 3 Hypoglycemic activity of the synthesized compounds in the adrenaline tolerance test model.

Compound
Glucose level, mmol/l Increase in glucose level, %

Initial 30 min 90 min 30 min 90 min

Control 5,1 ± 0,3 12,0 ± 0,6 1,6 ± 0,4a 139,1 ± 9,3 333,2 ± 22,4

Metformin** 5,7 ± 0,2 6,8 ± 0,2* 10.8 ± 0.3* 21.5 ± 3.3 93.1 ± 4.7

Gliclazide** 6.3 ± 0.2* 7.9 ± 0.2* 10.5 ± 0.3* 29.1 ± 5.9 66.8 ± 4.7

17*** 5,0 ± 0,1 11,6± 0,7 20,5± 0,4 131,3 ± 10,1 311,1 ± 18,2

18*** 5,0 ± 0,1 13,4 ± 0,4 19,3 ± 0,8* 170,8 ± 7,0 288,8 ± 15,0

20*** 5,1 ± 0,2 12,0± 0,6 17,0± 0,6* 135,7 ± 12,1 235,2 ± 19,0
*р≤0.05 in comparison to control group of rats; **in dose 50 mg/kg; ***in dose 10 mg/kg.
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Table 5 summarizes the characteristics of the ligand–target

complexes with the highest predicted binding affinities.

The results indicate that compound 18 exhibits a notable

predicted affinity for all the tested molecular targets. The highest

affinity was observed for 11b-hydroxysteroid dehydrogenase (PDB

ID: 2BEL), with an AutoDock Vina score of –10.6 kcal/mol. To

better understand the interaction patterns between compound 18

and the molecular targets, docking results were visualized, allowing

identification of the specific amino acid residues involved in ligand

binding and the nature of these interactions (Table 6).

As the data show, conventional hydrogen bonds were observed

in only three complexes: 2BEL, 2JJK, and 3WY1. This type of

interaction is known to contribute significantly to the strength and

stability of ligand binding.

Among these, the complex formed between compound 18 and

11b-hydroxysteroid dehydrogenase (PDB ID: 2BEL) stands out. It

features three conventional hydrogen bonds involving the carboxyl

group of the ligand and amino acid residues ILE46(B), GLY47(B), and

ASN119(B), suggesting a particularly strong and specific interaction

(Figure 2). In addition, the formation of a carbon–hydrogen bondwith

residue GLY45(B), a p–alkyl interaction with ILE121(B) and ALA223

(B), and a p–s interaction with ALA223(B) is also predicted, further

contributing to the stability of the ligand–target complex. These

findings are consistent with the highest calculated affinity of

compound 18 toward 11b-hydroxysteroid dehydrogenase in

comparison with other molecular targets. Thus, the obtained results
Frontiers in Endocrinology 06
suggest that 11b-hydroxysteroid dehydrogenase is the most likely

molecular target for the lead compound 18. At the same time, it

cannot be ruled out that the obtained compounds may exert

hypoglycemic effects through interactions with multiple molecular

targets. Considering the fact that multi-target drug development for

the treatment of metabolic disorders is currently a trending area of

research (91), this hypothesis underscores the relevance of

experimentally elucidating the mechanism of the glucose-lowering

action of the synthesized compounds.
4 Discussion

The findings of this study support the growing body of evidence

that emphasizes the need for novel hypoglycemic agents with multi-

target pharmacological properties (92–94). The promising glucose-

lowering effects demonstrated by several [1,2,4]triazino[2,3-c]

quinazoline derivatives, especially compound 18, underscore the

therapeutic potential of this heterocyclic scaffold in the

management of T2DM. The pronounced activity of these

compounds in both normoglycemic and insulin-resistant models

confirms their relevance for further pharmacological development.

Notably, the docking results suggest that 11b-hydroxysteroid
dehydrogenase may represent a key molecular target, which

highlights the dual potential of these compounds in modulating

both glucose metabolism and stress-related hormonal pathways.
TABLE 4 Hypoglycemic activity of the synthesized compounds in the rapid insulin test.

Compound
Glucose level, mmol/l Decrease in glucose level, %.

Initial 30 min 30 min

Control 4,9 ± 0,2 2,6 ± 0,1 46,6 ± 1,4

Metformin** 5,2 ± 0,2 3,5 ± 0,3 33,4 ± 4,6

Gliclazide** 5,5 ± 0,3 3,9 ± 0,2* 30,3 ± 1,4

3*** 5,0 ± 0,1 2,3 ± 0,1 52,8 ± 3,2

17*** 5,0 ± 0,1 2,6 ± 0,2* 48,6 ± 2,5

18*** 5,0 ± 0,3 2,8 ± 0,1 43,5 ± 4,0

20*** 4,8 ± 0,1 2,9 ± 0,1 38,1 ± 3,2
*р≤0.05 in comparison to control group of rats; **in dose 50 mg/kg; ***in dose 10 mg/kg.
TABLE 5 The results of the docking study.

Molecular target Cavity volume Center (x, y, z) Docking size (x, y, z) Autodock vina affinity scores (kcal/mol)

1HNY 2521 -1, 41, 21 31, 21, 21 -8.4

1V4S 872 23, 5, 72 21, 21, 21 -8.3

2BEL 2449 -4, 22, -17 21, 28, 21 -10.6

3WY1 1358 15, -3, -4 27, 21, 21 -9.1

3TOP 2472 25, 14, -33 21, 28, 21 -9.0

2JJK 683 -56, 6, -65 21, 21, 21 -9.3

2PRG 6496 19, 26, 26 35, 34, 35 -9.3
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Particular attention should be paid to metformin, a biguanide

that remains the cornerstone of T2DM pharmacotherapy (95–97).

Its efficacy, safety profile, and beneficial metabolic effects have made

it the first-line treatment for decades (98–100). Beyond its

antihyperglycemic action through hepatic glucose suppression

and increased insulin sensitivity, metformin exerts pleiotropic

effects—including anti-inflammatory, cardioprotective, and

neuroprotective actions—which are especially valuable in patients

with multiple comorbidities (101, 102). These properties highlight

the need for new agents to retain or even expand upon these

systemic effects, particularly in the postwar context, where stress-

related metabolic disorders are prevalent (103–105).

An emerging area of interest in diabetes research is the role of

gut microbiota (106, 107). Disruption of microbial balance—known

as dysbiosis—has been implicated in the pathogenesis of insulin

resistance and chronic inflammation (108–111). Recent studies

suggest that the glucose-lowering effect of metformin is partly

mediated through alterations in gut microbiota composition

(112–114). Therefore, future investigation of [1,2,4]triazino[2,3-c]

quinazoline derivatives should include an evaluation of their effects

on the gut microbial ecosystem, particularly in stress-related and

antibiotic-associated dysbiosis models.

Furthermore, the COVID-19 pandemic has highlighted the

vulnerability of patients with T2DM to infectious diseases (115–

117). The intersection between metabolic dysregulation and

impaired immune responses creates a high-risk scenario for

severe outcomes in viral infections such as SARS-CoV-2 (118–

121). In this regard, the anti-inflammatory properties of several

triazinoquinazoline derivatives may offer added value, potentially

reducing cytokine-mediated complications during viral infections

(122–125). Multifunctional agents that exert both metabolic and

immunomodulatory actions could significantly improve outcomes

in patients with dual metabolic and infectious burdens (126–128).

Genetic variability also plays a substantial role in the heterogeneity

of T2DM presentation and treatment response (129–131). Single
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nucleotide polymorphisms (SNPs) in genes encoding insulin

receptors, glucose transporters, inflammatory mediators, and drug-

metabolizing enzymes can influence both disease progression and

pharmacological outcomes (132–137). Understanding these genetic

factors may enable the development of personalized therapeutic

strategies that optimize efficacy and minimize adverse effects in

individuals with T2DM (138–140), particularly those with comorbid

conditions and increased susceptibility to infectious diseases (141–

143). Integration of pharmacogenetic approaches may optimize the

therapeutic application of newly developed agents, including the lead

[1,2,4]triazino[2,3-c]quinazoline analogs, by aligning treatment

choices with individual genetic profiles.

Importantly, T2DM rarely occurs in isolation and is often

accompanied by multiple comorbidities such as obesity,

cardiovascular disease, non-alcoholic fatty liver disease, depression,

and post-traumatic stress disorder (144–146). These coexisting

conditions complicate glycemic control and increase the risk of

treatment failure (147–150). Therefore, the development of agents

with broad systemic effects—including antioxidant, anti-inflammatory,

and potentially psychotropic actions—is essential. The observed effects

of some [1,2,4]triazino[2,3-c]quinazoline derivatives in this study

suggest that these compounds may hold such potential and should be

further examined in preclinical models of comorbidity.

Taken together, our results suggest that [1,2,4]triazino[2,3-c]

quinazoline derivatives represent a promising chemical class for the

development of novel hypoglycemic drugs. However, the complexity of

T2DM requires an interdisciplinary approach that includes not only

pharmacology, but also microbiology, genetics, immunology, and

psychosomatic medicine (151–153). Further investigation is needed to

elucidate the precise molecular targets and signaling pathways

modulated by these derivatives (154–156). Given the involvement of

chronic low-grade inflammation in T2DM and its comorbidities, special

attention should be paid to the immunomodulatory properties of these

compounds (157–160). Preliminary in vitro findings should be validated

using in vivo models that accurately reflect the multifactorial nature of
TABLE 6 The nature of amino acid moieties involved in formation of molecular target-ligand complex and nature of interactions.

Molecular target Amino acid moiety (chain) and type of interaction

1HNY
ILE235(A)9, LEU162(A)9, HIS20(A)10, LYS200(A)6, ALA198(A)6, VAL234(A)13, GLU233(A)13, ASP300(A)13, TRP59(A)13, TRP58(A)13,
TYR62(A)13, HIS299(A)13, ASP197(A)13, ARG195(A)13, HIS101(A)13, THR163(A)13, TYR151(A)13

1V4S
LYS414(A)6, SER455(A)2, LEU415(A)13, SER411(A)13, ASP409(A)13, GLY410(A)13, SER151(A)13, ASP78(A)13, ASP205(A)13, THR149(A)13,
ILE225(A)13, GLY81(A)13, GLY227(A)13, THR82(A)13, THR228(A)13

2BEL
ILE46(B)1, GLY47(B)1, ASN119(B)1, ALA223(D)9, ILE121(B)6, GLY45(B)2, LEU217(B)13, GLY216(B)13, ILE218(B)13, THR220(B)13, HIS120
(B)13, LYS44(B)13, GLY41(B)13, THR222(B)13, THR122(B)13, ASN123(B)13, THR124(B)13

2JJK
SER45(C)1, PRO188(D)6, ARG49(D)6, PRO188(C)6, ARG49(C)6, SER45(D)13, LEU186(D)13, SER46(D)13, ALA189(D)13, PRO188(A)13,
PRO188(B)13, ALA189(A)13, ALA189(B)13, ALA189(C)13, LEU186(C)13, SER46(C)13

2PRG
LYS457(B)6, ILE456(B)6, LEU453(B)6, MET463(B)6, LEU465(B)11, SER464(B)13, GLN286(B)13, PHE282(B)13, VAL450(B)13, TYR473(B)13,
ASP475(B)13, GLN454(B)13, GLN470(B)13, LYS474(B)13

3TOP
ASP1526(B)7,8, PHE1560(B)10, TRP1355(B)10, PHE1559(B)10, TYR1251(B)10, THR1586(B)13, MET1421(B)13, ARG1510(B)13, TRP1369(B)13,
PHE1427(B)13, LYS1460(B)13, ASP1157(B)13, PRO1159(B)13, ILE1587(B)13

3WY1
ASN46(B)1, ASP346(A)7,8, ALA349(A)6, ARG450(B)12, GLN439(B)2, HIS348(A)4, GLN531(A)13, ASN443(A)13, SER44(B)13, ASP441(A)13,
ALA444(A)13, ALA454(B)13, ASN447(B)13, ALA451(B)13, LYS352(A)13, PRO442(B)13, ASP440(B)13
1conventional hydrogen bond, 2carbon hydrogen bond, 3p-anion interaction, 4p-donor hydrogen bond, 5p-p stacked interaction, 6p-alkyl interaction, 7attractive charge, 8p-anion interaction, 9p-
s interaction, 10p-p T-shaped interaction, 11unfavorable donor-donor interaction, 12unfavorable positive-positive interaction 13van der Waals interaction,
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T2DM (161–163). Additionally, it is crucial to assess the safety profile,

potential drug–drug interactions, and pharmacokinetic characteristics of

these agents. Integration of omics technologies may help identify

biomarkers predictive of response and toxicity (164–167). The

inclusion of behavioral and cognitive endpoints in preclinical trials

may also yield important insights into their psychotropic potential

(168–170). Ultimately, translational research efforts will be essential to

determine whether [1,2,4]triazino[2,3-c]quinazoline derivatives can

address the unmet therapeutic needs of patients with T2DM and

complex comorbid profiles.
5 Conclusions

Substituted and condensed [1,2,4]triazino[2,3-c]quinazolines have

been demonstrated to represent a promising class of hypoglycemic

agents. Preliminary screening under normoglycemic conditions
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revealed that 7 out of the 21 tested compounds exhibited a

pronounced glucose-lowering effect. Selected compounds were further

evaluated for their hypoglycemic activity using a model of primary

insulin resistance. The oral glucose tolerance test indicated that 1,2,2-

trimethyl-3-(3-methyl-2-oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)

cyclopentane-1-carboxylic acid (compound 18) is a highly effective

glucose-lowering agent. Conversely, in the adrenaline-induced

hyperglycemia test, only 3-phenyl-6-(phenylamino)-2H-[1,2,4]triazino

[2,3-c]quinazolin-2-one (compound 20) demonstrated a moderate

hypoglycemic effect. None of the studied compounds enhanced

insulin sensitivity in hepatic or peripheral tissues. Conducted docking

study revealed that 11b-hydroxysteroid dehydrogenase is themost likely

molecular target for lead-compound 1,2,2-trimethyl-3-(3-methyl-2-

oxo-2H-[1,2,4]triazino[2,3-c]quinazolin-6-yl)cyclopentane-1-carboxylic

acid (compound 18). These findings highlight the high potential of

[1,2,4]triazino[2,3-c]quinazolin-2-one derivatives as a structural class for

the development of novel hypoglycemic agents.
FIGURE 2

Visualization of docking study of compound 18 toward 11b-hydroxysteroid dehydrogenase (PDB ID: 2BEL).
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Sipowicz K, et al. Type 2 diabetes mellitus, non-alcoholic fatty liver disease, and
metabolic repercussions: the vicious cycle and its interplay with inflammation. Int J Mol
Sci. (2023) 24:9677. doi: 10.3390/ijms24119677

145. Vadakkiniath IJ. Prevalence and correlates of stress, anxiety, and depression in
patients with chronic diseases: a cross-sectional study. Middle East Curr Psychiatry.
(2023) 30:66. doi: 10.1186/s43045-023-00340-2

146. Michalopoulou E, Thymis J, Lampsas S, Pavlidis G, Katogiannis K,
Vlachomitros D, et al. The triad of risk: linking MASLD, cardiovascular disease and
type 2 diabetes; from pathophysiology to treatment. J Clin Med. (2025) 14:428.
doi: 10.3390/jcm14020428

147. Dinavari MF, Sanaie S, Rasouli K, Faramarzi E, Molani-Gol R. Glycemic
control and associated factors among type 2 diabetes mellitus patients: a cross-
sectional study of Azar cohort population. BMC endocrine Disord. (2023) 23:273.
doi: 10.1186/s12902-023-01515-y

148. Fanelli G, Raschi E, Hafez G, Matura S, Schiweck C, Poluzzi E, et al. The
interface of depression and diabetes: treatment considerations. Trans Psychiatry. (2025)
15:22. doi: 10.1038/s41398-025-03234-5

149. Suprapti B, Izzah Z, Anjani AG, Andarsari MR, Nilamsari WP, Nugroho CW.
Prevalence of medication adherence and glycemic control among patients with type 2
diabetes and influencing factors: A cross-sectional study. Global Epidemiol. (2023)
5:100113. doi: 10.1016/j.gloepi.2023.100113

150. Ali SN, Dang-Tan T, Valentine WJ, Hansen BB. Evaluation of the clinical and
economic burden of poor glycemic control associated with therapeutic inertia in
patients with type 2 diabetes in the United States. Adv Ther. (2020) 37:869–82.
doi: 10.1007/s12325-019-01199-8

151. McGill M, Blonde L, Chan JCN, Khunti K, Lavalle FJ, Bailey CJ. The
interdisciplinary team in type 2 diabetes management: Challenges and best practice
solutions from real-world scenarios. J Clin Trans endocrinology. (2017) 7:21–7.

152. Tao M, Ye W, Wu Y, Chang W, Liu F, Zhu Y. Identification and validation of
five novel protein targets for type 2 diabetes mellitus. Sci Rep. (2025) 15:12127.
doi: 10.1038/s41598-025-97416-2

153. Chen Y, Wen Q, Yang B, Feng L, Jia X. Active constituent of HQS in T2DM
intervention: efficacy and mechanistic insights. Int J Mol Sci. (2025) 26:4578.
doi: 10.3390/ijms26104578

154. Xie X, Macknight HP, Lu AL, Chalfant CE. RNA splicing variants of the novel
long non-coding RNA, CyKILR, possess divergent biological functions in non-small
cell lung cancer. Mol Ther Nucleic Acids. (2025) 36:102412. doi: 10.1016/
j.omtn.2024.102412

155. Shi K, Peng X, Xu T, Lin Z, Sun M, Li Y, et al. Precise electromagnetic
modulation of the cell cycle and its applications in cancer therapy. Int J Mol Sci. (2025)
26:4445. doi: 10.3390/ijms26094445

156. Li M, Wang M, Wen Y, Zhang H, Zhao GN, Gao Q. Signaling pathways in
macrophages: molecular mechanisms and therapeutic targets. MedComm. (2023) 4:
e349. doi: 10.1002/mco2.349

157. Okdahl T, Wegeberg AM, Pociot F, Brock B, Størling J, Brock C. Low-grade
inflammation in type 2 diabetes: a cross-sectional study from a Danish diabetes
outpatient clinic. BMJ Open. (2022) 12:e062188. doi: 10.1136/bmjopen-2022-062188
frontiersin.org

https://doi.org/10.1007/s44337-025-00241-9
https://doi.org/10.1111/febs.16105
https://doi.org/10.3389/fimmu.2021.732913
https://doi.org/10.3390/biom12121830
https://doi.org/10.3389/fphar.2022.973587
https://doi.org/10.3390/ph18010104
https://doi.org/10.3390/tropicalmed9010013
https://doi.org/10.3390/v16060985
https://doi.org/10.3390/v16060985
https://doi.org/10.1038/s41467-023-43304-0
https://doi.org/10.1038/s41467-023-43304-0
https://doi.org/10.1038/s41586-024-07019-6
https://doi.org/10.3390/biom15030414
https://doi.org/10.2337/dci21-0051
https://doi.org/10.1186/1475-2840-11-133
https://doi.org/10.1186/1475-2840-11-133
https://doi.org/10.3389/fgene.2024.1460318
https://doi.org/10.3389/fgene.2024.1460318
https://doi.org/10.3390/genes16050578
https://doi.org/10.3389/fgene.2024.1416924
https://doi.org/10.3390/ijms24086887
https://doi.org/10.3390/ijms24086887
https://doi.org/10.3389/fmicb.2024.1403765
https://doi.org/10.3389/fmicb.2024.1403765
https://doi.org/10.3390/ijms24119677
https://doi.org/10.1186/s43045-023-00340-2
https://doi.org/10.3390/jcm14020428
https://doi.org/10.1186/s12902-023-01515-y
https://doi.org/10.1038/s41398-025-03234-5
https://doi.org/10.1016/j.gloepi.2023.100113
https://doi.org/10.1007/s12325-019-01199-8
https://doi.org/10.1038/s41598-025-97416-2
https://doi.org/10.3390/ijms26104578
https://doi.org/10.1016/j.omtn.2024.102412
https://doi.org/10.1016/j.omtn.2024.102412
https://doi.org/10.3390/ijms26094445
https://doi.org/10.1002/mco2.349
https://doi.org/10.1136/bmjopen-2022-062188
https://doi.org/10.3389/fendo.2025.1638013
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Trzhetsynskyi et al. 10.3389/fendo.2025.1638013
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