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based on clinical and
echocardiographic parameters
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Feng Qiu1* and Jiadan Yang1*

1Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University,
Chongqing, China, 2College of Pharmacy, Chongqing Medical University, Chongqing, China
Objective: Diabetic cardiomyopathy (DCM) is a myocardial dysfunction disorder

driven by diabetes-associated metabolic disorders, significantly elevating the risk

of heart failure in patients with type 2 diabetes mellitus (T2DM). We aimed to

develop and validate a nomogram for individualized DCM risk prediction in

T2DM populations.

Methods: This retrospective study enrolled 525 consecutive T2DM patients

admitted to our hospital (June 2022-June 2024). Participants were randomly

allocated to training (70%) or validation (30%) cohorts. Baseline clinical

characteristics, laboratory profiles, and echocardiographic parameters were

collected. Predictors were identified via univariate then multivariate logistic

regression, followed by nomogram construction. Model validation included: (1)

internal validation via 1000 bootstrap resamples; (2) discrimination assessed by

the area under the receiver operating characteristic curve (AUC-ROC); (3)

calibration evaluated using calibration plots and the Hosmer-Lemeshow

goodness-of-fit test; (4) clinical utility determined by decision curve analysis

(DCA) and clinical impact curves (CIC).

Results: Six independent predictors—age, duration of type 2 diabetes mellitus

(T2DM Duration), systolic blood pressure (SBP), urinary albumin-to-creatinine

ratio (UACR), left atrial diameter (LAD), and left ventricular posterior wall thickness

at end-diastole (LVPWd)—were incorporated. The model showed excellent

discrimination: AUC 0.947 (95% CI: 0.916-0.967) in training and 0.922 (95% CI:

0.870-0.956) in validation cohorts. Calibration indicated strong agreement

(Hosmer-Lemeshow c² = 9.2119, P = 0.3247). DCA and CIC confirmed

clinical utility.
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Conclusions: This nomogram integrates routine clinical/echocardiographic

parameters to predict DCM risk in T2DM patients, facilitating individualized risk

stratification and guiding early cardioprotective interventions in high-risk populations.

Clinical Trial Registration: https://www.chictr.org.cn/index.html ,

identifier ChiCTR2400093755.
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Introduction

Type 2 diabetes mellitus (T2DM) represents a global health crisis,

with its prevalence and incidence exhibiting persistent upward trends.

According to projections by the International Diabetes Federation

(IDF), the global population with T2DM is anticipated to reach 700

million by 2045 (1). Beyond conventional micro- and macrovascular

complications, T2DM directly contributes to myocardial pathology

through diabetic cardiomyopathy (DCM)—a distinct entity

characterized by diabetes-associated metabolic derangements that

induce structural and functional cardiac alterations independent of

coronary artery disease, valvular abnormalities, congenital heart

defects, or other established etiologies of heart failure (HF) (2, 3).

Epidemiological studies have demonstrated that cardiovascular

mortality quadruples in diabetic populations compared to non-

diabetic individuals (4), with DCM prevalence ranging from 10%

to 21% among individuals with diabetes and associated mortality

rates reaching 31% (5).

The pathogenesis of DCM is principally driven by metabolic

dysregulation of carbohydrate and lipid homeostasis, triggering a

cascade of pathophysiological events including oxidative stress

generation, chronic inflammatory responses, endothelial dysfunction,

and mitochondrial impairment (6, 7). These interconnected

mechanisms collectively promote key pathological processes:

cardiomyocyte hypertrophy, interstitial fibrosis, programmed cell

death, coronary endothelial injury, and microvascular dysfunction (8,

9). Clinically, DCMmanifests initially as elevated left ventricular filling

pressures and diastolic dysfunction (10), progressing through stages of

worsening diastolic impairment and eventual systolic failure,

culminating in overt HF (11). Notably, asymptomatic left ventricular

diastolic dysfunction frequently precedes symptomatic HF in T2DM

patients, representing the earliest detectable functional manifestation of

DCM (12). This insidious progression underscores the critical need for

early detection and intervention to alleviate the escalating global

burden of HF (13, 14).

Current diagnostic challenges persist due to the lack of disease-

specific biomarkers, while advanced imaging modalities such as

cardiac magnetic resonance imaging (CMR) remain cost-

prohibitive for routine clinical implementation (15). Although prior
02
studies have attempted to develop predictive models for DCM in

T2DM patients, Existing tools exhibit certain limitations. First,

certain models were derived from limited cohorts (e.g., one

nomogram study with n = 84 cases), potentially compromising

statistical power and increasing risks of overfitting or reduced

generalizability (16). Second, some prediction frameworks rely

exclusively on basic clinical characteristics (e.g., age, body mass

index) and laboratory parameters (e.g., lipids, electrolytes), omitting

cardiac structural/functional metrics essential for capturing DCM

pathophysiology (17). To address these gaps, we developed and

validated a clinical nomogram integrating routinely accessible

clinical and echocardiographic parameters for DCM risk prediction

in T2DM patients. This tool aims to enable early risk stratification,

facilitating timely preventive strategies and targeted interventions to

mitigate DCM-associated morbidity in high-risk populations.
Methods

Study design and participants

This study utilized electronic medical records from the

Endocrinology Department of the First Affiliated Hospital of

Chongqing Medical University (Chongqing, China). We

consecutively screened patients admitted between June 2022 and

June 2024, ultimately enrolling 525 eligible individuals with T2DM.

Eligible participants were randomly allocated (7:3 ratio) to training

(n = 367) and validation (n = 158) cohorts using computer-

generated random numbers.
Inclusion and exclusion criteria

The inclusion criteria included (1): Age ≥18 years (2); Diagnosis of

T2DM is established based on the American Diabetes Association

(ADA) criteria (18): Hemoglobin A1c (HbA1c) ≥6.5% or fasting

plasma glucose ≥7.0 mmol/L or 2-Hour plasma glucose during oral

glucose tolerance test (OGTT) ≥11.1 mmol/L or random plasma

glucose ≥11.1 mmol/L; (3) Complete echocardiographic evaluation.
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The exclusion criteria included: (1) Established cardiovascular

pathology: (a) HF, established diagnosis or typical heart failure

symptoms and signs (NYHA class II-IV symptoms) who were on

long-term anti-HF medications; (b) hypertensive heart disease,

documented history or uncontrolled severe hypertension; (c)

coronary artery disease, known history of coronary artery disease,

myocardial infarction, or coronary angiography demonstrating ≥50%

luminal stenosis; (d) significant valvular disease, moderate-to-severe

valvular stenosis/regurgitation confirmed by echocardiography; (e)

congenital heart defects, clinically significant congenital heart disease

verified by medical history or echocardiography. (2) Comorbid

conditions: active malignancies, systemic infections (CRP >10 mg/

L), hepatic insufficiency (Child-Pugh B/C), renal dysfunction (eGFR

<30 mL/min/1.73m²); (3) Diabetes subtypes: Type 1 diabetes,

gestational diabetes, secondary diabetes; (4) Incomplete core

clinical parameters.
Diagnosis of DCM

In accordance with the 2024 ESC Position Paper on DCM

(endorsed by the Heart Failure Association and Working Group on

Myocardial and Pericardial Diseases), DCM is defined as systolic

and/or diastolic myocardial dysfunction occurring in patients with

diabetes mellitus (19). Given this study’s focus on early-stage DCM

risk prediction, we targeted the initial disease continuum: Diastolic

dysfunction represents the earliest detectable phenotype of diabetic

myocardial injury. Systolic dysfunction (LVEF <50%) typically

indicates advanced disease incompatible with early warning

objectives (2).

Therefore, through strict application of pre-specified inclusion/

exclusion criteria, study participants were confirmed as DCM cases

upon meeting the criteria for left ventricular diastolic dysfunction.

Diastolic dysfunction was defined per the 2016 ASE/EACVI

Recommendations for the Evaluation of Left Ventricular Diastolic

Function, requiring ≥3 of the following echocardiographic criteria

(20): (1) Septal e’ velocity <7 cm/s or Lateral e’ velocity <10 cm/s; (2)

Peak tricuspid regurgitation velocity >2.8 m/s; (3) Early diastolic

mitral inflow velocity to tissue Doppler mitral annular early

diastolic velocity ratio (E/e’) >14; (4) Left atrial volume index

(LAVI) >34 mL/m².
Baseline data collection

Clinical characteristics and laboratory parameters were

systematically collected through standardized protocols.

Demographic and clinical variables included: age, sex, body mass

index (BMI), duration of type 2 diabetes mellitus (T2DM Duration)

(calculated from initial diagnosis to current hospitalization), heart

rate, systolic blood pressure (SBP), diastolic blood pressure (DBP),

smoking status, and alcohol consumption history. We obtained

fasting venous blood samples were obtained within 24 hours of

admission using standardized phlebotomy procedures. Complete

blood counts - including white blood cells (WBC), neutrophils
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(NEU), lymphocytes (LYM), and platelets (PLT) - were analyzed

using an automated hematology analyzer, with derived platelet-to-

lymphocyte ratio (PLR) and neutrophil-to-lymphocyte ratio (NLR).

Glycated hemoglobin (HbA1c) was measured by high-performance

liquid chromatography, while biochemical profiles (triglycerides

[TG], total cholesterol [TC], high-density lipoprotein cholesterol

[HDL-C], low-density lipoprotein cholesterol [LDL-C], and serum

creatinine [Scr]) were assessed using a clinical chemistry analyzer.

First-morning midstream urine specimens were collected for

urinary albumin-to-creatinine ratio (UACR) measurement via

immunoturbidimetry. Estimated glomerular filtration rate (eGFR)

was calculated applying the Chronic Kidney Disease Epidemiology

Collaboration (CKD-EPI) equation (21). All data underwent dual-

entry verification by independent investigators to ensure

completeness and validity.

Standardized transthoracic echocardiography was performed by

certified sonographers using a GE Vivid E95 ultrasound system (GE

Healthcare) equipped with M5S transducers (1.5-4.6 MHz).

Measured parameters included: left atrial diameter (LAD), left

ventricular end-diastolic diameter (LVEDD), interventricular

septal thickness at end-diastole (IVSd), left ventricular posterior

wall thickness at end-diastole (LVPWd), relative wall thickness

(RWT; 2×LVPWd/LVEDD), left ventricular ejection fraction

(LVEF; Simpson’s biplane method). Left ventricular mass index

(LVMI) was calculated using the Devereux formula (22).

Measurement of diastolic function and tissue Doppler parameters:

early diastolic mitral annular velocities (e’) were acquired using

pulsed-wave tissue Doppler imaging (TDI) at the basal septal and

lateral segments in the apical four-chamber view. Mitral inflow E-

wave velocity was subsequently measured by placing the pulsed-

wave Doppler sample volume at the mitral valve leaflet tips in the

standard apical four-chamber view. The E/e’ ratiowas calculated as

the ratio of mitral E-wave velocity to the average of septal and lateral

e’ velocities. The LAVI was quantified in apical four- and two-

chamber views using the biplane area-length method and indexed

to body surface area. Additionally, peak TRV was obtained via

continuous-wave (CW) Doppler in either the apical four-chamber

view or dedicated right ventricular inflow view.
Statistical analysis

All statistical analyses were conducted using R software (version

4.4.1; R Foundation) and IBM SPSS Statistics (version 25.0; IBMCorp).

Continuous variables were assessed for normality through Shapiro-

Wilk tests supplemented by histogram visualization. Normally

distributed variables were expressed as mean ± standard deviation

(SD) and compared using Student’s t-test, while non-normally

distributed variables were reported as median (interquartile range

[IQR]) with Mann-Whitney U test comparisons. Categorical

variables were presented as frequencies (percentages) and analyzed

by c² test or Fisher’s exact test as appropriate. we performed univariate

logistic regression analysis on the training cohort and the independent

risk factors were further analyzed by multivariate logistic regression

(Stepwise backward regressionmethod). This model was visualized as a
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nomogram using the rms package in R with proportional scaling.

Internal validation employed 1000 bootstrap resamples to estimate

optimism-corrected performance metrics and mitigate overfitting risks.

Model discrimination was evaluated via receiver operating

characteristic (ROC) curve analysis reporting area under the curve

(AUC) with 95% confidence intervals. Calibration was assessed using

Hosmer-Lemeshow goodness-of-fit tests and calibration plots

comparing predicted versus observed probabilities. Clinical utility

was assessed through decision curve analysis (DCA) and clinical

impact curves (CIC), with DCA quantifying the net benefit across

threshold probabilities and CIC estimating true-positive versus false-

positive classification rates. The P value of <0.05 indicated

statistical significance.
Results

Baseline characteristics

The study flowchart is presented in Figure 1. The study cohort

comprised 525 patients with T2DM, among whom 174 (33.1%) met

diagnostic criteria for DCM. Table 1 presents comparative analyses

of clinical and echocardiographic parameters between the training

(n = 367) and validation (n = 158) cohorts. The training cohort

demonstrated a median age of 54.0 years (IQR 45.0-61.0) with male

predominance (64.3%), while the validation cohort had comparable

baseline characteristics: median age 54.0 years (IQR 45.0-63.0) and

male proportion 67.1%. Intergroup comparisons revealed

statistically significant differences only in smoking status (P =

0.047), with no clinically relevant disparities observed in T2DM

duration, BMI, SBP, or other key variables. This baseline

homogeneity supports the validity of the internal model

validation procedures.
Univariate and multivariable logistic
regression analysis

Univariate logistic regression analysis identified 17 variables

significantly associated with DCM (P <0.05) in the training cohort.

To mitigate overfitting and multicollinearity risks, we adhered to the

events per variable (EPV) ≥10 principle (23), permitting inclusion

of ≤12 variables given 125 DCM events. Variables were prioritized

based on statistical significance (P <0.01), with 12 candidate variables

retained for subsequent multivariate analysis. After performing

multivariate logistic regression analysis (using backward stepwise

regression), a variance inflation factor (VIF) less than 5 indicates

acceptable multicollinearity, six independent predictors emerged

(P <0.05): Age (OR = 1.046, 95% CI:1.008-1.088, P = 0.0198),

T2DM Duration (OR = 1.254, 95% CI: 1.167-1.359, P <0.001),

SBP (OR = 1.033, 95% CI:1.011-1.055, P = 0.0028), UACR (OR =

1.014, 95% CI:1.008-1.020, P <0.001), LAD (OR = 1.33, 95%

CI:1.178-1.519, P <0.001), LVPWd (OR = 2.33, 95% CI:1.542-

3.636, P <0.001). Detailed results are presented in Tables 2 and 3.
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Development of the nomogram prediction
model

The nomogram (Figure 2) was constructed to visualize the final

multivariable logistic regression model. Point values assigned to

each predictor were automatically calculated based on their

corresponding regression coefficients (b-coefficients) using

the rms package in R software. This mathematical transformation

process ensures that the point scale accurately preserves both

the relative weights of variables within the model and the risk

differences between categorical levels of individual predictors.

To apply the model, clinicians first assign individualized scores by

mapping a patient’s clinical parameters to the corresponding variable

axes. These scores are then summed to calculate a total risk score,

which is subsequently projected onto the probability axis to estimate

the personalized likelihood of DCM. For instance, a 75-year-old

patient with T2DM, a 20-year disease duration, SBP of 129 mmHg,

UACR of 13.6 mg/g, LAD of 30 mm, and LVPWd of 9 mm would

accumulate a total score of 127.5 points, corresponding to a 65%

predicted probability of DCM (Figure 3). This integrative tool enables

rapid risk stratification and supports clinical decision-making for

early intervention in high-risk populations.
Model performance

Internal validation through 1000 bootstrap resamples

demonstrated robust model discrimination, with a C-index of

0.9376 (95% CI: 0.9024-0.9728), indicating minimal overfitting

risk. ROC analysis revealed excellent predictive accuracy in both

training (AUC = 0.947, 95% CI: 0.916-0.967) and validation cohorts

(AUC = 0.922, 95% CI: 0.870-0.956), surpassing the clinical utility

threshold (AUC >0.75) (Figure 4). Calibration plots exhibited

strong concordance between predicted probabilities and observed

outcomes across risk strata (Figure 5). The Hosmer-Lemeshow test

confirmed adequate model calibration (c² = 9.2119, P = 0.3247),

with non-significant deviation from ideal prediction (P >0.05).
Model clinical utility

The DCA of the nomogram demonstrated superior net clinical

benefits compared to default strategies (“Treat All” or “Treat

None”) across low-to-medium risk thresholds (0.0-0.8), with both

training and validation cohort curves exhibiting parallel trajectories

and minimal divergence (Figure 6A). This consistency indicates

robust generalizability without significant overfitting. CIC analysis

further revealed high concordance between model-predicted high-

risk cases and actual event occurrences at thresholds >0.6,

highlighting its precision for resource-intensive interventions

(Figure 6B). Integrating cost-benefit ratios, we recommend

adopting flexible threshold selection (0.4-0.8) to optimize risk

stratification and healthcare resource allocation based on clinical

priorities and resource availability.
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Discussion

Summary and interpretation of key findings

HF secondary to DCM represents a major contributor to

premature mortality in patients with T2DM. While prior studies

have established associations between echocardiographic
Frontiers in Endocrinology 05
parameters, biomarkers, and HF risk in diabetes (14, 24, 25),

limited research has focused on predicting DCM progression in

T2DM populations. To address this gap, we conducted a

retrospective analysis of hospital-based data, identifying

conventional clinical indicators (age, T2DM Duration, SBP,

UACR) and cardiac structural remodeling markers (LAD,

LVPWd) as independent predictors of DCM. Leveraging these
FIGURE 1

Flow diagram of study design.
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TABLE 1 The baseline characteristics of patients in the training and validation cohort.

Parameter Training cohort (n = 367) Validation cohort (n = 158) c²/z/t P

Clinical information

Age (years) 54.00 (45.00, 61.00) 54.00 (45.00, 63.00) -0.388 0.698a

Gender (n, %) 0.377 0.539c

Female 131 (35.7) 52 (32.9)

Male 236 (64.3) 106 (67.1)

T2DM Duration (years) 8.00 (2.00, 14.00) 7.00 (2.00, 12.00) -0.959 0.337a

BMI (kg/m2) 23.73 (21.85, 25.97) 24.33 (21.88, 26.77) -1.233 0.218a

Heart rate (bpm) 88.00 (81.00, 96.00) 89.00 (80.00, 99.00) -0.661 0.508a

SBP (mmHg) 129.00 (118.00, 144.00) 130.00 (119.00, 142.00) -0.661 0.508a

DBP (mmHg) 79.22 ± 11.99 79.91 ± 11.30 -0.615 0.539b

Smoking (n, %) 3.932 0.047c

Yes 129 (35.1) 70 (44.3)

No 238 (64.9) 88 (55.7)

Drinking (n, %) 0.560 0.454c

Yes 111 (30.2) 53 (33.5)

No 256 (69.8) 105 (66.5)

WBC (109/L) 6.53 (5.38, 7.78) 6.60 (5.26, 7.99) -0.318 0.750a

PLR 129.32 (99.27, 157.95) 118.67 (94.02, 159.35) -1.167 0.243a

NLR 2.39 (1.75, 3.29) 2.31 (1.74, 3.15) -0.716 0.474a

SCr (mmol/L) 67.00 (55.00, 75.00) 67.00 (55.00, 78.25) -0.129 0.898a

UACR (mg/g) 19.85 (11.30, 49.68) 17.00 (10.60, 47.23) -0.400 0.689a

eGFR (mL/min/1.73m2) 105.20 (91.65, 117.60) 105.56 (93.22, 117.92) -0.500 0.617a

TC (mmol/L) 4.39 (3.67, 5.21) 4.51 (3.83, 5.31) -1.241 0.214a

TG (mmol/L) 1.57 (1.07, 2.69) 1.74 (1.11, 3.10) -0.779 0.436a

HDL (mmol/L) 1.01 (0.83, 1.24) 1.02 (0.86, 1.24) -0.440 0.660a

LDL (mmol/L) 2.62 (1.20, 3.21) 2.72 (2.07, 3.34) -1.034 0.301a

HbA1c (%) 9.65 (7.58, 11.53) 9.60 (8.08, 11.53) -0.568 0.570a

Echocardiographic parameters

LAD (mm) 31.00 (29.00, 33.00) 31.00 (29.00, 32.00) -0.644 0.519a

LVEDD (mm) 45.00 (42.00, 48.00) 45.00 (41.00, 48.00) -1.618 0.106a

IVSd (mm) 10.00 (10.00, 11.00) 10.00 (10.00, 11.00) -0.179 0.858a

LVPWd (mm) 10.00 (10.00, 11.00) 10.00 (10.00, 11.00) -0.520 0.603a

RWT 0.43 (0.40, 0.45) 0.44 (0.41, 0.46) -1.840 0.66a

LVMI (g/m²) 91.59 (81.18, 103.30) 86.92 (78.99, 102.83) -1.756 0.079a

LVEF (%) 64.00 (61.00, 67.00) 63.50 (61.00, 66.00) -0.464 0.643a
F
rontiers in Endocrinology
 06
BMI, body mass index; DBP, diastolic blood pressure; eGFR, Estimated glomerular filtration rate; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; IVSd,
Interventricular septal thickness at end-diastole; LAD, Left atrial diameter; LDL-C, low-density lipoprotein cholesterol; LVEDD, Left ventricular end-diastolic diameter; LVEF, Left ventricular
ejection fraction; LVMI, Left ventricular mass index; LVPWd, Left ventricular posterior wall thickness at end-diastole; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio;
RWT, relative wall thickness; SBP, systolic blood pressure; Scr, serum creatinine; T2DM Duration, duration of type 2 diabetes mellitus; TC, total cholesterol; TG, triglycerides; UACR, urinary
albumin-to-creatinine ratio; WBC, white blood cells. aResults shown as median and interquartile range and analyzed using Mann-Whitney U-test. bResults shown as mean ± standard and
analyzed using Student’s t-test. cChi-square test was used for proportions comparison.
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factors, we developed and validated a clinically practical nomogram

model. These results advance early DCM risk stratification and

provide a framework for targeted clinical interventions.

The progression of DCM in patients with T2DM is synergistically

driven by aging and prolonged hyperglycemic exposure. Extensive

evidence identifies age as a critical determinant of cardiac dysfunction
Frontiers in Endocrinology 07
in T2DM populations (26–28), primarily through age-related

cardiovascular remodeling characterized by myocardial stiffening,

atherosclerotic changes, and metabolic dysregulation. These

alterations establish a pathological substrate that amplifies diabetes-

induced cardiac injury, particularly in elderly individuals with

compromised metabolic homeostasis (26). Furthermore, diabetes

duration emerges as an independent predictor of cardiovascular

morbidity (29–31), reflecting cumulative hyperglycemic damage

mediated by chronic oxidative stress, endothelial dysfunction, and

cardiomyocyte apoptosis (29). The interplay between aging and

diabetic metabolic disturbances creates a vicious cycle: Age-

dependent myocardial fibrosis and diastolic impairment are

exacerbated by persistent hyperglycemia, which accelerates glycation

end-product accumulation and reactive oxygen species generation (14).

This synergy explains why elderly patients with extended T2DM

duration exhibit more severe myocardial injury and earlier onset of

diastolic dysfunction (32). Our findings highlight the clinical

imperative to incorporate both aging and glycemic exposure duration

into DCM risk stratification frameworks, enabling targeted monitoring

of high-risk subgroups.

Elevated blood pressure is a well-established risk factor for T2DM

(33, 34), with diabetic populations exhibiting higher average blood

pressure levels. A cross-sectional study in high-altitude Chinese

populations identified hypertension and hyperglycemia as critical

contributors to increased LVDD risk (35). Further supporting this, a

2018 clinical comparative study demonstrated a direct association

between SBP and diastolic dysfunction severity (36). While diabetes

alone rarely causes isolated myocardial impairment, its synergistic

interactions with hypertension, obesity, and chronic kidney disease

often amplify cardiac damage (19). In our study, elevated SBP
TABLE 2 Univariate logistic regression analysis of patients in the
training cohort.

Parameter OR (95% CI) P

Clinical information

Age (years) 1.087 (1.062-1.111) < 0.001

Gender (n, %) 0.614 (0.393-0.958) 0.032

T2DM Duration (years) 1.244 (1.188-1.304) < 0.001

BMI (kg/m2) 1.031 (0.973-1.093) 0.305

Heart rate (bpm) 0.991 (0.974-1.009) 0.33

SBP (mmHg) 1.035 (1.022-1.049) < 0.001

DBP (mmHg) 0.982 (0.964-1.000) 0.046

Smoking (n, %) 0.766 (0.484-1.213) 0.255

Drinking (n, %) 1.133 (0.711-1.807) 0.599

WBC (109/L) 1.029 (0.921-1.151) 0.613

PLR 1.005 (1.000-1.009) 0.031

NLR 1.539 (1.290-1.837) < 0.001

SCr (mmol/L) 1.031 (1.020-1.042) < 0.001

UACR (mg/g) 1.019 (1.013-1.025) < 0.001

eGFR (mL/min/1.73m2) 0.956 (0.944-0.967) < 0.001

TC (mmol/L) 0.880 (0.746-1.039) 0.132

TG (mmol/L) 0.956 (0.860-1.063) 0.406

HDL-C (mmol/L) 1.195 (0.604-2.366) 0.608

LDL-C (mmol/L) 0.740 (0.590-0.928) 0.009

HbA1c (%) 1.001 (0.924-1.086) 0.976

Echocardiographic parameters

LAD (mm) 1.358 (1.248-1.477) < 0.001

LVEDD (mm) 1.075 (1.017-1.135) 0.01

IVSd (mm) 3.144 (2.345-4.213) < 0.001

LVPWd (mm) 3.214 (2.373-4.354) < 0.001

RWT 1.820 (1.110-2.984) 0.018

LVMI (g/m²) 1.063 (1.047-1.081) < 0.001

LVEF (%) 0.982 (0.931-1.037) 0.518
BMI, body mass index; DBP, diastolic blood pressure; eGFR, Estimated glomerular filtration
rate; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; IVSd,
Interventricular septal thickness at end-diastole; LAD, Left atrial diameter; LDL-C, low-
density lipoprotein cholesterol; LVEDD, Left ventricular end-diastolic diameter; LVEF, Left
ventricular ejection fraction; LVMI, Left ventricular mass index; LVPWd, Left ventricular
posterior wall thickness at end-diastole; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-
to-lymphocyte ratio; RWT, relative wall thickness; SBP, systolic blood pressure; Scr, serum
creatinine; T2DM Duration, duration of type 2 diabetes mellitus; TC, total cholesterol; TG,
triglycerides; UACR, urinary albumin-to-creatinine ratio; WBC, white blood cells.
TABLE 3 Multivariate logistic regression analysis of patients in the
training cohort.

Variable b SE Wald OR (95% CI) P

Intercept -27.798 3.713 56.046 – < 0.001

Age 0.045 0.019 5.425 1.046 (1.008-1.088) 0.0198

T2DM Duration 0.226 0.039 34.006 1.254 (1.167-1.359) < 0.001

SBP 0.032 0.011 8.889 1.033 (1.011-1.055) 0.0028

NLR 0.010 0.167 0.003 1.010 (0.728-1.400) 0.954

Scr -0.001 0.016 0.006 0.999 (0.968-1.030) 0.937

UACR 0.014 0.003 21.192 1.014 (1.008-1.02) < 0.001

eGFR -0.009 0.011 0.721 0.991 (0.969-1.012) 0.396

LDL-C -0.032 0.194 0.027 0.968 (0.662-1.417) 0.868

LAD 0.285 0.065 19.452 1.33 (1.178-1.519) < 0.001

IVSd 0.189 0.366 0.268 1.208 (0.590-2.474) 0.605

LVPWd 0.846 0.218 15.074 2.33 (1.542-3.636) < 0.001

LVMI 0.016 0.013 1.705 1.017 (0.992-1.042) 0.192
front
eGFR, Estimated glomerular filtration rate; IVSd, Interventricular septal thickness at end-
diastole; LAD, Left atrial diameter; LDL-C, low-density lipoprotein cholesterol; LVPWd, Left
ventricular posterior wall thickness at end-diastole; LVMI, Left ventricular mass index; NLR,
neutrophil-to-lymphocyte ratio; SBP, systolic blood pressure; Scr, serum creatinine; T2DM
Duration, duration of type 2 diabetes mellitus; UACR, urinary albumin-to-creatinine ratio.
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emerged as a key driver of DCM progression. Mechanistically,

prolonged hypertension induces myocardial hypertrophy and

fibrosis, exacerbating cardiac workload and thereby aggravating

LVDD in T2DM patients.

The UACR serves as a sensitive indicator of diabetic nephropathy,

with renal impairment demonstrating strong cardiometabolic
Frontiers in Endocrinology 08
associations (37). Prevalent LVDD has been documented across

stages of moderately increased (microalbuminuria) and severely

increased albuminuria (macroalbuminuria), whereas left ventricular

systolic dysfunction predominantly manifests in subgroups with

advanced macroalbuminuria (38). Seminal investigations, including

The Strong Heart Study, established associations between albuminuria,
FIGURE 3

Visualization application of the nomogram prediction for the risk of DCM in patients with T2DM.
FIGURE 2

A nomogram integrating clinical indicators (age, T2DM Duration, SBP, UACR) and echocardiographic parameters (LAD, LVPWd) to predict DCM risk
in T2DM patients.
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left ventricular mass index, and diastolic impairment. Notably,

albuminuria independently correlates with multisystem damage

irrespective of diabetes status, elevating risks of atherosclerotic

cardiovascular events (myocardial infarction, ischemic stroke, cardiac

mortality) and congestive heart failure (39). This aligns with

our findings, reinforcing UACR’s dual role as both an early

diabetic nephropathy marker and an independent predictor of

cardiovascular outcomes, underscoring the cardiorenal continuum in

diabetes pathophysiology.

In this study, LAD and LVPWd were identified as predictive

indices, highlighting the critical role of cardiac structural

remodeling in early DCM diagnosis. Left atrial enlargement and

increased LVPWd in diabetic populations reflect adaptive cardiac

responses to chronic hemodynamic stress, particularly in

hypertensive conditions, ultimately progressing to myocardial

dysfunction and heart failure (10, 40). A pooled analysis of three
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U.S. cohort studies (n = 10,208 participants without baseline

cardiovascular disease or heart failure) demonstrated significantly

higher prevalence of echocardiographic structural abnormalities—

including left atrial dilation and left ventricular hypertrophy—

among patients with T2DM. These abnormalities independently

predicted 5-year incident heart failure risk (41, 42). Machine

learning-based models for early DCM risk stratification similarly

prioritize left ventricular mass and chamber size as key predictors

(43). Our findings reinforce the necessity of proactive

echocardiographic screening in T2DM patients with suboptimal

glycemic control to detect structural cardiac alterations, enabling

timely intervention to mitigate adverse outcomes.

This study revealed a noteworthy phenomenon: HbA1c—

traditionally recognized as a key metabolic control indicator for

diabetic complications—failed to demonstrate independent predictive

value in our model. We postulate three underlying mechanisms:
FIGURE 5

Calibration plots of the nomogram prediction for the risk of DCM in patients with T2DM in the training cohort (A) and validation cohort (B).
FIGURE 4

ROC curves of the nomogram prediction for the risk of DCM in patients with T2DM in the training cohort (A) and validation cohort (B).
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(1) Metabolic memory effect (44): Persistent myocardial

alterations (e.g., fibrosis and advanced glycation end-product

deposition) induced by chronic hyperglycemia endure beyond

glycemic correction. Consequently, baseline HbA1c inadequately

reflects cumulative damage, explaining the superior predictive

capacity of T2DM Duration. (2) Hierarchical masking in

modeling: As disease progresses to structural remodeling stages

(e.g., left ventricular hypertrophy/left atrial enlargement), imaging

biomarkers may supersede upstream metabolic indicators.

Concurrently, the synergistic modulation of glycemic exposure by

age and diabetes duration further diminishes HbA1c’s contribution.

(3) Temporal limitations of measurement: HbA1c captures

only short-term (2-3-month) glycemic averages, failing to account

for long-term cumulative myocardial injury from glycemic

variability—a critical factor in chronic progressive disorders like

DCM (45).
Clinical significance and practical
applications

Given the elevated risk of HF in patients with T2DM, early

detection and intervention of DCM are critical for HF prevention.

Predictive models enable clinicians to stratify high-risk individuals

during the asymptomatic phase, facilitating timely implementation of

tailored interventions—such as lifestyle modifications, metabolic

parameter optimization, and evidence-based pharmacotherapy—to

reduce cardiovascular morbidity (46). Current preventive strategies

for T2DM-associated cardiovascular disease include: 1. Lifestyle

intensification: Structured dietary control, weight management, and

physical activity regimens (47). The European Society of Preventive

Cardiology guidelines advocate for individualized exercise regimens

tailored to patient-specific characteristics to optimize cardiovascular

adaptation and metabolic homeostasis (48); 2. Metabolic control: Tight

regulation of glycemic, blood pressure, and lipid profiles; 3.

Cardioprotective pharmacotherapy: Prioritization of glucose-lowering
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agents with proven cardiovascular benefits, notably sodium-glucose

cotransporter 2 inhibitors (SGLT2i). Critically, the therapeutic value of

SGLT2i extends beyond glycemic control and cardiovascular

protection. Their efficacy aligns profoundly with the concept of the

cardiorenal metabolic syndrome (CRMS), which recognizes the

intricate interplay and share pathophysiological mechanisms linking

T2DM, cardiovascular diseases, and chronic kidney disease (49). A

multinational cohort study (N = 309,056) demonstrated that SGLT2i

initiation significantly reduced HF hospitalization risk and all-cause

mortality compared to alternative therapies (50). Importantly,

landmark trials have consistently shown that SGLT2i also provide

significant renoprotection, reducing the risk of worsening kidney

function, end-stage kidney disease, and death from renal causes (51).

This dual cardiorenal benefit uniquely positions SGLT2i as

foundational therapy for patients with T2DM and DCM, who

frequently exhibit features of CRMS.

The early initiation of SGLT2i in high-risk populations,

particularly those identified with early-stage DCM within the

spectrum of CRMS, remains a critical priority. Despite robust

evidence supporting their cardioprotective efficacy, widespread

clinical adoption of SGLT2i is hindered by cost-related barriers and

limited accessibility in resource-constrained settings (52). To reconcile

this disparity, risk stratification strategies leveraging predictive models

offer a pragmatic solution: targeted prioritization of SGLT2i therapy

for individuals identified with early-stage DCM and/or concomitant

renal risk markers through validated risk algorithms. Furthermore,

integrating predictive models into personalized medicine frameworks

holds transformative potential. By synthesizing patient-specific

clinical indicators (including those reflecting cardiorenal metabolic

risk, such as albuminuria, eGFR trajectory, along with cardiac

structural/functional parameters), these tools enable clinicians to

formulate precision-guided management plans tailored to individual

risk trajectories. This approach not only enhances therapeutic efficacy

by addressing the multifaceted nature of CRMS but also optimizes

healthcare resource utilization, ultimately improving patient-reported

outcomes and quality of life.
FIGURE 6

(A) DCA demonstrating the clinical utility of the nomogram across various risk thresholds. (B) CIC showing the relationship between predicted high-
risk cases and actual event occurrences.
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Study limitations and future directions

Despite the insights provided, this study has several limitations.

First, the single-center retrospective design resulted in a relatively

limited sample size, potentially restricting the generalizability of the

findings. Second, retrospective data collection introduces challenges

in fully accounting for unmeasured confounders. To address these

limitations, future research should validate the model’s validity and

reliability through large-scale, multicenter prospective studies.

Additionally, investigations into novel biomarkers and advanced

imaging parameters are warranted to enhance predictive precision

and clinical utility.
Conclusion

We developed a validated nomogram integrating clinical

ind ica tors (age , T2DM Durat ion , SBP , UACR) and

echocardiographic parameters (LAD, LVPWd) to predict DCM

risk in T2DM patients. This tool enables early risk stratification,

supporting timely interventions to reduce heart failure progression.

Further multicenter validation and integration of novel biomarkers

are warranted to enhance clinical utility and address global

diabetes-related cardiovascular burdens.
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