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Multimodal radiomics model
with triple -timepoint contrast-
enhanced ultrasound for
precise diagnosis of C-TIRADS
4 thyroid nodules
Linlin Shao, Lili Zhang, Lifang Liu, Fangfang Sun, Hongyu Li ,
Tongfeng Liu, Feng Hu and Lirong Zhao*

Ultrasound Diagnostic Center, The First Hospital of Jilin University, Changchun, China
Objective: This study aims to construct a multimodal radiomics model based on

contrast-enhanced ultrasound (CEUS) radiomic features, combined with

conventional ultrasonography (US) images and clinical data, to evaluate its

diagnostic efficacy in differentiating benign and malignant thyroid nodules

(TNs) classified as C-TIRADS 4, and to assess the clinical application value of

the model.

Methods: This retrospective study enrolled 135 patients with C-TIRADS 4 thyroid

nodules who underwent concurrent US and CEUS before FNA/surgery. From

each case, one US image and three CEUS key frames (2s post-perfusion, peak

enhancement, 2s post-peak) were selected. Patients were randomly split into

training (n=108) and test (n=27) cohorts (8:2 ratio). ROIs were manually

delineated (3D-Slicer), with radiomics features extracted (PyRadiomics) and

selected via mRMR and LASSO. Six CEUS radiomics-based machine learning

models (KNN, SVM, RF, XGBoost, LightGBM, SGD) were developed and evaluated

using AUC, accuracy, sensitivity, specificity, and F1-score. The optimal classifier

was used to build US-only, US+CEUS, and clinical+US+CEUS models. Statistical

comparisons employed DeLong tests, calibration curves, and DCA.

Results: The CEUS radiomics model demonstrated favorable diagnostic

performance in differentiating benign and malignant C-TIRADS 4 thyroid

nodules, with sensitivity, specificity, and accuracy of 0.875, 0.769, and 0.833,

respectively. When CEUS radiomic features were combined with US features, the

diagnostic performance of the CEUS radiomics model was comparable to that of

the US+CEUS radiomics model (AUC: 0.813 vs. 0.829, P=0.005). Furthermore,

the multimodal radiomics model integrating clinical data (clinical+US+CEUS

radiomics model) achieved significantly improved diagnostic efficacy, with an

AUC of 0.967, along with accuracy, sensitivity, specificity, and F1-score values of

0.815, 0.823, 0.792, and 0.884, respectively.

Conclusion: Our study developed a high-performance multimodal diagnostic

model through the innovative integration of radiomic features from three critical

CEUS timepoints combined with conventional ultrasound and clinical data,

establishing a novel decision-support tool for accurate noninvasive

classification of C-TIRADS 4 thyroid nodules. The model’s superior diagnostic
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performance (AUC 0.967) demonstrates the transformative potential of

multimodal integration in overcoming single-modality limitations and

enhancing clinical decision-making, positioning this approach as a promising

solution to mitigate unnecessary diagnostic procedures and overtreatment.
KEYWORDS

thyroid nodules, contrast-enhanced ultrasound, radiomics features, machine learning,
C-TIRADS
1 Introduction

In recent years, the rapid advancement of ultrasound imaging

technology and its significantly improved diagnostic sensitivity,

coupled with multiple factors such as dietary patterns and

environmental influences, have led to a marked increase in both

the incidence and detection rates of thyroid nodules (TNs).

Conventional ultrasonography (US), as the primary auxiliary

examination method for TNs, has been widely adopted in clinical

practice. Statistics indicate that the prevalence rate of TNs

exceeding 5 mm in maximum diameter detected by ultrasound

reach 20.43% among the adult population in China (1). However,

the majority of TNs are benign lesions, and even some malignant

nodules often exhibit indolent growth patterns (2), suggesting that

not all TNs require fine-needle aspiration (FNA).To standardize the

diagnosis and management of TNs, numerous national and

international thyroid associations have established ultrasound-

based diagnostic classification systems (3–5), providing crucial

guidance for differentiating benign and malignant TNs. Among

these, the Chinese Guidelines for Ultrasound Malignancy Risk

Stratification of Thyroid Nodules (C-TIRADS) (4) developed by

the Superficial Organ and Vascular Study Group of the Chinese

Medical Association Ultrasound Medicine Branch, holds significant

clinical relevance. According to the C-TIRADS classification

criteria, the malignancy risk for C-TIRADS category 3 nodules is

less than 2%, while for C-TIRADS category 4 nodules, it ranges

between 2% and 90%, and for C-TIRADS category 5 nodules, it

exceeds 90%.Notably, the malignancy risk spectrum of C-TIRADS

category 4 nodules is particularly broad, leading to unnecessary

invasive procedures such as FNA or even surgical resection for

certain benign nodules classified as C-TIRADS 4a or 4b (6).

Therefore, developing a reliable and noninvasive diagnostic

approach to more accurately distinguish benign from malignant

C-TIRADS category 4 nodules—particularly those for which FNA is

not recommended—holds substantial clinical significance and

practical value.

Currently, contrast-enhanced ultrasound (CEUS) has been

widely applied in the diagnosis of TNs (7). Utilizing microbubble

contrast agents as pure blood pool imaging tracers, CEUS enables

qualitative and quantitative analysis of macro- and microvascular

morphology in TNs and surrounding tissues by observing dynamic
02
perfusion patterns after intravenous injection and systemic

circulation (8). Although standardized guidelines for CEUS in TN

diagnosis remain lacking, it has become an important auxiliary tool

for sonographers in clinical practice. Previous studies have

demonstrated that combining conventional ultrasound with

CEUS significantly improves diagnostic accuracy, sensitivity, and

specificity for TNs (9–11). However, the diagnostic efficacy of CEUS

in clinical practice is highly operator-dependent, with results often

influenced by the subjective experience of sonographers. This

subjectivity may lead to inter-observer variability, ultimately

affecting the accuracy and reliability of clinical decision-making.

Therefore, developing a more objective and quantitative analytical

approach has become a key research focus.

Radiomics, as a prominent research area in medical imaging,

has shown great potential in precision medicine. By extracting high-

throughput quantitative features from medical images to construct

diagnostic or predictive models, radiomics can effectively reduce

subjective variability and experience-dependency among different

physicians, providing a more objective reflection of imaging

information and offering a promising tool for noninvasive

precision diagnosis and treatment (12). Currently, ultrasound-

based radiomics has demonstrated high diagnostic performance

in various fields, including liver (13), breast (14)and thyroid (15)

studies, providing novel technical approaches for the precise

diagnosis of TNs. However, most previous studies have focused

on building radiomics models based on two-dimensional

ultrasound images (15, 16), Although some studies have utilized

CEUS to differentiate TN characteristics (17, 18), they typically

extracted features from a single peak-intensity frame of CEUS

videos, which may inadequately capture dynamic blood flow

changes in nodules. Only one study analyzed five key CEUS time

points but did not incorporate multimodal data for comprehensive

evaluation (19). To overcome these limitations, our study employs a

multi-timepoint and multimodal fusion approach. Specifically, we

selected three key CEUS frames—”the second second after

perfusion initiation,” “peak enhancement time,” and “the second

second after peak enhancement”—to construct a CEUS radiomics

model, thereby comprehensively characterizing nodule

hemodynamics and avoiding the constraints of single-timepoint

analysis. Furthermore, we integrated conventional ultrasound

features and clinical data to develop a multimodal radiomics
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model, evaluating the diagnostic performance differences among

various models for C-TIRADS category 4 TNs. This approach aims

to provide a more comprehensive solution for the precise diagnosis

of TNs.
2 Materials and methods

2.1 Patients

We retrospectively analyzed 135 patients with C-TIRADS

category 4 TNs who underwent both US and CEUS examinations

prior to fine-needle aspiration (FNA) or surgical resection at our

institution between January 2021 and September 2024.Using

histopathological results as the gold standard, the patients were

stratified into benign and malignant groups. Through random

sampling, the entire cohort was divided into a training cohort

(n=108) and a test cohort (n=27) at an 8:2 ratio. The training cohort

was utilized for model development, while the test cohort served for

model validation (Figure 1). Inclusion Criteria: (1)Thyroid nodules

classified as C-TIRADS category 4; (2)No history of thyroid surgery

or FNA; (3)Completion of both conventional US and CEUS

examinations with optimal image quality prior to intervention;

(4)Availability of definitive pathological results from either FNA

or surgical resection; (5)Absence of allergic reactions to the contrast

agent SonoVue. Exclusion Criteria: (1) Incomplete clinical records;

(2) Indeterminate or unavailable pathological results; (3) Failure to

undergo pre-operative conventional US and CEUS examinations or

suboptimal ultrasound image quality; (4) History of severe allergies

or documented hypersensitivity to SonoVue contrast agent; (5)

Pregnancy or lactation status. The clinical and ultrasonographic

characteristics were well-balanced between the training (n=108)

and test (n=27) cohorts (Supplementary Table 1). All compared
Frontiers in Endocrinology 03
parameters showed no statistically significant differences (P>0.05

for all), meeting the data requirements for model development.
2.2 Ultrasound examination protocol and
image acquisition

The ultrasound examinations were performed using GE LOGIQ

E9 and GE LOGIQ E11 color ultrasound diagnostic systems.

US Image Acquisition: Patients were positioned in the supine

position with adequate neck exposure while maintaining quiet

breathing to minimize respiratory motion artifacts. Standardized

scanning was performed by sonographers with over 5 years of

thyroid ultrasound experience. Following C-TIRADS guidelines,

the following nodule characteristics were evaluated and recorded:

Maximum diameter and three-dimensional measurements; Internal

echogenicity (marked hypoechoic, hypoechoic, isoechoic, or

hyperechoic); Taller-than-wide shape (height/width ratio >1 or

<1); Margins (ill-defined or smooth); Microcalcifications (present

or absent). Imaging parameters (gain, depth, focus) were optimized

for each examination. The largest cross-sectional grayscale image

was saved for subsequent analysis (Figure 2).

CEUS Image Acquisition: The maximum diameter section of

the target nodule was selected as the observation plane, with

inclusion of surrounding normal thyroid tissue as reference.

SonoVue contrast agent (Bracco SpA Inc, Milan, Italy) was

prepared by injecting 5 mL of 0.9% sodium chloride solution into

the vial, followed by vigorous shaking to form a homogeneous

suspension. A 2.4 mL bolus of the contrast suspension was rapidly

injected via the antecubital vein, immediately followed by a 5 mL

saline flush. Timing commenced upon contrast injection, with

maintenance of stable probe positioning throughout the

examination. Patients were instructed to maintain quiet breathing
FIGURE 1

Flowchart of study population screening.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1639017
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shao et al. 10.3389/fendo.2025.1639017
and refrain from speaking, swallowing, or coughing. The entire

contrast perfusion process was continuously monitored and

recorded as dynamic cine loops. All examinations were performed

by two sonologists with over 10 years of thyroid ultrasound

experience, adhering strictly to standardized protocols to ensure

consistent image quali ty and reproducible diagnostic

results (Figure 2).
2.3 Region of interest segmentation on
ultrasound images

The CEUS dynamic cine loops were reviewed on the ultrasound

system to identify three key timepoints: “2 seconds after contrast

perfusion initiation”, “peak enhancement time” and “2 seconds post-

peak enhancement”. For each target nodule, one conventional

grayscale US image and six key-frame images (comprising both

grayscale US and CEUS images at each timepoint) were exported

(Figure 3). All images were imported into the medical image

processing software 3D-Slicer (Version 5.6.2) for manual ROI

delineation. The nodule ROI was manually traced directly on

conventional US images to ensure complete coverage of the entire

nodule area. To address potential boundary indistinctness of

malignant nodules on CEUS images, we implemented a
Frontiers in Endocrinology 04
dual-modality segmentation protocol: First, ROIs were delineated

on grayscale US images corresponding to each key timepoint to

generate reference masks. These masks were then precisely mapped

onto their paired CEUS images using the software’s registration tools,

maintaining spatial consistency and measurement accuracy across

imaging modalities (Figure 3).
2.4 Feature extraction and selection

Radiomic feature extraction was performed using the open-

source Python package PyRadiomics. The extracted features

primarily consisted of three categories: first-order features

describing fundamental statistical properties of voxel intensity

distributions (including mean, median, standard deviation,

skewness, and kurtosis); shape features encompassing both 2D and

3D morphological descriptors (such as nodule volume, surface area,

and sphericity); and texture features quantifying tumor heterogeneity

through various matrices including Gray Level Co-occurrence Matrix

(GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run

Length Matrix (GLRLM), Neighboring Gray Tone Difference Matrix

(NGTDM), and Gray Level Dependence Matrix (GLDM), along with

higher-order features derived from wavelet transformations. A total

of 1,354 radiomic features were extracted from each image.
FIGURE 2

Representative ultrasound images from two thyroid nodule cases. (A-C) demonstrate a case from a middle-aged female patient with a markedly
hypoechoic nodule (5.0 mm × 4.0 mm) in the right thyroid lobe. (A) shows the conventional grayscale ultrasound (US) image, while (B, C) display the
corresponding two-dimensional and contrast-enhanced images at peak enhancement during contrast-enhanced ultrasound (CEUS), revealing
isoenhancement pattern. Pathological diagnosis confirmed nodular goiter. (D-F) illustrate another middle-aged female patient with a solid
hypoechoic nodule (6.1 mm × 7.8 mm) in the right thyroid lobe near the isthmus. (D) presents the conventional US image, with (E, F) showing the
CEUS images at peak enhancement demonstrating hypoenhancement pattern. Final pathology confirmed papillary thyroid carcinoma.
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To mitigate potential data bias and overfitting risks, all extracted

radiomic features underwent standardized preprocessing using Z-

score normalization. The feature selection process employed a two-

step dimensionality reduction strategy: initially applying the

Maximum Relevance Minimum Redundancy (mRMR) algorithm

to training cohort data to identify feature subsets exhibiting high

correlation with target variables while maintaining low inter-feature

redundancy, followed by further refinement using Least Absolute

Shrinkage and Selection Operator (LASSO) regression to ultimately

derive a radiomic feature cohort with significant diagnostic value

(Figures 4, 5).
Frontiers in Endocrinology 05
2.5 Model development

Based on the optimal radiomic features selected through

dimensionality reduction, we initially constructed six machine

learning models including Support Vector Machine (SVM),

Stochastic Gradient Descent (SGD), K Nearest Neighbor (KNN),

Random Forest (RF), Extreme Gradient Boosting (XGBoost), and

Light Gradient Boosting Machine (LightGBM). To ensure optimal

model performance and avoid overfitting or underfitting, we

employed ten-fold cross-validation for parameter evaluation. The

diagnostic performance of these six CEUS-based radiomic models

was comprehensively assessed using multiple metrics including

Receiver Operating Characteristic (ROC) curves, Area Under the

Curve (AUC), accuracy, sensitivity, and specificity, through which

the model demonstrating superior diagnostic efficacy was identified.

Subsequently, this optimal model was applied to construct three

additional radiomic models for further evaluation. The workflow

scheme is illustrated in Figure 6.
2.6 Statistical analysis

Statistical analysis was performed using SPSS 27.0 software.

Measurement data were expressed as mean ± standard deviation,

and enumeration data were presented as frequency and percentage.

Independent samples t-test was used for comparison of

measurement data between groups, while chi-square test was

employed for comparison of enumeration data between groups.

The diagnostic performance of each model for TN characterization

was comprehensively evaluated by calculating multiple indicators

including AUC, accuracy, sensitivity, specificity and F1-score.

DeLong test was used to compare AUC values among different

machine learning models. Calibration curve and decision curve

analysis (DCA) were applied to assess the clinical utility of the

models. All model training and evaluation were conducted on
FIGURE 4

Feature selection using LASSO regression algorithm.
FIGURE 3

Region of interest (ROI) delineation. (A) demonstrates the manual ROI tracing on conventional grayscale ultrasound (US) images. (B, C) illustrate the
ROI delineation process for contrast-enhanced ultrasound (CEUS) images, where the ROI was initially drawn on the grayscale reference image (C)
corresponding to the key CEUS frame (B), and subsequently mapped onto the contrast-enhanced image.
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FIGURE 6

Schematic workflow diagram.
FIGURE 5

Feature Coefficient distribution selected by LASSO regression.
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independent training and test sets to ensure the reliability and

generalizability of evaluation results. A P value <0.05 was

considered statistically significant.
3 Results

3.1 Comparison of clinical and sonographic
characteristics

This retrospective study included 135 patients with C-TIRADS

category 4 TNs, comprising 32 males and 103 females, with a mean

age of 49.63 ± 10.47 years. Among the study samples, there were 42

benign nodules and 93 malignant nodules. The benign nodules

primarily consisted of nodular goiter, adenoma, adenomatous

nodular goiter, and inflammatory lesions. Among the malignant

nodules, 92 were papillary thyroid carcinomas, and 1 was medullary

carcinoma. The comparison of clinical and sonographic

characteristics between the benign and malignant groups is

presented in Table 1.

The results (Table 1) demonstrated a statistically significant

difference in age between the benign and malignant groups (P <

0.05), while no significant difference was observed in gender

distribution (P > 0.05). Regarding sonographic characteristics,

significant intergroup differences (P < 0.05) were identified in

maximum nodule diameter, margin features, microcalcifications,

and enhancement homogeneity. Furthermore, echogenicity, height-

to-width ratio, enhancement intensity, and enhancement

directionality showed more pronounced differences between

groups (P < 0.01). However, no statistically significant differences

were found in nodule location or intranodular vascularity (P >

0.05). Based on these findings, all characteristics demonstrating

statistical significance were incorporated into subsequent

model construction.
3.2 Construction of CEUS-based radiomics
model

Six machine learning classifiers including SVM, SGD, KNN, RF,

XGBoost and LightGBM were constructed and their diagnostic

performances were comprehensively evaluated. The AUC values in

the training cohort were 1.000, 0.976, 0.961, 0.984, 0.999 and 1.000

respectively, while in the test cohort they were 0.687, 0.692, 0.626,

0.813, 0.731 and 0.753 respectively. Notably, the RF model

demonstrated the highest diagnostic performance in the test

cohort (AUC = 0.813) as shown in Figure 7. Furthermore,

evaluation based on other metrics including accuracy, sensitivity

and specificity also indicated superior performance of the RF model

in the test cohort. Specifically, the RF model achieved an accuracy of

0.833, sensitivity of 0.875 and specificity of 0.769 in the test cohort,

all of which were significantly higher than other models (Table 2).
Frontiers in Endocrinology 07
TABLE 1 Comparison of clinical and sonographic characteristics.

Characteristics
Benign
(n=42)

Malignant
(n=93)

P-value

Age (years)
52.55

± 10.83
48.31

± 10.09
0.029*

Sex

Male 9 (21.4%) 23 (24.7%)

Female 33 (78.6%) 70 (75.3%) 0.676

Maximum nodule
diameter (mm)

12.42
± 12.16

9.25 ± 5.64 0.040*

Location

Isthmus 1 (2.4%) 6 (6.5%)

Right lobe 22 (52.4%) 52 (55.9%)

Left lobe 19 (45.2%) 35 (37.6%) 0.494

Echogenicity

Markedly hypoechoic 0 (0.0%) 8 (8.6%)

Hypoechoic 33 (78.6%) 83 (89.2%)

Isoechoic 1 (2.4%) 0 (0.0%)

Hyperechoic 1 (2.4%) 1 (1.1%)

Mixed echogenicity 7 (16.7%) 1 (1.1%) 0.001*

Shape (Aspect ratio)

<1 30 (71.4%) 41 (44.1%)

>1 12 (28.6%) 52 (55.9%) 0.003*

Margin

Regular 25 (59.5%) 36 (38.7%)

Irregular 17 (40.5%) 57 (61.3%) 0.024*

Microcalcification

Yes 11 (26.2%) 43 (46.2%)

No 31 (73.8%) 50 (53.8%) 0.028*

Vascularity

Yes 18 (42.9%) 52 (55.9%)

No 24 (57.1%) 41 (44.1%) 0.160

Enhancement Intensity

Hypoenhancement 13 (31.0%) 72 (77.4%)

Isoenhancement 25 (59.5%) 20 (21.5%)

Hyperenhancement 4 (9.5%) 1 (1.1%) <0.001*

Enhancement homogeneity

Homogeneous 17 (40.5%) 21 (22.6%)

heterogeneous 25 (59.5%) 72 (77.4%) 0.032*

(Continued)
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To further validate the robustness of the RF classifier, we performed

leave-one-out cross-validation. Model stability assessed by leave-

one-out cross-validation (LOO-CV) demonstrated tightly

distributed AUC values (0.813, 95% CI: 0.797-0.864) with low

coefficient of variation (CV=2.1%), confirming excellent

reproducibility (Supplementary Figure 1, Supplementary Table 2).
3.3 Construction and performance
comparison of three radiomics models

Among the six CEUS radiomics models, the RF model

demonstrated superior diagnostic performance. Therefore, we

selected the RF model to further develop the US radiomics model

(M1), US+CEUS radiomics model (M2), and clinical + US + CEUS

radiomics model (M3), and systematically compared their

diagnostic efficacy. As shown in Figure 8, ROC curve analysis

revealed that the AUC values of the three models in the test set

were M1 (0.889, 95% CI: 0.845–0.932), M2 (0.994, 95% CI: 0.949–

1), and M3 (0.998, 95% CI: 0.955–1). In the independent validation

cohort, the M3 model achieved significantly higher AUC (0.967,

95% CI: 0.898–1) compared to M1 (0.711, 95% CI: 0.641–0.780) and

M2 (0.829, 95% CI: 0.758–0.900). Further quantitative analysis

demonstrated that M3 exhibited superior performance metrics in

the validation set, with accuracy (0.815), sensitivity (0.823),

specificity (0.792), and F1-score (0.884) all exceeding those of M1

and M2 (Table 3).
Frontiers in Endocrinology 08
Although the M3 model demonstrated excellent overall

performance, several misclassification cases were observed. For

instance, one pathologically confirmed case of nodular goiter was

misclassified as malignant by the model, exhibiting CEUS features

of “heterogeneous enhancement” and “hypoenhancement,” which

may overlap with the characteristics of malignant nodules in the

training dataset. Another case of micro-papillary thyroid carcinoma

(measuring <3 mm) was misclassified as benign, likely due to

insufficient representation of small lesions in the training cohort.
3.4 Comparison of the effectiveness of
radiomics models

The DeLong test was used to perform a statistical comparison of

the area under the curve (AUC) for different radiomics models in

diagnosing the benign and malignant thyroid nodules (TNs) in the

test set. The detailed results are shown in Table 4. The analysis

revealed that there were statistically significant differences in the

AUC between the M1 model and the M2 and M3 models (P < 0.05),

indicating that the diagnostic efficacy of the M2 and M3 models was

significantly better than that of the M1 model. There was no

statistical difference in the AUC between the M2 model and the

M3 model (P > 0.05), suggesting that their diagnostic efficacies were

comparable. Additionally, the calibration and DCA curves of M3

showed favorable consistency with reality (Figure 9).
4 Discussion

This study developed a multimodal radiomics model

integrating CEUS radiomic features from three key timepoints,

US parameters, and clinical data to accurately differentiate benign

and malignant C-TIRADS 4 TNs. The results demonstrated that

this multimodal model achieved outstanding diagnostic

performance in the independent test cohort (AUC = 0.967), with

accuracy, sensitivity, and specificity of 0.815, 0.823, and 0.792,
URE 7FIG

Comparison of ROC curves for six machine learning classifier models in the training cohort (A) and test cohort (B).
TABLE 1 Continued

Characteristics
Benign
(n=42)

Malignant
(n=93)

P-value

Enhancement directionality

Centripetal 19 (45.2%) 68 (73.1%)

Non-centripetal 23 (54.8%) 25 (26.9%) 0.002*
*P < 0.05 was considered to indicate a statistically significant difference.
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respectively. Compared to single-modality models (US model

AUC=0.711; US+CEUS model AUC=0.829), multimodal

integration significantly improved diagnostic performance

(Delong test P<0.05). This provides a robust decision-support

tool to address overdiagnosis and overtreatment caused by the

broad malignancy risk spectrum (2%-90%) of C-TIRADS 4 nodules.

The analysis of clinical and imaging characteristics of malignant

nodules was generally consistent with previous studies (20–22).

This study found that patients with malignant nodules were

significantly younger than those with benign nodules (P<0.05),

with conventional ultrasound features predominantly showing

hypoechogenicity, taller-than-wide shape (height/width ratio >1),

ill-defined margins, and microcalcifications. These imaging

characteristics closely correlate with pathological changes in

malignant tumors, including rapid cell proliferation, invasive

growth, local necrosis, and calcification. Notably, although the

mean diameter of malignant nodules was significantly smaller
Frontiers in Endocrinology 09
than benign nodules (9.25 ± 5.64 mm vs. 12.42 ± 12.16 mm,

P<0.05), their vascular distribution patterns (CDFI) showed no

statistically significant intergroup differences (P>0.05). This finding

differs from some studies (20, 23).potentially due to; (1) larger

benign nodules in our study being more detectable by CDFI due to

higher vascular density, while newly formed microvessels in

malignant nodules (with thinner diameters/slower flow) may fall

below CDFI detection thresholds (24, 25); (2) technological

advancements in ultrasound (e.g., superb microvascular imaging/

SMI) improving microvascular detection capability (26), suggesting

that reliance solely on the presence/absence of blood flow is no

longer sufficient for effective nodule differentiation.

The advantage of CEUS technology lies not only in its ability to

clearly display the microvascular structure within tissues and reflect

the presence of blood vessels but also in its capacity for dynamic and

quantitative analysis of nodule blood - perfusion conditions (such

as enhancement patterns, time to peak, and post - peak changes and
FIGURE 8

Comparison of ROC curves for three radiomics models in the training cohort (A) and testing cohort (B).
TABLE 2 Diagnostic performance comparison of six machine learning classifiers.

Model Cohort Accuracy Sensitivity Specificity AUC

SVM Training cohort 1 1 1 1

Test cohort 0.640 0.647 0.461 0.687

SGD Training cohort 0.942 0.878 0.773 0.976

Test cohort 0.640 0.651 0.630 0.692

KNN Training cohort 0.919 0.856 0.727 0.961

Test cohort 0.520 0.535 0.618 0.626

RF Training cohort 0.988 0.977 0.954 0.984

Test cohort 0.833 0.875 0.769 0.813

XGBoost Training cohort 0.907 0.944 0.818 0.999

Test cohort 0.760 0.761 0.714 0.731

LightGBM Training cohort 1 1 1 1

Test cohort 0.720 0.727 0.713 0.753
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other related parameters) (11), These dynamic characteristics are

the key to the differential diagnosis of benign and malignant

nodules, thus providing richer imaging information for disease

diagnosis. The innovative value of multi-timepoint CEUS analysis

lies in overcoming the limitations of single-timepoint assessment by

comprehensively capturing hemodynamic evolution.

This study innovatively selected three critical timepoints to

construct the CEUS radiomics model: 2 seconds post-perfusion

initiation (early perfusion), peak enhancement (peak phase), and 2

seconds post-peak (early washout). The scientific rationale is that:

(1) The “2 seconds post-perfusion” phase reflects the initial contrast

agent entry into the nodule, allowing preliminary evaluation of

hemodynamic characteristics, particularly for identifying malignant

tendencies through delayed perfusion; (2) The “peak enhancement”

timepoint represents maximum contrast intensity within the

nodule, reflecting peak blood perfusion. Malignant nodules

typically demonstrate “heterogeneous hypoenhancement,”

correlating with vascular heterogeneity and necrotic areas in

malignant lesions (27). Analysis of enhancement intensity and

distribution at peak provides crucial information about

vascularization degree and perfusion homogeneity;(3) The “2

seconds post-peak” phase captures the washout process, where

malignant nodules exhibit faster and more heterogeneous contrast

washout, reflecting increased vascular permeability and unstable

blood flow velocity. The CEUS radiomics model (RF algorithm)

based on these three key timepoints achieved an AUC of 0.813

(sensitivity 0.875, specificity 0.769) in the test cohort, confirming

the necessity of multi-timepoint analysis for comprehensive

hemodynamic characterization. This aligns with the research

direction of Chen JH et al. using multi-timepoint CEUS (19).

However, while that study also employed multiple timepoints, our
Frontiers in Endocrinology 10
work innovatively selected three timepoints representing specific

hemodynamic phases (early perfusion, peak, and early washout)

rather than simply increasing quantity. Moreover, we were the first

to deeply integrate these multi-timepoint CEUS features with

conventional US characteristics and clinical data to construct a

model, fully leveraging multimodal complementarity for synergistic

diagnosis. In previous research, Li T et al. analyzed 302 CEUS cases

with ring-enhanced nodules and found that ring-enhancement

patterns could serve as important discriminators. Irregular hypo-

ring enhancement was more frequent in malignant nodules,

particularly those ≥10 mm, showing significantly higher

specificity and AUC than C-TIRADS (92.8% vs 81.1%, P=0.021;

90.7% vs 82.3%, P=0.026) (28). While our study hasn’t yet explored

different ring-enhancement patterns, future work could incorporate

such specific patterns (e.g., irregular hypo-ring enhancement) into

the feature system to further optimize the model.

The core advantage of multimodal integration lies in

information complementarity and performance leap. Specifically,

the CEUS radiomics model developed in this study demonstrated

high diagnostic efficacy in differentiating C-TIRADS 4 TNs. The

optimal random forest (RF) model achieved an accuracy of 0.833,

sensitivity of 0.875, specificity of 0.769, and AUC of 0.813,

indicating robust diagnostic performance in distinguishing benign

from malignant thyroid nodules, consistent with previous studies

(29, 30). Further incorporation of US imaging features showed

comparable diagnostic performance between the CEUS radiomics

model and the US+CEUS radiomics model (AUC: 0.813 vs. 0.829).

The lack of significant improvement with the current sample size

may be attributed to potential overlap or substitution of key US

features by CEUS-derived characteristics, warranting further

investigation with expanded cohorts to better assess the
TABLE 4 Comparison of AUC values for diagnostic efficacy of three models.

Model
AUC P-value

(95% CI) Comparison with M1 Comparison with M2 Comparison with M3

M1 0.711
(0.641, 0.780)

- 0.005* 0.011*

M2 0.829
(0.758, 0.900)

0.005* - 0.078

M3 0.967
(0.898, 1)

0.011* 0.078 -
*P < 0.05 was considered to indicate a statistically significant difference.
TABLE 3 Comparison of diagnostic performance among three models.

Model Cohort Accuracy Sensitivity Specificity F1-score

M1 Training cohort 0.879 0.920 0.867 0.917

Test cohort 0.741 0.750 0.739 0.810

M2 Training cohort 0.926 1.000 0.902 0.949

Test cohort 0.778 0.667 0.783 0.857

M3 Training cohort 0.917 0.947 0.892 0.943

Test cohort 0.815 0.823 0.792 0.884
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contribution of US features. The multimodal radiomics model

significantly enhanced diagnostic efficacy, achieving an AUC of

0.967. This underscores that clinical data provide phenotype-

specific information independent of imaging, thereby improving

comprehensive diagnostic judgment and yielding superior

performance with strong generalizability. The three data

modalities—clinical parameters (phenotypic context), US

(structural features), and CEUS (functional dynamics)—exhibit

strong complementarity, collectively constructing a “multi-

dimensional profile” of nodules. These results highlight the

immense potential of multimodal fusion in addressing complex

diagnostic challenges, demonstrating marked advancement over

single-modality imaging (19, 31)or conventional radiomics

models (29, 30).

The proposed RF model demonstrates potential for clinical

implementation as a decision-support tool in thyroid nodule

diagnosis. Integration into ultrasound workstations could provide

radiologists with automated risk assessment for C-TIRADS

category 4 nodules, potentially enhancing diagnostic confidence

while reducing unnecessary biopsies. However, clinical adoption

requires overcoming technical barriers (e.g., DICOM compatibility)

and regulatory hurdles, which represent key challenges to be

addressed in future studies.

The study has the following limitations: First, as a single-center

retrospective study, it is subject to patient selection bias due to the

higher malignancy risk of thyroid nodules in our referral center.

Although stratified cross-validation and class weighting were

applied for adjustment, synthetic oversampling techniques (e.g.,

SMOTE) were not used to preserve data authenticity. Future studies

may consider incorporating resampling methods to further improve

model performance. Second, the study lacks an external validation

cohort, and future multi-center, multi-device prospective studies

are needed to further verify the model’s generalizability. Finally,

manual ROI delineation is time-consuming and labor-intensive;

thus, automated segmentation algorithms should be developed to

establish a standardized feature extraction pipeline.
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5 Conclusion

Our study developed a high-performance multimodal

diagnostic model through the innovative integration of radiomic

features from three critical CEUS timepoints combined with

conventional ultrasound and clinical data, establishing a novel

decision-support tool for accurate noninvasive classification of C-

TIRADS 4 thyroid nodules. The model’s superior diagnostic

performance (AUC 0.967) demonstrates the transformative

potential of multimodal integration in overcoming single-

modality limitations and enhancing clinical decision-making,

positioning this approach as a promising solution to mitigate

unnecessary diagnostic procedures and overtreatment.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Medical Ethics

Committee of The First Hospital of Jilin University. The studies

were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.
Author contributions

LS: Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,
FIGURE 9

Calibration curves (A) and DCA (B) of three radiomics models.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1639017
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shao et al. 10.3389/fendo.2025.1639017
Writing – original draft, Writing – review & editing. LLZ: Data

curation, Resources, Supervision, Writing – review & editing. LL:

Data curation, Supervision, Writing – review & editing. FS: Funding

acquisition, Supervision, Writing – review & editing. HL:

Supervision, Writing – review & editing. TL: Data curation,

Writing – review & editing. FH: Data curation, Writing – review

& editing. LRZ: Funding acquisition, Investigation, Resources,

Supervision, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This project was

supported by the Finance Department of Jilin Province, People’s

Republic of China (No. JLSWSRCZX2023-2).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Endocrinology 12
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fendo.2025.

1639017/full#supplementary-material
References
1. Li YZ, Teng D, Ba JM, Chen B, Du JL, He LJ, et al. Efficacy and safety of long-term
universal salt iodization on thyroid disorders: epidemiological evidence from 31
provinces of mainland China. Thyroid. (2020) 30:568–79. doi: 10.1089/thy.2019.0067

2. Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, et al. Thyroid imaging
reporting and data system for US features of nodules: A step in establishing better
stratification of cancer risk. Radiology. (2011) 260:892–9. doi: 10.1148/radiol.11110206

3. Tessler FN, MiddletonWD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al. ACR
thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS
committee. J Am Coll Radiol. (2017) 14:587–95. doi: 10.1016/j.jacr.2017.01.046

4. Zhou J, Yin L, Wei X, Zhang S, Song Y, Luo B, et al. 2020 Chinese guidelines for
ultrasound Malignancy risk stratification of thyroid nodules: the C-TIRADS.
Endocrine. (2021) 70(2):256–79. doi: 10.1007/s12020-020-02441-y

5. Tessler FN, Middleton WD, Grant EG. Thyroid imaging reporting and data
system (TI-RADS): A user’s guide. Radiology. (2018) 287:29–36. doi: 10.1148/
radiol.2017171240

6. Cheng J, Han B, Chen YC, Li Q, Xia WW,Wang NJ, et al. Clinical risk factors and
cancer risk of thyroid imaging reporting and data system category 4 A thyroid nodules.
J Cancer Res Clin Oncol. (2024) 150(6):327. doi: 10.1007/s00432-024-05847-7

7. Yin T, Zheng B, Lian Y, Li H, Tan L, Xu S, et al. Contrast-enhanced ultrasound
improves the potency offine-needle aspiration in thyroid nodules with high inadequate
risk. BMC Med Imaging. (2022) 22:83. doi: 10.1186/s12880-022-00805-6

8. Bartolotta TV, Midiri M, Galia M, Runza G, Attard M, Savoia G, et al. Qualitative
and quantitative evaluation of solitary thyroid nodules with contrast-enhanced
ultrasound: initial results. Eur Radiol. (2006) 16:2234–41. doi: 10.1007/s00330-006-
0229-y

9. Cohen O, Zhang J, Zhang X, Meng Y, Chen Y. Contrast-enhanced ultrasound for
the differential diagnosis of thyroid nodules: An updated meta-analysis with
comprehensive heterogeneity analysis. PloS One. (2020) 15(4):e0231775.
doi: 10.1371/journal.pone.0231775

10. Liu Q, Ouyang LQ, Zhang SC, Yang YX. Comparison of the value of ultrasound-
guided fine needle aspiration biopsy and contrast-enhanced ultrasound in different
sizes of thyroid nodules. Medicine. (2024) 103(39):e39843. doi: 10.1097/
MD.0000000000039843

11. Chen F, Han H, Wan P, Chen L, Kong W, Liao H, et al. Do as sonographers
think: contrast-enhanced ultrasound for thyroid nodules diagnosis via microvascular
infiltrative awareness. IEEE Trans Med Imaging. (2024) 43:3881–94. doi: 10.1109/
TMI.2024.3405621
12. Guiot J, Vaidyanathan A, Deprez L, Zerka F, Danthine D, Frix AN, et al. A
review in radiomics: Making personalized medicine a reality via routine imaging. Med
Res Rev. (2022) 42:426–40. doi: 10.1002/med.21846

13. Cao LL, Peng M, Xie X, Chen GQ, Huang SY, Wang JY, et al. Artificial
intelligence in liver ultrasound. World J Gastroenterol. (2022) 28:3398–409.
doi: 10.3748/wjg.v28.i27.3398

14. Gu JH, Jiang TA. Ultrasound radiomics in personalized breast management:
Current status and future prospects. Front Oncol. (2022) 12:963612. doi: 10.3389/
fonc.2022.963612

15. Zhou H, Jin YH, Dai L, Zhang MW, Qiu YQ, Wang K, et al. Differential
diagnosis of benign and Malignant thyroid nodules using deep learning radiomics of
thyroid ultrasound images. Eur J Radiol. (2020) 127:108992. doi: 10.1016/
j.ejrad.2020.108992

16. Du H, Chen F, Li H, Wang K, Zhang J, Meng J, et al. Deep-learning radiomics
based on ultrasound can objectively evaluate thyroid nodules and assist in improving
the diagnostic level of ultrasound physicians. Quantit Imaging Med Surg. (2024) 14
(8):5932–45. doi: 10.21037/qims-23-1597

17. Guo SY, Zhou P, Zhang Y, Jiang LQ, Zhao YF. Exploring the value of radiomics
features based on B-mode and contrast-enhanced ultrasound in discriminating the nature
of thyroid nodules. Front Oncol. (2021) 11:738909. doi: 10.3389/fonc.2021.738909

18. Ren J-Y, Lv W-Z, Wang L, Zhang W, Ma Y-Y, Huang Y-Z, et al. Dual-modal
radiomics nomogram based on contrast-enhanced ultrasound to improve differential
diagnostic accuracy and reduce unnecessary biopsy rate in ACR TI-RADS 4–5 thyroid
nodules. Cancer Imaging. (2024) 24(1):17. doi: 10.1186/s40644-024-00661-3

19. Chen J-H, Zhang Y-Q, Zhu T-T, Zhang Q, Zhao A-X, Huang Y. Applying
machine-learning models to differentiate benign and Malignant thyroid nodules
classified as C-TIRADS 4 based on 2D-ultrasound combined with five contrast-
enhanced ultrasound key frames. Front Endocrinol. (2024) 15:1299686. doi: 10.3389/
fendo.2024.1299686

20. Wettasinghe MC, Rosairo S, Ratnatunga N, Wickramasinghe ND. Diagnostic
accuracy of ultrasound characteristics in the identification of Malignant thyroid
nodules. BMC Res Notes. (2019) 12:193–. doi: 10.1186/s13104-019-4235-y

21. Rago T, Vitti P. Risk stratification of thyroid nodules: from ultrasound features
to TIRADS. Cancers. (2022) 14(3):717. doi: 10.3390/cancers14030717

22. Moon HJ, Kwak JY, Kim MJ, Son EJ, Kim EK. Can vascularity at power doppler
US help predict thyroid Malignancy? Radiology. (2010) 255:260–9. doi: 10.1148/
radiol.09091284
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2025.1639017/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2025.1639017/full#supplementary-material
https://doi.org/10.1089/thy.2019.0067
https://doi.org/10.1148/radiol.11110206
https://doi.org/10.1016/j.jacr.2017.01.046
https://doi.org/10.1007/s12020-020-02441-y
https://doi.org/10.1148/radiol.2017171240
https://doi.org/10.1148/radiol.2017171240
https://doi.org/10.1007/s00432-024-05847-7
https://doi.org/10.1186/s12880-022-00805-6
https://doi.org/10.1007/s00330-006-0229-y
https://doi.org/10.1007/s00330-006-0229-y
https://doi.org/10.1371/journal.pone.0231775
https://doi.org/10.1097/MD.0000000000039843
https://doi.org/10.1097/MD.0000000000039843
https://doi.org/10.1109/TMI.2024.3405621
https://doi.org/10.1109/TMI.2024.3405621
https://doi.org/10.1002/med.21846
https://doi.org/10.3748/wjg.v28.i27.3398
https://doi.org/10.3389/fonc.2022.963612
https://doi.org/10.3389/fonc.2022.963612
https://doi.org/10.1016/j.ejrad.2020.108992
https://doi.org/10.1016/j.ejrad.2020.108992
https://doi.org/10.21037/qims-23-1597
https://doi.org/10.3389/fonc.2021.738909
https://doi.org/10.1186/s40644-024-00661-3
https://doi.org/10.3389/fendo.2024.1299686
https://doi.org/10.3389/fendo.2024.1299686
https://doi.org/10.1186/s13104-019-4235-y
https://doi.org/10.3390/cancers14030717
https://doi.org/10.1148/radiol.09091284
https://doi.org/10.1148/radiol.09091284
https://doi.org/10.3389/fendo.2025.1639017
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shao et al. 10.3389/fendo.2025.1639017
23. Zhao D, Jing Y, Lin X, Zhang B. The value of color Doppler ultrasound in the
diagnosis of thyroid nodules: a systematic review and meta-analysis. Gland Surge.
(2021) 10:3369–77. doi: 10.21037/gs-21-752

24. Lyshchik A, Moses R, Barnes SL, Higashi T, Asato R, Miga MI, et al. Quantitative
analysis of tumor vascularity in benign and Malignant solid thyroid nodules. J
Ultrasound Med. (2007) 26:837–46. doi: 10.7863/jum.2007.26.6.837

25. Li F, Huang F, Liu C, Pan D, Tang X, Wen Y, et al. Parameters of dual-energy CT
for the differential diagnosis of thyroid nodules and the indirect prediction of lymph
node metastasis in thyroid carcinoma: a retrospective diagnostic study. Gland Surge.
(2022) 11:913–26. doi: 10.21037/gs-22-262

26. Luo H, Yin L. Diagnostic value of superb microvascular imaging and color
doppler for thyroid nodules: A meta-analysis. Front Oncol. (2023) 13:1029936.
doi: 10.3389/fonc.2023.1029936

27. Ma J-J, Ding H, Xu B-H, Xu C, Song L-J, Huang B-J, et al. Diagnostic
performances of various gray-Scale, color doppler, and contrast-enhanced
Frontiers in Endocrinology 13
ultrasonography findings in predicting Malignant thyroid nodules. Thyroid. (2014)
24:355–63. doi: 10.1089/thy.2013.0150

28. Li T, Mao L, Wang X, Li C, Dong C, Wu W, et al. Ring-enhancement on CEUS:
is it useful in the differential diagnosis of solid thyroid nodules? Ultrasonic Imaging.
(2025) 47:37–44. doi: 10.1177/01617346241291511

29. Wang G, Yin C, Wang Y, Li Q, Yang D, Wang P, et al. Contrast-enhanced
ultrasound (CEUS) characteristics of atypical-enhanced papillary thyroid carcinoma
(PTC). Clin Hemorheol Microcirc. (2024) 88:71–9. doi: 10.3233/CH-242173

30. Zhou X, Zhou P, Hu Z, Tian SM, Zhao Y, Liu W, et al. Diagnostic efficiency of
quantitative contrast-enhanced ultrasound indicators for discriminating benign from
Malignant solid thyroid nodules. J UltrasoundMed. (2018) 37:425–37. doi: 10.1002/jum.14347

31. Huang Y, Wang Y, Liu L, Zhu L, Qiu Y, Zuo D, et al. VueBox® perfusion analysis
of dynamic contrast enhanced ultrasound provides added value in the diagnosis of
small thyroid nodules. Clin Hemorheol Microcirc. (2023) 83:409–20. doi: 10.3233/CH-
221681
frontiersin.org

https://doi.org/10.21037/gs-21-752
https://doi.org/10.7863/jum.2007.26.6.837
https://doi.org/10.21037/gs-22-262
https://doi.org/10.3389/fonc.2023.1029936
https://doi.org/10.1089/thy.2013.0150
https://doi.org/10.1177/01617346241291511
https://doi.org/10.3233/CH-242173
https://doi.org/10.1002/jum.14347
https://doi.org/10.3233/CH-221681
https://doi.org/10.3233/CH-221681
https://doi.org/10.3389/fendo.2025.1639017
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Multimodal radiomics model with triple -timepoint contrast-enhanced ultrasound for precise diagnosis of C-TIRADS 4 thyroid nodules
	1 Introduction
	2 Materials and methods
	2.1 Patients
	2.2 Ultrasound examination protocol and image acquisition
	2.3 Region of interest segmentation on ultrasound images
	2.4 Feature extraction and selection
	2.5 Model development
	2.6 Statistical analysis

	3 Results
	3.1 Comparison of clinical and sonographic characteristics
	3.2 Construction of CEUS-based radiomics model
	3.3 Construction and performance comparison of three radiomics models
	3.4 Comparison of the effectiveness of radiomics models

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


