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Development and validation
of a nomogram model for
prediction of dyslipidemia in
children with Wilson disease:
a retrospective analysis
Daiping Hua1†, Qiaoyu Xuan1†, Lanting Sun1†, Wei Song2,
Wenming Yang1,3 and Han Wang1,3*

1Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine,
Hefei, China, 2Information Center, The First Affiliated Hospital of Anhui University of Chinese
Medicine, Hefei, China, 3Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
Background: Wilson disease (WD), an inherited copper metabolism disorder, is

linked to hepatic injury from copper accumulation-induced dyslipidemia.

Children with WD have a high incidence of dyslipidemia, yet personalized risk

assessment tools are lacking. This study established a predictive nomogram to

provide foundational evidence for early detection in this population.

Methods: In this retrospective cohort study, clinical data from 913 children with

WD were retrospectively collected at the First Affiliated Hospital of Anhui

University of Chinese Medicine (November 2018–February 2025). The cohort

was stratified by age group and dyslipidemic status using stratified random

sampling, resulting in a division into a training set (70%, n = 641) and a

validation set (30%, n = 272). Independent risk factors were identified using

least absolute shrinkage and selection operator (LASSO) regression and

multivariate logistic regression analyses. The nomogram prediction model was

constructed and validated internally. The model’s discriminatory efficacy was

evaluated using Receiver Operating Characteristic (ROC) curves with the area

under the curve (AUC), while its calibration performance was assessed using

calibration curves and the Hosmer-Lemeshow test. Furthermore, the clinical

utility of the model was examined through decision curve analysis and clinical

impact curves.

Results: The prevalence of dyslipidemia was 68.24%. The nomogram

incorporated six significant clinical variables: age group (≥ 10 years vs. < 10

years), alanine aminotransferase (ALT), gamma-glutamyl transpeptidase (GGT),

homocysteine (Hcy), superoxide dismutase (SOD), and platelet count (PLT). The

prediction model demonstrated good discrimination (AUC: 0.810 in the training

set, 0.831 in the validation set), excellent calibration (Hosmer-Lemeshow P >

0.280), and significant clinical utility.
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Conclusion: Children with WD exhibit a high incidence of dyslipidemia. The

nomogram prediction model based on these six variables effectively predicts

dyslipidemic risk in pediatric WD patients, enabling early identification and clinical

risk stratification.
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1 Introduction

Wilson disease (WD) is an inherited disorder of copper

metabolism caused by mutations in the ATP7B gene, leading to

pathological copper deposition in the liver and other tissues (1).

There is a strong link between copper and lipids (2, 3), excessive

copper deposition in the liver leads to dyslipidemia, and the

accumulation of lipid droplets in hepatocytes induces hepatic

steatosis via various pathways, such as oxidative stress and lipid

peroxidation, which in turn leads to hepatic inflammation, necrosis,

fibrosis, and even cirrhosis (4–6).

According to our previous studies by Chinese scholars, the

prevalence of WD in China is approximately 5.87/100,000 (7),

which is higher than that reported in Western countries. Children

and adolescents account for the majority of WD cases (8), and

approximately 80% of pediatric WD patients are more likely to

present with liver damage than adults are (9). Previous studies

revealed that the incidence of dyslipidemia in children with WD is

high and that the risk of liver fibrosis is increased (10). Studies

indicate that childhood risk factors track to adulthood and predict

surrogate end points (11). There have been few reports of

dyslipidemic risk factors in children with WD, so early

identification and intervention of dyslipidemia in children with

WD are highly important for slowing the progression of the disease.

This retrospective study was conducted on patients with WD who

received treatment at the First Affiliated Hospital of Anhui University

of Chinese Medicine. This institution is recognized as one of the largest

and most authoritative international centers for the diagnosis and

treatment of WD, having managed 40,000 patients from 15 different

countries and regions. Furthermore, our preliminary research group

has established the world’s most extensive International Wilson

Disease Mutation Database (accessible at https://wilsondisease.

azyfy.com/), which compiles nearly all ATP7B mutations

documented in the scientific literature up to August 2024. The

database currently encompasses a total of 1,610 identified

mutations. To establish temporal precedence for risk assessment,

we employed a retrospective cohort design wherein dyslipidemia

outcomes were longitudinally confirmed per standardized

diagnostic criteria. Therefore, the aim of this study was to

investigate the prevalence of dyslipidemia in children with WD,

explore independent risk factors for dyslipidemia in pediatric WD,

and develop a validated nomogram for risk stratification.
02
This model integrates readily accessible and easily detectable

biomarkers to offer clinicians an intuitive and user-friendly tool

for the rapid assessment of dyslipidemia risk in children with WD.

This approach is particularly advantageous in resource-limited

healthcare settings. This study provides guidance for clinicians to

recognize dyslipidemia in children with WD at an early stage, thus

delaying the process of liver damage in children with WD.
2 Materials and methods

2.1 Participants

The data of 993 children with WD who were first admitted to

the First Affiliated Hospital of Anhui University of Chinese

Medicine from November 2018 to February 2025 were included

(Figure 1). The inclusion criteria were as follows: (1) newly

diagnosed WD meeting the diagnostic criteria for WD and (2)

aged 3 to 18 years. The exclusion criteria were as follows: (1) had

abnormal liver function caused by autoimmune hepatitis, viral

hepatitis or other diseases; (2) had liver cirrhosis or liver failure;

and (3) were taking lipid-lowering drugs before admission (2

months). All biomarker measurements represent pre-treatment

status, with anti-copper therapy commencing after initial

assessment. The 913 children with WD were randomized into the

model population and the validation population at a ratio of 7:3.

The protocol was approved by the Medical Ethics Committee of the

First Affiliated Hospital of Anhui University of Chinese Medicine

with approval number 2023MCZQ08.
2.2 Diagnostic criteria

2.2.1 Diagnostic criteria for WD
According to the Leipzig scoring system (12), a total score of ≥ 4

was sufficient to confirm the diagnosis of WD.

2.2.2 Diagnostic criteria for dyslipidemia
In accordance with the diagnostic thresholds issued by the

National Cholesterol Education Program, as recommended by the

expert consensus on the diagnosis andmanagement of dyslipidemia in

children (13–15), dyslipidemia can be classified into
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hypercholesterolemia, hypertriglyceridemia, mixed hyperlipidemia,

hyper lipoprotein(a)emia, and low high-density lipoprotein

hyperlipidemia. The diagnostic reference values were as follows:

total cholesterol (TC) ≥ 5.17 mmol/L, triglyceride ≥ 1.12 mmol/L at

<10 years of age, triglyceride ≥ 1.46 mmol/L at ≥ 10 years of age,

lipoprotein(a) ≥ 300 mg/L (16), and high-density lipoprotein-

cholesterol (HDL-C) < 1.03 mmol/L. Dyslipidemia was

characterized by two consecutive fasting measurements of lipid

components that exceeded or fell below the specified thresholds.

The normolipidemic group and dyslipidemic group were

categorized according to the occurrence of dyslipidemia.
2.3 Data collection

The following data were extracted from the hospital

information system (HIS): (1) Basic information: sex, age, and

body mass index (BMI). (2) Biochemical indicators: TC,

triglyceride, HDL-C, low-density lipoprotein cholesterol (LDL-C),

apolipoprotein A-I (ApoA-I), apolipoprotein B (ApoB), the ApoA-

I/ApoB ratio, lipoprotein(a), alanine aminotransferase (ALT),

aspartate transaminase (AST), gamma-glutamyl transpeptidase

(GGT), albumin, total bilirubin (TBIL), total bile acids (TBA),
Frontiers in Endocrinology 03
homocysteine (Hcy), superoxide dismutase (SOD), platelet count

(PLT), fibrinogen, uric acid (UA), serum creatinine, and blood urea

nitrogen (BUN); (3) Copper biochemical indicators: serum

ceruloplasmin, 24-h urine copper, and serum copper.
2.4 Statistical analysis

Count data were expressed as numbers (percentages), and

compared using the c2 test; continuous variables were described as

mean ± standard deviation (normally distributed) or median

(interquartile range, IQR; nonnormally distributed) with group

comparisons via Student’s t test or Mann–Whitney U test,

respectively. Missing data (n = 29) were handled via multiple

imputation (5 datasets, 5 iterations) using the “mice” package, with

pooled results calculated using Rubin’s rules (17). The proportion of

missing data for variables used in all regression analyses is described

in Supplementary Table S1. To ensure reproducibility, a fixed

random seed (1357) was set before splitting the dataset, which was

divided using stratified sampling based on dyslipidemic status and

age group. For model development, 913 participants were randomly

split into training (n = 641) and validation (n = 272) groups in a 7:3

ratio (18). The training set developed the model, while the validation
FIGURE 1

Flowchart of the study participants.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1642083
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hua et al. 10.3389/fendo.2025.1642083
set was used for internal validation. Initially, variables demonstrating

statistical significance (P < 0.05) in univariate comparisons between

normolipidemic and dyslipidemic subgroups were subjected to

feature selection (nonzero coefficients) via least absolute shrinkage

and selection operator (LASSO) regression. The l.1se value was

selected as the optimal threshold, emphasizing model simplicity

while maintaining predictive stability (19, 20). Subsequently,

variables retained by LASSO screening underwent multivariate

logistic regression analysis. Finally, nomograms were plotted based

on statistically significant risk factors from the multivariate logistic

regression analysis. The final model was checked for multicollinearity

by calculating the variance inflation factor (VIF). A sensitivity

analysis was performed by means of the multiple imputation

technique in order to determine whether the outcomes were

influenced by missing data. Receiver operating characteristic (ROC)

curves and the area under the curve (AUC) were employed to

evaluate the predictive validity of the model. Calibration curves

were utilized to determine the model’s accuracy, and the Hosmer-

Lemeshow test was conducted to further assess goodness-of-fit.

Additionally, decision curve analysis (DCA) and clinical impact

curve (CIC) were applied to evaluate the model’s clinical utility.

Standardized net benefit was calculated as the net benefit divided by

the prevalence of dyslipidemia in the cohort, representing the

proportion of additional true positives per 100 patients relative to

the ‘treat-none’ strategy. P < 0.05 indicated a statistically significant

difference. All statistical analyses were performed using R software

(version 4.4.2).
3 Results

3.1 Clinical characteristics of the
participants

This study included 913 participants in the analysis, of whom 580

(63.53%) were male and 333 (36.47%) were female. Themedian age was

12.26 years (IQR: 9.66–16.29 years). A total of 623 (68.24%) patients

with dyslipidemia were classified according to their lipid profile as

follows: 69 (11.08%) patients exhibited hypercholesterolemia, 200

(32.10%) had hypertriglyceridemia, 147 (23.60%) had mixed

hyperlipidemia, 150 (24.08%) had low high-density lipoprotein

hyperlipidemia, and 57 (9.15%) had hyper lipoprotein(a)emia.

Elevated low-density lipoprotein cholesterol was observed in 107

patients out of a total of 913, including 81 patients with mixed

hyperlipidemia and 26 patients with hypercholesterolemia.

Baseline characteristics stratified by dyslipidemic status are

presented in Table 1. Age group (< 10 vs. ≥ 10 years), TC,

triglyceride, HDL-C, LDL-C, ApoA-I, ApoB, the ApoA-I/ApoB ratio,

lipoprotein(a), ALT, AST, GGT, Hcy, SOD, PLT, fibrinogen, UA and

serum ceruloplasmin differed significantly between dyslipidemic and

normolipidemic WD children (all P < 0.05). Using stratified random

sampling, participants were allocated to training (n = 641) and

validation (n = 272) sets at a 7:3 ratio. For the clinical characteristics,

there were no significant differences between the training and

validation sets (all P > 0.05; Supplementary Table S2).
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3.2 Prediction of risk factors for
dyslipidemia in children with WD

Excluding the lipid metabolism indices, the 10 previously

identified variables were further analyzed by LASSO regression.

Within the training dataset, six variables with nonzero coefficients

were identified through tenfold cross-validation, employing the one

standard error criterion of lambda (l) at a value of 0.029

(Figures 2A, B). These variables were age group (< 10 vs. ≥ 10

years), ALT, GGT, Hcy, SOD, and PLT.

Multivariate logistic regression models were subsequently

constructed using six potential risk factors. In the training set, as

shown in Table 2, ≥ 10 years old (OR = 3.065, 95% CI: 1.982–4.745),

ALT (OR = 1.020, 95% CI: 1.014–1.027), GGT (OR = 1.010, 95% CI:

1.001–1.018), Hcy (OR = 1.094, 95% CI: 1.060–1.130), SOD (OR =

1.009, 95% CI: 1.005–1.013), and PLT (OR = 1.005, 95% CI: 1.002–

1.007) were positively associated with dyslipidemic risk in children

with WD. No significant collinearity was observed among variables

(VIF range: 1.161–1.545).

The sensitivity analysis revealed a strong concordance between

the complete-case and multiple imputation methodologies. Critical

predictors, such as age group (< 10 vs. ≥ 10 years), ALT, GGT, Hcy,

SOD, and PLT, exhibited nearly identical effect sizes and levels of

statistical significance. These findings affirm the stability of the

nomogram in the presence of missing data (Supplementary

Table S3).
3.3 Nomogram for dyslipidemia risk
prediction in children with WD

As illustrated in Figure 3, the final nomogram was constructed

utilizing six variables: age group (< 10 vs. ≥ 10 years), ALT, GGT,

Hcy, SOD, and PLT. Figure 3 serves as a predictive tool for assessing

the likelihood of dyslipidemia in children diagnosed with WD. Each

predictor is associated with a specific score. By locating its position

on the scale and drawing a straight line to the scale above, the

cumulative sum of each “point” yields the “total score,” which is

subsequently converted into the probability of a child with WD

developing dyslipidemia. For example, a 14-year-old participant

with WD, presenting with an ALT level of 100 U/L, GGT level of

100 U/L, Hcy concentration of 15 mmol/L, SOD activity of 120 U/L,

and PLT of 300 × 109/L, exhibited a substantial likelihood of

dyslipidemia, estimated at approximately 94.43% (95% CI:

88.80–97.32%).
3.4 Analysis of the discriminatory efficacy
of the dyslipidemic model in children
with WD

After constructing the model using the training dataset (n = 641),

its predictive performance was evaluated on the validation dataset

(n = 272). The model achieved an AUC of 0.810 (95% CI: 0.775–
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0.846) in the training set and 0.831 (95% CI: 0.779–0.884) in the

validation set, indicating strong discriminatory power (Figures 4A,

B). At the optimal cutoff value (training: 0.593; validation: 0.631),

sensitivity and specificity were 0.801 and 0.696 in the training set, and

0.747 and 0.814 in the validation set, respectively. These results

demonstrate high predictive accuracy of the nomogram.
Frontiers in Endocrinology 05
3.5 Evaluation of the calibration
performance of the dyslipidemic model in
children with WD

Bootstrap-corrected calibration analysis demonstrated excellent

agreement between the predicted and observed outcomes for
TABLE 1 Clinical characteristics of the normolipidemic group and dyslipidemic group at the time of first hospital admission.

Characteristics Overall (n = 913) Normolipidemia group (n = 290) Dyslipidemic group (n = 623) P value

Sex 0.914

Male, n (%) 580 (63.53) 183 (63.10) 397 (63.72)

Female, n (%) 333 (36.47) 107 (36.90) 226 (36.28)

Age group 0.042

< 10 years old, n (%) 236 (25.85) 88 (30.34) 148 (23.76)

≥ 10 years old, n (%) 677 (74.15) 202 (69.66) 475 (76.24)

BMI (kg/m2) 19.42 (18.23, 20.72) 19.38 (18.12, 20.88) 19.46 (18.28, 20.67) 0.988

TC (mmol/L) 4.21 (3.42, 5.15) 3.80 (3.30, 4.42) 4.55 (3.52, 4.48) < 0.001*

Triglyceride (mmol/L) 1.10 (0.73, 1.67) 0.80 (0.63, 1.03) 1.47 (0.87, 1.98) < 0.001*

HDL-C (mmol/L) 1.25 (1.04, 1.49) 1.37 (1.17, 1.53) 1.17 (0.97, 1.46) < 0.001*

LDL-C (mmol/L) 2.31 (1.77, 2.91) 1.97 (1.60, 2.46) 2.54 (1.89, 3.15) < 0.001*

ApoA-I (g/L) 1.30 (1.14, 1.49) 1.36 (1.21, 1.50) 1.27 (1.14, 1.49) < 0.001*

ApoB (g/L) 0.71 (0.54, 0.86) 0.61 (0.46, 0.71) 0.79 (0.61, 0.92) < 0.001*

ApoA-I/ApoB ratio 1.92 (1.52, 2.45) 2.38 (1.90, 3.02) 1.76 (1.40, 2.20) < 0.001*

Lipoprotein(a) (mg/L) 69.10 (29.00, 173.20) 51.40 (27.10, 93.60) 82.30 (30.65, 313.85) < 0.001*

ALT (U/L) 44.00 (29.00, 82.00) 25.75 (16.00, 41.00) 55.00 (37.00, 107.55) < 0.001*

AST (U/L) 37.00 (25.00, 55.00) 29.00 (21.00, 39.00) 42.00 (28.00, 66.25) < 0.001*

GGT (U/L) 34.00 (21.00, 56.50) 26.00 (18.00, 40.00) 40.00 (23.00, 70.00) < 0.001*

Albumin (g/L) 40.20 (37.70, 42.60) 40.10 (38.00, 42.00) 40.30 (37.60, 42.70) 0.549

TBIL (µmol/L) 10.41 (7.13, 15.95) 10.68 (7.59, 15.40) 10.30 (7.00, 16.15) 0.536

TBA (µmol/L) 5.20 (3.11, 9.80) 5.10 (3.30, 9.40) 5.20 (3.00, 9.87) 0.995

Hcy (mmol/L) 9.60 (7.15, 13.75) 8.85 (6.70, 12.70) 10.20 (7.40, 14.75) < 0.001*

SOD (U/L) 196.00 (163.00, 214.00) 184.50 (148.00, 204.00) 200.00 (173.00, 223.00) < 0.001*

PLT (× 109/L) 224.00 (130.50, 286.50) 171.00 (116.00, 255.00) 242.00 (150.00, 297.00) < 0.001*

Fibrinogen (g/L) 2.32 (2.10, 2.69) 2.25 (1.98, 2.61) 2.34 (2.13, 2.71) < 0.001*

UA (µmol/L) 251.00 (185.50, 311.00) 231.50 (169.00, 290.00) 259.00 (194.50, 319.00) < 0.001*

serum creatinine (µmol/L) 43.50 (33.85, 57.85) 43.70 (34.70, 58.60) 43.40 (33.55, 57.60) 0.517

BUN (mmol/L) 4.33 (3.61, 5.16) 4.40 (3.71, 5.24) 4.31 (3.58, 5.12) 0.242

serum ceruloplasmin (g/L) 0.06 (0.03, 0.10) 0.04 (0.02, 0.10) 0.06 (0.03, 0.10) 0.013

24-h urine copper (µg/
24 h)

561.28 (324.93, 906.56) 540.83 (305.50, 919.61) 561.28 (343.31, 890.95) 0.590

serum copper (µmol/L) 3.42 (2.08, 5.37) 3.12 (1.98, 5.37) 3.42 (2.15, 5.37) 0.232
*P < 0.05, dyslipidemic group compared with the normolipidemic group. BMI, body mass index; TC, total cholesterol; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density
lipoprotein cholesterol; ApoA-I, apolipoprotein A-I; ApoB, apolipoprotein B; ALT, alanine aminotransferase; AST, aspartate transaminase; GGT, gamma-glutamyl transpeptidase; TBIL, total
bilirubin; TBA, total bile acid; Hcy, homocysteine; SOD, superoxide dismutase; PLT, platelet count; UA, uric acid; BUN, blood urea nitrogen. All continuous variables are presented as median
(interquartile range, IQR).
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dyslipidemia risks in pediatric WD, with mean absolute errors of

0.023 (training, Figure 5A) and 0.012 (validation, Figure 5B). The

Hosmer-Lemeshow test yielded nonsignificant deviations (training:

P = 0.474; validation: P = 0.280), indicating nonsignificant

deviations. These results demonstrate the nomogram’s robustness

in both the development and the internal validation cohorts.
3.6 Validation of the clinical utility of the
dyslipidemic model in children with WD

Figure 6 validates the predictive model for dyslipidemia in

children with WD through DCA and CIC. Figure 6A (training

set) and Figure 6B (validation set) illustrate the decision curves,

where the x-axis represents threshold probabilities (i.e., the minimal

risk probability justifying clinical intervention) and the y-axis

quantifies the net clinical benefit of model-guided decision-

making. The model (red curves) demonstrated statistically

superior net clinical benefits compared to the “treat-all” (gray

dashed line) and “treat-none” (black dashed line) strategies across

threshold ranges of 20–95% (training) and 25–95% (validation),

underscoring its clinical utility for risk-stratified interventions. For

instance, at a 50% threshold, the model achieved a net benefit of

48.5% (95% CI: 39.7–57.4%), sensitivity of 88.2% (95% CI: 83.1–

92.8%), specificity of 62.8% (95% CI: 51.8–73.1%), and prevented 71

unnecessary interventions per 100 patients (standardized net

benefit = 0.710) (Supplementary Table S4).

Figures 6C, D present the CICs. The x-axis integrates risk

thresholds with cost–benefit ratios, whereas the y-axis quantifies

high-risk cases per 1,000 individuals. A monotonic decline in both

the predicted high-risk cases (red curve) and true event incidence

(blue curve) was observed with increasing thresholds. These curves

provide clinicians with a quantitative framework to optimize

intervention thresholds by balancing early dyslipidemia

prevention against overtreatment risks. Together, DCA and CIC
Frontiers in Endocrinology 06
confirm the model’s discriminative power and clinical applicability,

establishing an evidence-based tool for personalized dyslipidemia

management in pediatric WD.
4 Discussion

In this study, the prevalence of dyslipidemia among children

with WD was determined to be 68.24%, indicating a relatively high

occurrence. The incorporation of individuals aged 10 years and

older, considered a high-risk group, alongside biomarkers including

ALT, GGT, Hcy, SOD, and PLT—associated with hepatic injury,

oxidative stress, and renal/metabolic dysfunction—establishes a

multifaceted framework for dyslipidemia risk stratification in WD.

The nomogram model constructed in this study exhibited good

discriminative power (AUC: 0.810 in the training set, 0.831 in the

validation set) and calibration performance, indicating its accuracy.

DCA and CIC further confirmed their clinical utility, offering a
FIGURE 2

LASSO regression to select the risk factors for dyslipidemia in children with WD. (A) The coefficients of the LASSO regression model are presented
across various logarithmic transformations of the lambda (l) values. (B) The partial likelihood deviance is depicted for different log l values within the
LASSO framework. The left dashed line indicates the minimum l, whereas the right dashed line represents the l value at one standard error. The
selection of the parameter lambda (l) for the LASSO model was conducted using the one standard error criterion derived from a 10-fold cross-
validation procedure. This process identified an optimal lambda value of 0.029. Consequently, six optimal features were ultimately selected on the
basis of the LASSO coefficients.
TABLE 2 Multivariate logistic regression analysis in children with WD.

Variables Odds ratio (95% CI) P value

Age group

< 10 years old Ref

≥ 10 years old 3.065 (1.982, 4.745) < 0.001

ALT 1.020 (1.014, 1.027) < 0.001

GGT 1.010 (1.001, 1.018) 0.026

Hcy 1.094 (1.060, 1.130) < 0.001

SOD 1.009 (1.005, 1.013) < 0.001

PLT 1.005 (1.002, 1.007) < 0.001
ALT, alanine aminotransferase; GGT, gamma-glutamyl transpeptidase; Hcy, homocysteine;
SOD, superoxide dismutase; PLT, platelet count.
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valuable tool for clinicians to make personalized decisions. The wide

applicability of the model is evidenced by its clinical utility across

threshold probabilities of 20%–95% (training) and 25%–95%

(validation) in DCA. This broad effective range enhances its

adaptability to diverse clinical scenarios, allowing clinicians to

balance intervention intensity with individualized risk profiles.

Thresholds < 20% may lead to overtreatment (specificity < 10%),

while thresholds > 70% (e.g., 80%) result in missed high-risk cases
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(sensitivity drops to 48.4%) with diminishing net benefit

(Supplementary Table S4). The threshold-dependent utility of the

nomogram facilitates the development of tailored management

strategies based on the clinical context. In high-resource settings,

such as tertiary hospitals, lower thresholds (25–50%) are employed to

prioritize sensitivity (88–98%), thereby enabling the early detection of

dyslipidemia in children with concurrent risk factors. For instance, at a

25% threshold, clinicians might initiate follow-up appointments every
FIGURE 3

Nomogram for dyslipidemic risk prediction in children with WD. ALT, alanine aminotransferase; GGT, gamma-glutamyl transpeptidase; Hcy,
homocysteine; SOD, superoxide dismutase; PLT, platelet count. Instructions for Utilizing the Nomogram: Each predictor is assigned a distinct score.
To determine this score, the predictor’s position on the scale is identified, and a straight line is drawn to the corresponding scale above. The
aggregate of these individual “points” constitutes the “total score,” which is then translated into the probability of a child with WD developing
dyslipidemia.
RE 4FIGU

ROC curves for predicting dyslipidemia in children with WD: training set (A) and validation set (B).
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FIGURE 5

Calibration curves for predicting dyslipidemia in children with WD: training set (A) and validation set (B).
FIGURE 6

Decision curves and clinical impact curves for predicting dyslipidemia in children with WD. (A) Decision curves in the training set. (B) Decision curves
in the validation set. (C) Clinical impact curves in the training set. (D) Clinical impact curves in the validation set. The x-axis represents threshold
probabilities (i.e., the minimal risk probability justifying clinical intervention) and the y-axis quantifies the net clinical benefit of model-guided
decision-making. The farther the decision curve is from the extreme curve, the greater the range of net benefit and the better the clinical utility. The
x-axis integrates risk thresholds with cost–benefit ratios, whereas the y-axis enumerates high-risk cases per 1,000 individuals.
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three months, including lipid panels and liver function tests, for

children who exceed this cutoff. Conversely, in resource-limited

settings, such as primary care, higher thresholds (50–70%) are used

to maximize specificity (63–84%), thereby reducing unnecessary

referrals and concentrating on high-risk cases. For example, at a

50% threshold, children surpassing this probability are prioritized for

specialist referral and pharmacotherapy if lifestyle modifications prove

ineffective. Consequently, the constructed nomogram is promising as

an effective noninvasive screening instrument for the early

identification of dyslipidemia in pediatric WD patients.

The investigation of dyslipidemia in pediatric WD holds critical

clinical significance. Dysregulation of hepatic lipid metabolism is an

early feature of copper accumulation in WD (4, 21). This metabolic

derange establishes a vicious cycle: copper-induced oxidative stress

exacerbates hepatic steatosis and dyslipidemia, whereas lipid

peroxidation products further amplify hepatocyte injury and

fibrogenesis (5, 6). This pathophysiological interplay underscores

the imperative for early detection, as delayed intervention permits

progression to irreversible hepatic sequelae. Metabolic dysfunction-

associated steatohepatopathy (MASLD) represents the most

prevalent form of pediatric liver disease, impacting approximately

10% of the pediatric population (22, 23). The findings of the current

study indicate that the incidence of dyslipidemia in pediatric

patients with WD significantly exceeds that observed in cases of

MASLD. A meta-analysis investigating the prevalence of

dyslipidemia among Chinese individuals aged 2–18 years from

2015–2023 revealed an overall dyslipidemia prevalence of 19% in

this population (24). Moreover, the United States Preventive

Services Task Force reported that the prevalence of dyslipidemia

among Americans aged 6–19 years was 19.2% from 2013–2016 (25).

Notably, our findings revealed a 68.24% prevalence of dyslipidemia

among children aged 3–18 years in this cohort, which was

significantly higher than that reported in non-WD pediatric

populations (24, 25). Furthermore, this study specifically

identified hypertriglyceridemia and low high-density lipoprotein

hyperlipidemia as the predominant dyslipidemic subtypes in

pediatric WD patients, collectively constituting approximately

60% of the observed lipid abnormalities.

Current clinical guidelines lack WD-specific lipid management

guidelines, particularly for pediatric populations. In this study, age

was categorized based on diagnostic criteria, and a multifactorial

analysis identified age ≥ 10 years as an independent risk factor for

the development of dyslipidemia in pediatric patients withWD (OR

= 3.065, 95% CI: 1.982–4.745). This finding may be indicative of the

combined effects of physiological and metabolic changes occurring

during adolescence. As a chronic condition characterized by copper

accumulation, WD results in children aged ≥ 10 years experiencing

a higher hepatic copper burden due to the prolonged duration of the

disease, thereby contributing to more pronounced mitochondrial

dysfunction and redox imbalance. Among the identified risk factors,

ALT is a key indicator of liver damage and can disrupt lipid

metabolism, leading to dyslipidemia. Despite new methods for

liver assessment, ALT remains the primary global biomarker for

liver injury (26). In pediatric WD patients, ALT levels are

significantly elevated, with a median value of 44.00 U/L (IQR:
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29.00–82.00), surpassing the normal range for their age (27–29).

Our analysis revealed that ALT was an independent predictor of

dyslipidemia, with each 10 U/L increase in risk by 20% (OR = 1.020,

95% CI: 1.014–1.027). This dose–dependent relationship aligns with

previous studies demonstrating that every 10 U/L increase in ALT

corresponds to an 11% increase in fatty liver risk among WD

children (30). Elevated GGT, a marker of liver injury, is significantly

linked to dyslipidemia in pediatric WD patients (median: 62 U/L vs.

38 U/L, P < 0.001). This elevation indicates potential cholangiocyte

damage or cholestasis, affecting lipid absorption and increasing

serum triglyceride and LDL levels (31).

GGT not only signals liver damage but also breaks down

glutathione, producing pro-oxidants like cysteine-glycine, which

enhance copper-induced lipid peroxidation (32). Research

indicated that GGT levels are markedly increased in patients with

WD who exhibit hepatic impairment (33). This oxidative stress,

combined with copper overload, perpetuates dyslipidemia in WD.

Hcy is a metabolic intermediate product derived from

methionine (34) that disrupts lipid homeostasis through pathways

such as methionine metabolism issues (35), endoplasmic reticulum

stress (36), and endothelial dysfunction (37). Mazi et al. reported

that methionine metabolism was dysregulated in patients

with WD (38). Clinical studies have demonstrated a positive

correlation between elevated Hcy levels and hyperlipidemia (39).

Additionally, Hcy modulates the metabolism of HDL-C and

triglyceride (40) and is closely linked to dyslipidemia-associated

comorbidities (41, 42). In this cohort study of 913 pediatric WD

patients, the median Hcy level was 9.60 mmol/L (IQR: 7.15–13.75).

Multivariate analysis revealed that Hcy was an independent risk

factor for dyslipidemia, with an OR of 1.094 (95% CI: 1.060–1.130)

per 1 mmol/L increase.

SOD, a key antioxidant enzyme, modulates oxidative stress and

lipid metabolism (43). In WD, pathological copper accumulation

directly induces mitochondrial ROS overproduction (44), which

may trigger adaptive increases in SOD activity to counteract

oxidative damage, particularly in early/asymptomatic stages as

demonstrated by elevated SOD in presymptomatic pediatric WD

carriers (Nagasaka et al.) (45). However, sustained oxidative stress

could overwhelm this defense, leading to lipid peroxidation and

dyslipidemia despite elevated SOD. This aligns with studies linking

elevated SOD to atherogenic profiles (Canbay et al.) (46), suggesting

its paradoxical role as both a compensatory responder and a marker

of redox imbalance severity. Our study further demonstrated

significantly higher SOD levels in dyslipidemic WD children than

in normolipidemic WD children (median: 200.00 vs 184.50 U/L; P <

0.001), suggesting a compensatory antioxidant response to copper-

induced redox imbalance. The combined inclusion of GGT, Hcy

and SOD highlights oxidative stress as a pivotal mechanism in WD-

associated dyslipidemia, which is consistent with established

pathways of copper-mediated lipid peroxidation.

Platelet function and lipid metabolism are bidirectionally

linked: their thrombotic-hemostatic activity depends on intrinsic

lipid composition, whereas paracrine lipid release modulates

inflammatory cell interactions (47, 48). Thrombocytopenia in

WD patients primarily results from hypersplenism secondary to
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cirrhotic portal hypertension and diminished thrombopoietin

production due to hepatic synthetic dysfunction. Interestingly,

our study revealed elevated PLTs in pediatric WD patients with

dyslipidemia, a paradoxical finding likely attributable to the

exclusion of children with cirrhosis or hepatic failure in this

cohort, thereby mitigating hypersplenism-related platelet

consumption and preserving the PLT. However, alternative

mechanisms such as subclinical inflammation (e.g., elevated CRP)

or iron deficiency (e.g., reduced ferritin) could theoretically

contribute to thrombocytosis. While these factors were not

systematically assessed in our cohort, the mild ALT/AST

elevations align more closely with copper-induced mitochondrial

injury than overt inflammatory hepatitis. These findings underscore

the complexity of platelet dynamics in WD. Future studies

integrating inflammatory biomarkers, iron status, and platelet

activation markers are warranted to delineate these multifactorial

interactions. ALT, GGT, and PLT are integral components of

routine biochemical and hematological panels in the majority of

hospitals, characterized by low testing costs and swift turnaround

times. At our institution, these biomarkers have been incorporated

into comprehensive baseline metabolic panels owing to their

significant clinical utility. While SOD and Hcy have not yet been

integrated into WD-specific guidelines, it is anticipated that future

prospective studies will provide evidence to support their routine

application in clinical practice for patients with WD.

Although serum and urinary copper levels did not exhibit a

correlation with lipid profiles, this paradox may be attributed to the

discrepancy between systemic copper measurements and tissue-

level copper toxicity. Notably, serum ceruloplasmin despite being

elevated in dyslipidemic WD, was excluded by LASSO regression

analysis. This exclusion could be due to serum ceruloplasmin’s

context-dependent roles: it serves not only as a copper transporter

but also as an acute-phase reactant that scavenges ROS. Its elevation

might indicate a compensatory antioxidant response to chronic

oxidative stress rather than a direct involvement in lipid

metabolism. In our study, the selection of predictors was

conducted with a critical approach, incorporating established

non-invasive biomarkers for hepatic steatosis and fibrosis. This

included key components from validated models: AST and PLT

from the APRI; AST, ALT, and PLT from the FIB-4; and GGT, PLT,

and albumin from the S-index. Additionally, BMI was included as a

metabolic indicator. Furthermore, we integrated steatosis-specific

indices, such as BMI, triglyceride, and GGT from the Fatty Liver

Index (FLI), and ALT and AST from the Hepatic Steatosis

Index (HSI).
4.1 Study strengths and limitations

This study represents one of the largest pediatric WD cohorts (n

= 913) to date, a notable achievement given the rarity of WD and

the challenges of recruiting pediatric populations for metabolic

studies. Individuals aged ≥ 10 years (high-risk group), combined

with biomarkers such as ALT, GGT, Hcy, SOD, and PLT—which

are linked to hepatic injury, oxidative stress, and renal/metabolic
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dysfunction—provide a novel multifactorial framework for

dyslipidemia risk stratification in WD.

However, several limitations warrant consideration. First, the

retrospective design may introduce selection bias, despite rigorous

statistical adjustments. Second, the single-center cohort limits

generalizability, necessitating external validation in multiethnic

populations. Third, dynamic changes in biomarkers during

disease progression were not captured, which may affect

longitudinal risk prediction. Fourth, while age ≥ 10 years emerged

as a key non-biomarker risk factor, its dichotomization (< 10 vs. ≥

10 years) was statistically derived rather than biologically validated,

potentially oversimplifying puberty-associated metabolic

transitions. Fifth, in order to preserve model simplicity and

enhance clinical applicability, elastography parameters were

excluded due to their limited availability in retrospective settings

(less than 80% cohort coverage). Future prospective validations

should incorporate these techniques. Finally, the clinical utility of

the nomogram remains theoretical; prospective validation of risk-

stratified interventions (e.g., antioxidant regimens for high-risk

subgroups) is needed to confirm its impact on patient outcomes.
5 Conclusion

This study revealed that pediatric WD patients face a

substantially elevated risk of dyslipidemia, with a prevalence of

68.24%, which is substantially greater than that of the general

pediatric population. Focusing on the lack of WD-specific lipid

management strategies, we developed and validated a novel

nomogram integrating six clinically accessible predictors: age ≥ 10

years (high-risk group), ALT, GGT, Hcy, SOD, and PLT. The model

demonstrated robust predictive accuracy (AUC: 0.810 in training,

0.831 in validation) and significant clinical utility across threshold

probabilities (25–95%). Further validation in prospective cohorts

and integration with dynamic biomarker monitoring are

recommended to refine the clinical applicability of these findings.
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32. Brault C, Lévy P, Duponchel S, Michelet M, Sallé A, Pécheur EI, et al.
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