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deep learning, radiomics, and
clinical ultrasound features for
predicting BRAF V600E mutation
in papillary thyroid carcinoma
with Hashimoto’s thyroiditis
Peng-Fei Zhu1†, Xiao-Feng Zhang2†, Pu Zhou1, Jiang-Yuan Ben1,
Hao Wang3, Shu-E Zeng4, Xin-Wu Cui2* and Ying He1*

1Department of Ultrasonic Medicine, Nantong Tumor Hospital, Nantong, Jiangsu, China, 2Department
of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China, 3Department of Ultrasound, The First Affiliated Hospital of Xinxiang
Medical University, Xinxiang, Henan, China, 4Department of Ultrasound, Hubei Cancer Hospital,
Wuhan, China
Objective: This study aims to develop an integrated model that combines

radiomics, deep learning features, and clinical and ultrasound characteristics

for predicting BRAF V600Emutations in patients with papillary thyroid carcinoma

(PTC) combined with Hashimoto’s thyroiditis (HT).

Methods: This retrospective study included 717 thyroid nodules from 672

patients with PTC combined with HT from four hospitals in China. Deep

learning and radiomics were employed to extract deep learning and radiomics

features from ultrasound images. Feature selection was performed using

Pearson’s correlation coefficient, the Minimum Redundancy Maximum

Relevance (mRMR) algorithm, and LASSO regression. The optimal algorithm

was selected from nine machine learning algorithms for model construction,

including the traditional radiomics model (RAD), the deep learning model (DL),

and their fusion model (DL_RAD). Additionally, a final combined model was

developed by integrating the DL_RAD model with clinical and ultrasound

features. Model performance was assessed using AUC, calibration curves, and

decision curve analysis (DCA), while SHAP analysis was used to interpret the

contribution of each feature to the combined model’s output.

Results: The combined model achieved superior diagnostic performance, with

AUC values of 0.895, 0.864, and 0.815 in the training, validation, and external test

sets, respectively, outperforming the RADmodel, DL model, and RAD_DLmodel.

DeLong test results indicated significant differences in the external test set

(p<0.05). Further validation through calibration curves and DCA confirmed the

model’s robust performance. SHAP analysis revealed that RAD_DL signature,

aspect ratio, extrathyroidal extension, and gender were key contributors to the

model’s predictions.
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Conclusion: The combined model integrating radiomics, deep learning features,

and clinical as well as ultrasound characteristics exhibits excellent diagnostic

performance in predicting BRAF V600Emutations in patients with PTC coexisting

with HT, highlighting its strong potential for clinical application.
KEYWORDS

papillary thyroid carcinoma, Hashimoto’s thyroiditis, BRAF V600E mutation, radiomics,
deep learning, ultrasound
Introduction

Thyroid cancer is the most common endocrine malignancy,

with its incidence steadily increasing in recent years, making it a

global health concern (1, 2). Papillary thyroid carcinoma (PTC) is

the predominant subtype, accounting for approximately 80% of all

thyroid cancers (3). Although PTC typically follows an indolent

course with a favorable prognosis, accumulating evidence has

revealed substantial heterogeneity in its biological behavior (4).

While some cases can be safely managed through active

surveillance, thereby avoiding surgical complications such as

permanent hypoparathyroidism and vocal cord injury, others

exhibit aggressive features, including lymph node metastasis

(LNM), local recurrence, and even distant spread (5, 6).

Among the molecular alterations identified, the BRAF V600E

mutation has emerged as a key driver underlying these divergent

clinical outcomes. It is the most common genetic alteration in PTC,

with a reported mutation frequency of 40% to 80% (7, 8). This

mutation leads to the constitutive activation of the MAPK signaling

pathway, promoting tumor cell proliferation, differentiation, and

invasion (9, 10). Previous studies have demonstrated that PTC

patients harboring the BRAF V600E mutation are more prone to

extrathyroidal extension (ETE), LNM, and local recurrence, while

also exhibiting reduced sensitivity to radioactive iodine (RAI)

therapy, ultimately affecting long-term prognosis (11–13).

Consequently, the BRAF V600E mutation is recognized as a

crucial biomarker of PTC aggressiveness, playing a significant role

in guiding surgical strategies, RAI treatment planning, and follow-

up management (14).

Currently, ultrasound-guided fine-needle aspiration (FNA)

combined with genetic testing is the primary clinical method for

detecting BRAF V600E mutations (15). Although FNA has high

diagnostic value, it is associated with certain limitations, including

its invasive nature, potential complications (such as bleeding and

infection), poor patient compliance, and the need for operators with

advanced technical expertise, which restricts its widespread

adoption in primary healthcare settings (16–18). Therefore,

exploring non-invasive and efficient methods for predicting BRAF

V600E mutations is of great clinical significance for achieving

precision treatment in PTC.
02
In recent years, radiomics has enabled the high-throughput

extraction of quantitative imaging features, providing deeper

biological insights into tumors beyond conventional imaging

techniques (19). It has been widely used to predict tumor

malignancy, molecular characteristics, and other pathological

features. However, since radiomics relies on manually defined

features, it may limit the extraction of deeper imaging features.

Meanwhile, deep learning, particularly convolutional neural

networks (CNNs), has achieved groundbreaking advancements in

medical image analysis (20). By leveraging multilayer neural

network architectures, CNNs can autonomously learn and extract

high-dimensional, nonlinear features, enabling the identification of

microscopic structures that are challenging to detect using

traditional imaging analysis (21). Despite the superior feature

extraction capabilities of deep learning, its interpretability remains

limited, and it often overlooks the potential value of clinical

information. This limitation may hinder the clinical applicability

and generalizability of the models.

Furthermore, Hashimoto’s thyroiditis (HT) is the most

common comorbidity associated with PTC and has been

increasingly prevalent in recent years (22). Its chronic

inflammatory microenvironment may have a profound impact on

the biological behavior and molecular characteristics of PTC,

including the regulation of BRAF V600E mutation status (23, 24).

Studies have reported significant differences in tumor

characteristics, invasive potential, and immune landscape between

PTC patients with coexisting HT and those with isolated PTC (25,

26). However, current research on predicting BRAF V600E

mutations in PTC patients with HT remains limited, partly

because the inflammatory microenvironment in HT may alter the

mutation’s role in tumor progression (27). Therefore, developing a

prediction model specifically for PTC patients with HT is essential

to clarify the role of BRAF V600Emutations in this subgroup and to

facilitate more personalized therapeutic strategies.

Given the critical influence of the inflammatory microenvironment

in HT on the progression of PTC harboring BRAF V600Emutations—

and the current lack of research specifically addressing the prediction of

such mutations in this unique subset—this study integrates radiomics,

deep learning, clinical, and ultrasound features to construct an

ultrasound-based prediction model tailored for PTC with HT. This
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model is designed to offer a non-invasive, accurate, and generalizable

method for the preoperative prediction of BRAF V600Emutations. By

enabling precise risk stratification, it may support personalized

management strategies for PTC patients with HT, enhancing the

identification of high-risk individuals while potentially avoiding

overtreatment in low-risk cases.
Methods

Study population

This retrospective study was approved by the Institutional

Review Board (No.2024-A 06). A total of 717 nodules from 672

patients with PTC combined with HT were collected from four

hospitals in China. The training and validation sets consisted of 608

nodules from 570 patients who underwent surgery at the Tongji

Hospital of Huazhong University of Science and Technology, from

June 12, 2017, to March 21, 2024. Since each thyroid nodule exhibits

distinct imaging and pathological characteristics, we treated each

nodule as an independent unit. The training and validation sets

were then randomly divided in an 8:2 ratio at the nodule level. The

external test set included 109 nodules from 102 patients from Hubei

Cancer Hospital, Nantong First People’s Hospital, and the First

Affiliated Hospital of Xinxiang Medical University, between March

21, 2022, and November 7, 2024 (Figure 1).

Inclusion Criteria: 1. Pathologically confirmed diagnosis of PTC

with HT. 2. Clear BRAF V600E mutation status. 3. First-time

thyroid surgery. 4. Ultrasound examination performed within two
Frontiers in Endocrinology 03
weeks before surgery. 5. Availability of complete and clear thyroid

nodule images. 6. Complete clinical data. Exclusion Criteria: 1.

Unclear BRAF V600Emutation status. 2. Blurred or missing thyroid

nodule images. 3. Missing baseline clinical data. 4. Previous

treatment (e.g., thyroid ablation or surgery) prior to the current

surgery. 5. Presence of tumors in other organs.
Clinical data collection

The clinical data collected included the patient’s gender, age,

and pathological information, including BRAF V600E mutation

status. The ultrasound feature of aspect ratio was also recorded and

dichotomized as >1 vs. ≤1. This threshold was adopted based on the

ACR TI-RADS guideline, where an aspect ratio >1 (taller-than-

wide) is considered suggestive of malignancy and is widely used in

clinical thyroid risk stratification systems.
Ultrasound image acquisition

The ultrasound devices used in this study include LOGIQ E20

(GE Healthcare, Wauwatosa, USA), Affiniti 70 (Philips Healthcare,

Suzhou, China), DD70 (DDIT, Shenzhen, China), LOGIQ E9 (GE

Healthcare, Wauwatosa, USA), EPIQ 5 (Philips Healthcare,

Andover, USA), EPIQ 7 (Philips Healthcare, Andover, USA),

LOGIQ S8 (GE Healthcare, Wauwatosa, USA), Resona 9S

(Mindray, Shenzhen, China), and RS85 (Samsung Medison, Seoul,

South Korea).
FIGURE 1

The inclusion process of the study population.
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During the examination, the patient was positioned supine with

the head slightly tilted backward to fully expose the neck region. All

ultrasound examinations were performed by experienced

sonographers with over five years of clinical experience, following

a standardized scanning protocol. The sonographer selected the

largest cross-sectional view of the thyroid nodule and captured

high-quality images. Detailed information on nodule size, location,

aspect ratio, shape, internal echogenicity, calcification, and ETE was

carefully recorded.
Data preprocessing and region of interest
delineation

Tumor regions were delineated by physicians with over five years

of experience, without prior knowledge of the BRAF V600E mutation

status. To assess the consistency of radiomics features, 100 thyroid

nodules were randomly selected, and two radiologists, each with more

than five years of experience, independently delineated the tumor

regions without knowing the BRAF V600E mutation status. Inter-

observer consistency was evaluated using the intraclass correlation

coefficient (ICC), with an ICC value ≥0.75 indicating good consistency.

Features with an ICC below this threshold were excluded to ensure the

stability and reproducibility of the radiomic features.
Radiomics feature extraction

Radiomic features from the ROI were extracted using

Pyradiomics (https://pyradiomics.readthedocs.io/en/latest/

index.html), including first-order features such as mean, standard

deviation, kurtosis, and skewness; shape features such as volume,

aspect ratio, and boundary irregularity; texture features including

the Gray Level Co-occurrence Matrix (GLCM), Gray Level Run

Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),

and Nearest-Neighbor Gray Tone Difference Matrix (NGTDM);

and wavelet features. A total of 1208 radiomics features

were extracted.
Deep learning feature extraction

In this study, ResNet18 was used to extract deep learning

features from ultrasound images. First, the largest rectangular

bounding box of ROI was cropped, and all images were

uniformly resized to 224×224 pixels to ensure consistency in

input scale. To enhance the model’s generalization ability, various

data augmentation strategies were applied, including random

horizontal flipping, random brightness adjustment, and random

rotation. The model was initialized with ImageNet pre-trained

weights to accelerate convergence and improve feature extraction

capability. During training, the Stochastic Gradient Descent (SGD)

optimizer was used, with an initial learning rate of 0.01, 50 total

epochs, and a cross-entropy loss function. Deep learning features

were extracted from the output of the final global average pooling
Frontiers in Endocrinology 04
(AvgPool) layer of ResNet18, yielding a 512-dimensional deep

learning feature vector for subsequent model analysis.
Feature selection

To reduce feature redundancy and optimize model performance,

Spearman correlation analysis was first employed to assess the

correlation between features. For features with a correlation

coefficient greater than 0.9, only the one with higher information

value was retained. Additionally, the Minimum Redundancy

Maximum Relevance (mRMR) algorithm was applied (28).

Subsequently, feature selection was performed using Least Absolute

Shrinkage and Selection Operator(LASSO) regression (29). LASSO

applied L1 regularization to shrink some of the regression coefficients

to zero, thereby eliminating irrelevant features. The remaining non-

zero coefficient features were used to construct the machine learning

model. Details of the complete feature selection workflow and results

are provided in Supplementary File 1.
Model construction

This study developed three predictive models based on radiomics

(Rad Model), deep learning (DL Model), and the fusion of both

(DL_RAD Model). Additionally, a comprehensive model combining

radiomics, deep learning, and clinical and ultrasound features was

constructed (CombinedModel). Each model was compared using nine

machine learning algorithms: Logistic Regression (LR), Support Vector

Machine (SVM), Random Forest (RF), ExtraTrees (ET), K-Nearest

Neighbors (KNN), XGBoost (XGB), LightGBM (LGBM), Gradient

Boosting (GB), and Multilayer Perceptron (MLP), with the best-

performing model selected. For different feature inputs, all training

set data were randomly split in a 7:3 ratio, with 70% used for training

and 30% for testing. Hyperparameter optimization was performed

using 5-fold cross-validation to improve model stability and

generalization capability.

Rad Model uses the selected radiomics features as input, while

the DL Model is built using the selected ResNet18 deep learning

features. The DL_RAD Model adopts early feature fusion,

combining radiomics features and deep learning features before

feature selection, and the selected features are then used for training

to construct the DL_RAD model. The Combined Model integrates

clinical parameters, ultrasound features, and the DL_RAD model

signature, and after feature selection, the same nine machine

learning algorithms are applied to obtain the optimal model.

Figure 2. Workflow and technical roadmap for the development

and evaluation of predictive models.
Model evaluation and interpretability

The classification performance of the models was quantified

using the Receiver Operating Characteristic (ROC) curve and Area

Under the Curve (AUC) to determine the best predictive model.
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Decision Curve Analysis (DCA) was applied to assess the clinical

net benefit of the models at different decision thresholds, helping to

evaluate their practical application value. Model calibration was

assessed using a calibration curve to analyze the consistency

between predicted probabilities and actual incidence rates. To

improve the interpretability of the models, SHapley Additive

exPlanations (SHAP) was used to explain the Combined Model,

quantifying the contribution of each feature to the model’s
Frontiers in Endocrinology 05
predictions and revealing its decision logic (30). The SHAP

method, based on Shapley values, quantifies the contribution of

each feature to the model’s predictions and reveals the decision logic

both globally and at the individual level. Global SHAP analysis

provides an importance ranking of different features, while

individual SHAP analysis visually displays the driving factors of

predictions for each sample, enhancing the model’s transparency

and clinical interpretability.
FIGURE 2

Workflow diagram for the development and evaluation of predictive models. (A) Image preprocessing, radiomics and deep learning feature
extraction, feature selection, feature fusion, and construction of the DL_RAD model. (B) Construction of the Combined model by integrating the
DL_RAD signature with clinical and ultrasound features. Additionally, among the nine machine learning algorithms, random forest achieved the best
performance. (C) Model evaluation and interpretation. LR, Logistic Regression; SVM, Support Vector Machine; RF, Random Forest; XGB, XGBoost;
KNN, K-Nearest Neighbors; LGBM, LightGBM; ET, ExtraTrees; G, Gradient Boosting; MLP, Multilayer Perceptron.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1641037
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhu et al. 10.3389/fendo.2025.1641037
Statistical analysis

Statistical analysis of patient baseline data was performed using

R software (version 4.3.3, https://www.r-project.org) and the

compareGroups package. Continuous variables were summarized

as mean ± standard deviation, while categorical variables were

presented as frequencies and percentages. The normality of

continuous variables was assessed using the Shapiro-Wilk test.

For continuous variables that did not follow a normal

distribution, data were presented as median with interquartile

ranges (IQRs), and group comparisons were performed using the

non-parametric Mann–Whitney U test. For group comparisons,

continuous variables were evaluated using the Mann-Whitney U

test or Student’s t-test, while categorical variables were assessed

using the Chi-squared test or Fisher’s exact test. Additionally, the

DeLong method was used to compare the area under the curve

(AUC) of different models to assess their predictive performance.

All statistical analyses were conducted using two-sided tests, with a

significance threshold of p < 0.05.
Results

Patient characteristics

This retrospective study included a total of 717 nodules (age

41.97 ± 11.16, 102 males, 615 females), with the training set

comprising 486 nodules (age 41.39 ± 10.99, 68 males, 418

females), the validation set comprising 122 nodules (age 42.62 ±

11.77, 17 males, 105 females), and The external test set comprising

109 nodules (age 43.84 ± 11.11, 17 males, 92 females) (Table 1).

There were no significant differences in clinical and ultrasound

features across the three datasets.
The performance of the RAD and DL
model

In this study, the RAD and DL models were constructed using

radiomics features and deep learning features, respectively. All

results are summarized in Table 2. Among the nine machine

learning algorithms, ExtraTrees performed the best in both

models. The RAD model achieved good performance in the

training and validation sets, with AUC values of 0.742 (95% CI:

0.692–0.793) and 0.721 (95% CI: 0.613–0.829), respectively.

However, its generalizability was limited, as evidenced by a

markedly reduced AUC of 0.518 (95% CI: 0.391–0.643) in the

external test cohort. Despite a relatively high accuracy of 0.706 in

the external test cohort, the F1 score was 0.812, and the Youden’s

index was only 0.137. The DL model showed improved predictive

performance, with AUC values of 0.805 (95% CI: 0.761–0.847),

0.776 (95% CI: 0.684–0.867), and 0.704 (95% CI: 0.602–0.778) in

the training, validation, and external test sets, respectively.

Nevertheless, the model remained suboptimal, with values of

0.619, 0.602, and 0.549 across the respective cohorts.
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The performance of the DL_RAD model

In this study, an early fusion strategy was employed to integrate

radiomics and deep learning features, resulting in the construction

of a hybrid model (DL_RAD). A total of 15 radiomic and deep

learning features were selected to build the DLR model. Network

graphs and heatmaps demonstrated relatively low correlations

among the features (Figure 3). Compared with the individual

radiomics and deep learning models, the DL_RAD model

demonstrated further improvement in diagnostic performance,

with AUC values of 0.857 (95% CI: 0.815–0.898) in the training

set, 0.847 (95% CI: 0.768–0.925) in the validation set, and 0.773

(95% CI: 0.667–0.878) in the external test set. While the model

exhibited high sensitivity in the training (0.871) and validation

(0.886) cohorts, a notable decline in sensitivity was observed in the

external test cohort (0.659), indicating potential overfitting and the

need for further optimization to improve generalizability.
The performance of the combined model

Building upon the performance of the DL_RADmodel, we further

constructed the Combined model by integrating the DL_RAD

signature with clinical and ultrasound features, achieving optimal

diagnostic performance (Figures 4A-L). After feature selection, the

final features included Aspect_ratio, ETE, gender, and the DL_RAD

signature. Among the nine machine learning algorithms, Random

Forest achieved the best classification performance. The AUCs for the

Combined model in the training, validation, and external test sets were

0.895 (95% CI: 0.860–0.929), 0.864 (95% CI: 0.794–0.933), and 0.815

(95% CI: 0.715–0.914), respectively. The DeLong test results showed

that the AUC of the Combined model in the external test set was

significantly higher than that of the other three models (p < 0.05)

(Figure 4L). Additionally, compared to other models, the Combined

model demonstrated a significant increase in sensitivity in the external

test set, reaching 0.866.
Model interpretability

To enhance the interpretability of the fusion model, this study

employed SHapley Additive exPlanations (SHAP) for the

explanation analysis of the combined model. The summary plot

revealed that Aspect_ratio, extrathyroidal ETE, gender, and the

DL_RAD signature all contributed to the Combined model, with

the DL_RAD signature having the most significant contribution

and gender having the least (Figure 5A). Figure 5B illustrates the

contribution of each feature in the individual case to the Combined

model’s prediction of BRAF V600E mutation status.
Discussion

In this study, we developed a Combined model to predict the

BRAF V600E mutation status in patients with PTC associated with
frontiersin.org
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HT, integrating radiomics, deep learning features, as well as clinical

and ultrasound characteristics. By comparing nine machine

learning algorithms, we significantly enhanced the model’s

diagnostic performance. In the training, validation, and test sets,

the Combined model achieved optimal performance, with AUC

values of 0.895 (95% CI: 0.860–0.929), 0.864 (95% CI: 0.794–0.933),

and 0.815 (95% CI: 0.715–0.914), respectively. Furthermore, we

used the SHAP method to interpret the model, improving its

interpretability and clinical applicability.

BRAF V600E mutation is the most common mutation in PTC

and has a significant impact on tumor invasiveness, the effectiveness

of radioactive iodine therapy, and long-term prognosis (7, 31).

Studies have shown that BRAF V600E-mutated PTC is more likely
Frontiers in Endocrinology 07
to exhibit specific imaging features, such as irregular borders,

increased aspect ratio, microcalcifications, and ETE (18, 32).

However, certain histological subtypes of PTC may present

atypical imaging patterns, which could interfere with the

generalizability of image-based predictive models for BRAF

V600E mutations (33). To overcome these limitations, the

application of artificial intelligence (AI) in medical imaging has

advanced significantly in recent years, showing great potential in

disease recognition and risk stratification. Deep learning and

machine learning techniques have been employed in tasks such as

thyroid cancer segmentation, recurrence risk classification, and

malignancy prediction, showing promising diagnostic

performance (34–36). In addition, successful applications in
TABLE 1 Baseline characteristics of study sets.

Training Validation External test
p.overall

N=486 N=122 N=109

Gender: 0.906

Female 418 (86.0%) 105 (86.1%) 92 (84.4%)

Male 68 (14.0%) 17 (13.9%) 17 (15.6%)

Age 40.0 [33.0;50.0] 42.5 [33.0;52.8] 43.0 [35.0;52.0] 0.102

Size 0.80 [0.60;1.20] 0.80 [0.60;1.20] 0.70 [0.60;1.10] 0.096

Aspect_ratio: 0.196

≤1 304 (62.6%) 74 (60.7%) 58 (53.2%)

>1 182 (37.4%) 48 (39.3%) 51 (46.8%)

Calcification: 0.099

Absent 181 (37.2%) 58 (47.5%) 40 (36.7%)

Present 305 (62.8%) 64 (52.5%) 69 (63.3%)

ETE: 0.696

Absent 193 (39.7%) 46 (37.7%) 47 (43.1%)

Present 293 (60.3%) 76 (62.3%) 62 (56.9%)

Location: 0.181

Left 231 (47.5%) 50 (41.0%) 59 (54.1%)

Right 242 (49.8%) 71 (58.2%) 47 (43.1%)

Isthmus 13 (2.67%) 1 (0.82%) 3 (2.75%)

Internal Echogenicity: 0.288

Homogeneous 3 (0.62%) 1 (0.82%) 2 (1.83%)

Heterogeneous 483 (99.4%) 121 (99.2%) 107 (98.2%)

Shape: 0.582

Regular 15 (3.09%) 5 (4.10%) 5 (4.59%)

Irregular 471 (96.9%) 117 (95.9%) 104 (95.4%)

BRAF V600E: 0.867

Negative 129 (26.5%) 34 (27.9%) 27 (24.8%)

Positive 357 (73.5%) 88 (72.1%) 82 (75.2%)
ETE, extrathyroidal extension.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1641037
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhu et al. 10.3389/fendo.2025.1641037
cross-domain tasks—such as pediatric bone mineral density

estimation and abnormal cell detection in FISH images—further

support the broad applicability of AI in multimodal medical data

analysis (37, 38). Zhang et al. constructed a predictive model for

BRAF V600E mutation using radiomics based on MRI images (39).

This finding further demonstrated the value of imaging features in

predicting BRAF V600E mutations and suggested that radiomics

can quantify microstructural changes in tumors, providing new

imaging indicators for the molecular classification of PTC.

However, MRI is expensive and time-consuming, which limits its

widespread application in clinical practice.

Furthermore, the presence of HT may alter the biological

behavior of PTC, making its imaging features and molecular

mechanisms significantly different from those of pure PTC (40).

Previous studies have indicated that the chronic inflammatory

microenvironment characteristic of HT, including the high

infiltration of CD8+ T cells and sustained activation of the IFN-g/
STAT1 pathway, may enhance immune surveillance and effectively

suppress the expansion of mutated clones. It has been reported that

the prevalence of BRAF V600E mutations in patients with PTC

coexisting with HT is significantly lower than in those without HT,

and the activity of the MAPK signaling pathway—such as the

expression level of phosphorylated ERK (p-ERK)—is also

markedly reduced (27, 41). In addition, HT-associated

inflammatory cytokines (such as IFN-g and TGF-b) may interact

with the BRAF-driven MAPK pathway and further influence

downstream biological behavior. In the context of HT, reduced

MAPK signaling activity may attenuate tumor cell dedifferentiation,

stromal remodeling, and epithelial-mesenchymal transition (EMT),

which ultimately manifests as more subtle imaging features such as
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decreased hypoechogenicity, clearer lesion margins, reduced aspect

ratio, and fewer microcalcifications (42). These changes may

obscure the typical imaging patterns associated with BRAF

mutations, thus impairing the model’s ability to accurately

identify such mutations. Consequently, direct application of PTC

prediction models could lead to reduced predictive performance.

Therefore, the development of a specific BRAF V600E mutation

prediction model for PTC with HT can more precisely capture HT-

related imaging and molecular features, enhancing the model’s

clinical applicability. In this study, the Combined model achieved

AUC values of 0.895, 0.864, and 0.815 in the training, validation,

and external test sets, respectively. This result indicates that the

Combined model performs well in the complex clinical context of

HT, effectively identifying BRAF V600E mutations.

This study developed and compared four predictive models: the

RADmodel, the DL model, the RAD_DLmodel, and the Combined

model to determine the optimal approach for predicting BRAF

V600E mutation. Radiomics, based on high-throughput imaging

feature extraction, quantifies lesion morphology, texture, and

statistical properties, providing deeper tumor biological insights

beyond traditional imaging (43). In this study, the RAD model

achieved AUCs of 0.742 and 0.721 in the training and validation

sets, respectively, indicating its ability to identify certain imaging

features associated with BRAF V600E mutation. However, its AUC

dropped to 0.518 in the test set, suggesting poor generalization to

new data. This decline may be attributed to handcrafted features

failing to fully capture the nonlinear and complex imaging patterns,

making the model overly reliant on training data while limiting its

adaptability to unseen cases (44). Further analysis revealed a

significant class imbalance in the external test set, with BRAF
TABLE 2 Performances of the predictive models in three sets.

Model and metric AUC 95% CI ACC SEN SPE PPV NPV

Training set

RAD 0.742 0.6918 - 0.7928 0.698 0.714 0.651 0.85 0.452

DL 0.805 0.7612 - 0.8479 0.679 0.619 0.845 0.917 0.445

DL_RAD 0.857 0.8154 - 0.8982 0.833 0.871 0.729 0.899 0.671

Combined 0.895 0.8602 - 0.9289 0.85 0.88 0.767 0.913 0.697

Validation set

RAD 0.721 0.6131 - 0.8295 0.713 0.739 0.647 0.844 0.489

DL 0.776 0.6838 - 0.8673 0.664 0.602 0.824 0.898 0.444

DL_RAD 0.847 0.7681 - 0.9254 0.836 0.886 0.706 0.886 0.706

Combined 0.864 0.7939 - 0.9337 0.828 0.875 0.706 0.885 0.686

External test set

RAD 0.518 0.3913 - 0.6439 0.706 0.841 0.296 0.784 0.381

DL 0.704 0.6016 - 0.8072 0.606 0.549 0.778 0.882 0.362

DL_RAD 0.773 0.6675 - 0.8782 0.697 0.659 0.815 0.915 0.44

Combined 0.815 0.7154 - 0.9142 0.826 0.866 0.704 0.899 0.633
AUC, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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V600E-mutated nodules accounting for approximately 75% (82/

109) of the cases. This imbalance caused the model to favor the

majority class (BRAF V600E-positive nodules), achieving a

relatively high overall accuracy (0.706) but poor discrimination

for negative cases, resulting in a low AUC. Although the RAD

model showed high sensitivity (0.841) and a good F1 score (0.812),

its specificity was low (0.296), and the Youden’s index was only

0.137, indicating limited overall discriminatory power. These results

are consistent with the low AUC and reflect the model’s difficulty in

identifying BRAF V600E-negative nodules.

Compared to radiomics, deep learning models automatically

learn high-dimensional, nonlinear imaging features, particularly

excelling in fine-grained feature extraction and pattern

recognition (20, 45). In this study, the DL model achieved AUCs

of 0.805, 0.776, and 0.704 in the training, validation, and external

test sets, respectively, outperforming the RAD model. This suggests

that deep learning is more effective in capturing imaging patterns

associated with BRAF V600E mutation. While the DL model

showed low sensitivity in the training (0.619), validation (0.602),

and external test sets (0.549), indicating limitations in detecting

positive cases. This may be due to potential overfitting, which limits

the DL model’s generalization ability.

To leverage the strengths of both approaches, we adopted an

early fusion strategy by integrating radiomic and deep learning

features into a combined model. The RAD_DL model achieved

AUCs of 0.857, 0.847, and 0.773 in the training, validation, and test

sets, respectively, significantly outperforming the RAD model and

DL model. This improvement may arise from the complementary

nature of radiomics, which provides global structural information,

and deep learning, which excels at capturing intricate patterns (46).

Together, they enable the model to more accurately identify

imaging features associated with BRAF V600E mutations. Further

analysis of feature correlations revealed low interdependence

between radiomics and deep learning features in the RAD_DL
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model, underscoring their complementary roles. By integrating

radiomics’ strength in global structural recognition with deep

learning’s capacity for detailed pattern extraction, the RAD_DL

model achieved enhanced predictive performance and improved

generalization ability.

To further enhance model performance, we integrated key

clinical and ultrasound features into the DL_RAD model,

constructing the Combined model. This model achieved AUCs of

0.895 in the training set, 0.864 in the validation set, and 0.815 in the

external test set, demonstrating superior performance compared to

all other models. To validate its robustness, DeLong tests were

performed, showing no significant difference in the internal

validation set but a significant improvement in the external test

set, underscoring the superior generalizability of the Combined

model over the DL_RAD model. These findings suggest that

incorporating clinical and US features allows the model to not

only capture imaging characteristics but also leverage patient-

specific clinical and ultrasound data, thereby improving predictive

efficacy and clinical applicability. In the external test set, the

Combined model demonstrated favorable overall performance

(AUC = 0.815; accuracy = 0.780). However, its sensitivity (0.866)

was notably higher than its specificity (0.704), suggesting that the

model tends to favor the identification of BRAF V600E-positive

nodules under the current default threshold. To address this

performance imbalance, threshold adjustment may be considered

to tailor the model’s behavior to different clinical scenarios. In

practical applications, such as high-risk population screening or

preoperative assessment for targeted therapy, missing a BRAF

V600E -positive case could delay optimal treatment. Therefore,

lowering the classification threshold to increase sensitivity is

recommended in these settings, maximizing the detection of

potential mutation carriers. Conversely, in postoperative follow-

up or low-risk patient management, minimizing false positives

becomes more critical. In such cases, increasing the threshold to
FIGURE 3

Pearson correlation coefficient network diagram and heatmap. (A) The Pearson feature correlation network illustrated the relationships between
each pair of selected features. (B) The Pearson correlation coefficient heatmap indicated that each feature acted as an independent predictor, as no
correlation coefficient exceeded 0.5.
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improve specificity can reduce unnecessary psychological burden or

overtreatment. To support this adaptive strategy, this study

incorporated DCA to evaluate the net clinical benefit of each

model across varying risk thresholds, thereby validating their

applicability and practical value across diverse clinical contexts.

SHAP analysis quantifies the contribution of each feature to the

model’s prediction of BRAF V600E mutations, revealing both

positive and negative impacts of different features, thereby
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enhancing the model’s interpretability (30, 47). In this study,

global SHAP results identified the RAD_DL signature, aspect

ratio, ETE, and gender as key factors in predicting BRAF V600E

mutations. Previous studies have shown that BRAF V600E-mutated

thyroid cancers exhibit more aggressive behavior, and aspect ratio

and ETE, as critical imaging features of PTC aggressiveness, are

often closely associated with BRAF V600E mutations (48, 49).

Additionally, while the incidence of PTC is significantly higher in
FIGURE 4

Performance evaluation of different models. (A-C) AUC curves for four models (RAD, DL, DL_RAD, Combined) across three sets. (D-F) Calibration
curves for the four models across the three sets. (G-I) Decision curves for the four models across the three sets. (J-L) DeLong Test for the four
models across the three sets.
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females than in males (approximately 3:1), the difference in BRAF

V600E mutation rates between genders is not significant. Although

male PTC patients tend to have more aggressive disease and poorer

prognosis, the occurrence of BRAF V600Emutations does not differ

significantly between genders, resulting in a relatively minor impact

of this feature in the SHAP analysis (50).

This study has several limitations: 1. It is a retrospective study,

and further prospective validation is needed to enhance the model’s

generalization ability and clinical applicability. 2. Although the

SHAP method can explain the clinical and ultrasound features in

the model, the interpretation of deep learning remains limited.

Future work should further explore the interpretability of deep

learning models. In addition, the current model is constructed

based on static two-dimensional images. In the future, as
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ultrasound video or three-dimensional volumetric data become

available, we plan to further explore 3D CNNs or sequence-based

modeling architectures to better capture the spatial and temporal

characteristics of ultrasound imaging.
Conclusion

In this study, a combined model was developed by integrating

radiomics and deep learning features with clinical and ultrasound

characteristics to predict BRAF V600E mutations in patients with

PTC coexisting with HT. Compared to other models, the Combined

model demonstrated the best performance, showcasing its

significant potential for clinical application and providing reliable
FIGURE 5

(A) The SHAP summary plot illustrates the impact of each feature on the model’s prediction. The features include DL_RAD, aspect ratio, ETE, and
gender. Higher SHAP values indicate a greater contribution of the corresponding feature to the prediction outcome. (B) Individual prediction
explanation for a specific case, where the ultrasound image is shown on the left and the corresponding SHAP force plot on the right. The DL_RAD
prediction value, aspect ratio, ETE, and gender are 0.33, 1.291, −1.231, and −0.403, respectively, contributing +0.13, +0.05, −0.02, and −0.01 to the
malignant label decision. Among these, the DL_RAD prediction value and aspect ratio positively support the malignant prediction, whereas
extrathyroidal extension and gender exert a negative influence. Summing these contributions with the expected value (E[f(X)] = 0.735) yields a final
decision probability of 0.89. SHAP values represent absolute contributions to the predicted probability (i.e., additive changes from the base value),
measured in probability units.
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support for preoperative prediction of BRAF V600E mutations.

Additionally, the use of the SHAP method to interpret the features

of the Combined model further enhanced its clinical acceptance.
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