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Protein palmitoylation represents a prevalent form post-translational lipid

modification across various organisms. This reversible and dynamic cellular

process is significant in regulating the transcription and expression of

downstream target genes, as well as in facilitating signal transduction.

Consequently, it affects various cellular activities, including innate immunity,

inflammation, glucose metabolism, lipid metabolism, and functions of the brain

and heart. Vascular injury emerges as a critical target organ affected by

complications associated with metabolic diseases, and the palmitoylation

modifications are implicated in numerous pathological processes. This review

offers an overview of current understanding on protein palmitoylation and

palmitic acid, emphasizing the influence of the palmitoylation modification on

cellular signal transduction in metabolic diseases and exploring its connection

with metabolism-related conditions such as diabetic cardiopathy, diabetic

nephropathy, and fatty liver diseases. Palmitoleic acid modification holds great

promise for tackling challenges related to drug specificity, off-target effects, and

delivery mechanisms in the exploration of targeted palmitoleic acid modification

therapy in vivo. Moreover, methodological challenges in the joint analysis and

mining of large databases, including gene databases, as well as the objective

evaluation of studies on the bidirectional regulation of diseases, necessitate

further investigation. These insights may provide novel insights for the

development of clinical therapeutic strategies.
KEYWORDS
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1 Introduction

The protein palmitoylation is a highly conserved post-

translational modification and represents a prevalent lipid

modification of proteins in vivo (1–3). According to the linkage

mode, protein palmitoylation can be categorized into three distinct

types, including the S-palmitoylation, N-palmitoylation, and O-

palmitoylation (4, 5). S-palmitoylation involves the attachment of

medium-chain or long-chain fatty acids to specific cytosolic

cysteine residues within proteins. This modification is mediated

by a family of S-acyltransferases that contain a conserved aspartate-

histidine-histidine-cysteine motif (6–8).

Proteins palmitoylation and depalmitoylation can be rapidly cycled

in an instantaneous manner, thus allowing rapid shuttling of proteins

between specific organelles. Palmitoylationmodifications are crucial for

regulating various cellular processes, including protein stability,

subcellular localization, membrane trafficking, interactions with

effector proteins, and enzyme activity (9). Palmitoyl acyltransferases

(PATs) are responsible for attaching palmitic acid to target proteins,

and their catalytic reactions require palmitoyl-CoA as a substrate. Most

PATs possess a cysteine-rich domain (CRD) consisting of 51 amino

acids, which includes a highly conserved aspartate-histidine-histidine-

cysteine (DHHC) catalytic structure (6). In mammals, the ZDHHC

family consists of 23 proteins, named ZDHHC1-24 (excluding

ZDHHC10). The ZDHHC proteins are mainly localized in

membrane regions within the cell, such as the endoplasmic

reticulum, Golgi apparatus, and endosomes, but a minority are also

present in the plasma membrane. In addition, the process of the

ZDHHC protein-mediated protein palmitoylation involves two critical

steps. Initially, the ZDHHC undergoes autoacylation, wherein the

cysteine residue in the DHHC-CRD domain covalently binds to

palmitoyl coenzyme A, forming a palmitoyl enzyme intermediate.

Although this palmitoylate intermediate can be hydrolyzed to release

palmitic acid, the subsequent step of palmitoyl transfer is the more

important. Specifically, the ZDHHC protein facilitates an enzymatic

reaction, transferring its own bound palmitoyl group to the cysteine

sulfhydryl group of the protein substrate. Concurrently, the ZDHHC

protein reverts to its original state and the protein substrate forms an

unstable thioester bond, resulting in the palmitoylation of the protein

substrate (Figure 1) (4, 10).

On the other hand, the protein depalmitoylation refers to the

enzymatic removal of palmitate thioester linkages from the cysteine

residues of palmitoylated proteins. Depalmitoylating enzymes include

acyl protein thioesterases (APTs), palmitoyl protein thioesterases

(PPTs), and alpha/beta hydrolase structural domain 17 (ABHD17),

which regulate the subcellular localization of proteins for plasma

membrane or organelle transport and function (11, 12). Notably,

APT1 and APT2 are two enzymes prominently associated with

protein depalmitoylation. APT1 (LYPLA1) is a member of the highly

conserved family of a/b hydrolytic enzyme family, and it is

predominantly localized in mitochondria and exhibits significant

depalmitoylation activity (13). APT1 is the earliest depalmitoylating

enzyme found in Acyl Protein Thioesterases and widely expressed

across many cell types. It regulates the depalmitoylation of G proteina-
subunits, Ras-related proteins, and synaptic proteins, facilitating the
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hydrolysis of palmitoylthioester bonds from proteins to remove

palmitic acid and making the palmitoylated modifications reversible.

The modification process is reversible and maintains the dynamic

balance of protein modifications, and the deficiency in this process can

result in abnormal lipid metabolism, autophagy disorders, and

neurodegenerative diseases (14). APT1 and APT2 not only catalyze

the depalmitoylation of a large number of palmitoylation-modified

proteins, but also regulate the dynamic balance between palmitoylation

and depalmitoylation modifications by modifying cysteines to ensure

their correct membrane localization and function, and participate in

the transport process of peripheral membrane proteins. In addition,

they utilize their hydrophobic pockets they contain to bind to proteins

modified by palmitoylation and pinpoint the cysteines of these proteins

in the vicinity of the serine-histidine-aspartate catalytic triad structure,

thus facilitating depalmitoylation modification of palmitoylation-

modified protein substrates and palmitate release (15).

Palmitic acid (PA), the most common saturated fatty acid in

living organisms, is the energy source or component of some

biochemicals and cellular structures (16).It is the first fatty acid

produced during fatty acid synthesis and is a precursor to longer fat

acids, which can also be converted to palmitic acid by excess

carbohydrates in the body (17). Palmitoylation is the post-

translational modification mode in which palmitic acid (C16:0) is

covalently attached to cysteine residues of proteins via thioester

bonds. Palmitate metabolism and protein palmitoylation are closely

related biological processes, with the former providing a key acyl

donor (palmitoyl-CoA) for the latter, which is involved in cell

signaling, metabolic regulation, and other important physiological

activities by modifying protein function. When palmitic acid

synthesis is active, more palmitoyl-CoA may be generated,

promoting protein palmitoylation; conversely, when catabolism is

high, palmitoyl-CoA may be reduced, affecting the modification

process (18).

Common metabolic diseases include type 2 Diabetes Mellitus

(T2DM), obesity, non-alcoholic fatty liver disease (NAFLD),

hyperlipidemia, as well as complications such as diabetic

nephropathy, diabetic cardiomyopathy, their causes are related to

many factors such as genetics, diet, exercise, aging and environment.

Diabetic nephropathy and diabetic cardiomyopathy, whose etiology is

related to many factors such as genetics, diet, exercise, aging, and the

environment, and which can be slow-onset and have a long duration of

treatment, have become the major chronic diseases around the world,

causing an increasing number of public health problems. Epidemiology

has found that more than 90% of diabetic patients have type 2 diabetes

(19), in which vascular lesions are classified into macrovascular and

microvascular lesions (20). Diabetic macrovascular lesions are

common in coronary heart disease, stroke, and peripheral arterial

disease due to atherosclerosis (21); microvascular lesions are common

in diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy

(Figure 2) (22). The vasculature is the main damaged target organ in

the pathological damage of many metabolic diseases. Due to the

differences in hemodynamics, vascular structure, and diseased target

organs, the pathological manifestations of the lesions show different

degrees of vascular endothelial damage, vascular basement membrane

thickening, microthrombosis, platelet and erythrocyte adhesion
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aggregation, and microcirculation disorders. In addition, differences in

the energy metabolic state of different target organs, as well as

differences in organ-specific growth factors or cytokines, are also

important factors contributing to damage in these organs. Patients

with metabolic diseases are chronically hyperglycaemic with insulin

resistance, glucolipid metabolism disorders, inflammatory responses,

and oxidative stress, which together lead to damage to the vascular

endothelium and ultimately to vascular endothelial dysfunction (23).

These factors disrupt the function and structure of the vasculature of

the specific process is more complex, and the modification of proteins

related to glycolipid metabolism, inflammation, and oxidative stress, of

which palmitoylated due to the energy metabolism of the main

involved in the adjustment of the part with a variety of biological

regulatory properties can be a variety of forms of participation in the

regulation of different pathologies.

Considering that S-acylation impacts the ability of proteins to

interact at membrane interfaces, it is unsurprising that this post-

translational modification affects numerous cellular processes, such as

the functions of endothelial and cardiac cells, as well as cellular
Frontiers in Endocrinology 03
adhesion, growth, and division. The activity of adhesion molecules

(24, 25), claudins, and desmosomal proteins 75 is contingent upon S-

acylation. Palmitoylation regulates the cytoskeleton, cell proliferation

and migration within smooth muscle cells. Palmitic acid may promote

the proliferation of vascular smooth muscle cells and thus trigger

atherosclerosis by altering palmitoylation modifications of relevant

signaling molecules. Specifically, palmitic acid increases the

expression of adhesion molecules such as VCAM-1 and ICAM-1

and inhibits endothelial-type nitric oxide synthase (eNOS) (26)

activity through signaling pathways like TLR4/NF-kB, leading to

reduced eNOS phosphorylation and NO bioavailability, thereby

affecting vascular function. In addition, palmitic acid promotes

platelet activation, increases thromboxane A2 (TXA2) synthesis (27),

and decreases prostaglandin I2 (PGI2) levels, resulting in a

procoagulant state, which in turn affects vascular structure and

function. Junctional adhesion molecule C (JAM-C) is an

immunoglobulin superfamily protein expressed in epithelial cells,

endothelial cells, and leukocytes and is closely associated with

leukocyte transendothelial migration, angiogenesis, and cell adhesion.
FIGURE 1

The primary components and processes involve in palmitoylation. Palmitoylation: initially, the DHHC cysteine within the active site undergoes self-
palmitoylation by reacting with an acyl-coenzyme A donor to form an acyl-enzyme intermediate. Subsequently, acyl-coenzyme A is transferred to
cysteine residues of target proteins, the ZDHHC protein is restored to its initial state, and an unstable thioester bond is formed by the protein substrate,
thus achieve palmitoylation modification of the protein substrate. Depalmitoylation: APT1 contains a highly conserved serine-histidine-aspartate catalytic
triplex structure and a hydrophobic pocket. The hydrophobic pocket is able to bind to palmitoylated modified proteins and localize the cysteine of the
protein in the vicinity of the serine-histidine-aspartate catalytic triplex structure, thereby facilitating the depalmitoylation process and palmitate release
from palmitoyl modified protein substrates.
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Studies have shown that S-palmitoylation of JAM-Cmay be a potential

target for controlling cancer metastasis (28).

Considering the distinctive characteristics of protein

palmitoylation and its extensive biological functions, we primarily

targeted in this review on vascular injury within metabolism-related

diseases. We have thoroughly investigated the binding and

interaction mechanisms between pathological injuries, including

insulin resistance, oxidative stress, lipid metabolism abnormalities,

and inflammation and various modification sites. Furthermore, we

have referenced the characterization of various clinical drugs

pertinent to palmitoylation modification. We hope this review

would present a comprehensive overview of current research

progress, aiming to provide valuable references for subsequent

broader experimental investigation and clinical applications.
2 Palmitoylation modifies the type and
course of vascular injury

2.1 Insulin resistance

Abnormal insulin action is a key factor in common diseases such

as type 2 diabetes, obesity and insulin resistance (29). Palmitoylation

is associated with cytotoxicity, can be reversed by APT1, and is

associated with hypersecretion of insulin as well as beta-cell failure

(30). Its damage to the vasculature is mainly characterized by

glomerular basement membrane thickening and retinal capillary
Frontiers in Endocrinology 04
leakage in microvascular lesions, and atherosclerotic plaque

formation and vascular calcification in macrovascular lesions.

Abnormal levels of vasoactive substances such as ET-1 (31) due to

decreased nitric oxide (NO) bioavailability, which in turn induces

endoplasmic reticulum stress and mitochondrial dysfunction, leading

to apoptosis of endothelial cells and ultimately endothelial

dysfunction. In addition, the activation of oxidative stress leads to

an increase reactive oxygen species (ROS) production and a massive

depletion of antioxidant substances such as SOD (32), which puts the

organism in a chronic low-grade inflammatory state. This can

contribute to the release of excessive inflammatory factors, such as

from adipose tissue, or lead to immune cell infiltration. Abnormalities

in lipid metabolism are manifested by increased lipolysis and elevated

levels of free fatty acids. Altered hemodynamics impairs

endothelium-dependent vasodilatory function; microvascular

dysfunction affects tissue perfusion and oxygen supply. At the same

time, fibrinogen, coagulation factors and platelet activity are

increased (33), promoting thrombosis; tissue-type plasminogen

activator (tPA) activity is inhibited, and fibrinolytic function

is diminished.

In the diabetic state, excessive accumulation of palmitate

interferes with beta-cell function. The relationship between

palmitate and insulin secretion has been demonstrated in vivo

and in vitro, showing that insufficient insulin secretion leads to

abnormalities in the insulin signaling pathway (34, 35). Palmitic

acid induces pancreatic beta-cell dysfunction, which in turn triggers

insulin resistance and diabetes mellitus (36–38). Due to diminished
FIGURE 2

The whole vascular lesions of metabolic diseases involve the heart, brain, kidney, eye and peripheral system. There are different mechanisms in the
large and microvascular disease systems in different organs, which affect vascular function.
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insulin action, fatty acid oxidation processes may be inhibited,

leading to fatty acid accumulation and metabolic disorders. This

would further exacerbate insulin resistance or increase oxidative

stress and promote the development of metabolic diseases. In the

context of insulin resistance, lipolysis of adipose tissue is enhanced,

leading to elevated circulating levels of free fatty acids (FFA) (39).

The elevation of FFA in insulin resistance is due to combined

resistance to insulin-mediated inhibition of adipose tissue lipolysis

and decreased adipocyte capacity for fatty acid capture in insulin-

resistant states (40). Palmitoylation facilitates the translocation of

endothelial eNOS from the cytoplasm to the mitochondrial

membrane, This process enhances its activity and stabilizes its

structure, ultimately increasing the production of NO (41). The

regulation of protein palmitoylation by insulin affects endothelial

cell function, while chemical inhibition of palmitoylation impedes
Frontiers in Endocrinology 05
insulin-induced angiogenesis in vitro (42). The hyperglycaemia

induced by abnormal insulin function inhibits the activity of the

palmitoylating enzyme DHHC-7, that leading to a reduction in

palmitoylation, which in turn reduces NO secretion. This condition

triggers endothelial dysfunction and vasoconstriction.

Consequently, the palmitoylation of endothelial nitric oxide

synthase is essential for the stimulation of nitric oxide release (43,

44). Besides, the conjunction of APT1 deficiency with

hyperglycaemia lead to an increased palmitoylation. The APT1

activity is inhibited in the high-glucose environment, which

coincides with the phenomenon of fibronectin accumulation in

the vasculature. This situation impairs the process of deglutitional

acylation in endothelial cells, which in turn triggers the

phenomenon of vascular immaturity associated with defects in

the function of proteins such as R-Ras (45).
FIGURE 3

Role of palmitoylation in modifying vascular injury pathological phenotypes and processes. APTI deficiency results in peripalmitoylation, which in
turn leads to increased insulin secretion, b-cell failure, and insulin resistance.in turn triggers hyperglycemia, which inhibits APTI activity such as
hyperglycemia inhibits the activity of DHHC-7, resulting in reduced eNOS activity. (a) ZDHHC9 maintains the localization of GLUT1 at the plasma
membrane by mediating palmitoylation of GLUT1 at the Cys207 site, thereby enhancing the cellular uptake of glucose and the rate of glycolysis.
(b) High sugar inhibits the activity of the palmitoylating enzyme DHHC-7, leading to decreased levels of palmitoylation of endothelial-type eNOS,
which in turn reduces NO secretion. This process leads to an increase in endothelin-1 (ET-1) levels, triggering endoplasmic reticulum stress and
mitochondrial damage, which ultimately leads to a decrease in superoxide dismutase (SOD) activity and an increase in mitochondrial ROS levels.
(c) CD36 possesses four palmitoylation modification sites at Cys3, Cys7, Cys464, and Cys466. During its transport from the endoplasmic reticulum
to the Golgi, the newly synthesized CD36 is palmitoylated by the ZDHHC4 protein, which resides in the Golgi. Conversely, the ZDHHC5 protein on
the cytoplasmic membrane hinders the depalmitoylation of CD36. (d) S-acylation ensures that the transmembrane sensors of Toll-like receptors are
localized at the plasma membrane, and LPA activates the TLR4 receptor, which in turn activates NF-kB and promotes the expression of VCAM-1 and
ICAM-1, while inhibiting eNOS activity. Additionally, palmitoylation-modified NLRP3 promotes its oligomerization, which in turn activates caspase-1
and releases IL-1b, which is involved in the inflammatory response.
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2.2 Lipid metabolism abnormalities

A crucial pathway in energy metabolism is de novo

liposynthesis, the process of synthesizing fatty acids from

monosaccharides. This process is dependent on the catalyzing

action of fatty acid synthase (FAS).Disorders of glucolipid

metabolism impair the antilipolytic effect of adipose tissue on

insulin, leading to increased lipolysis and increased release of free

fatty acids (39, 46). In a state of insulin resistance, there is an

increased FFAs flux to the liver, which stimulates the synthesis of

very low-density lipoprotein (VLDL) particles, which in turn leads

to elevated plasma levels of triglycerides (TG) and apolipoprotein B

(Apo B) (47). Oxidative stress in the vascular wall causes oxidative

modification of low-density lipoproteins (LDL), producing oxidized

low-density lipoproteins (ox-LDL). At the same time, macrophages

take up excess ox-LDL to form foam cells, while reduced levels of

high-density lipoprotein (HDL) impair their anti-inflammatory and

antioxidant functions to remove cholesterol efficiently, for example,

in diabetic patients with combined atherosclerosis (48, 49).

Abnormalities in lipid metabolism increase the activity of

fibrinogen, coagulation factors, and platelets, which not only

promotes thrombosis but also inhibits the activity of tissue-type

fibrinogen activator. Although it is not clear how various

modifications such as lipids alter fibronectin metabolism, leading

to vascular instability, it has been shown that lipid modifications of
Frontiers in Endocrinology 06
proteins are associated with diseases such as infections, premature

aging, cancer, and diabetes. Lipid modifications cover a variety of

forms of fatty acylation, including n-myristylation, n-acylation, and

s-acylation. Recent studies suggest an unexpected role for de novo

lipogenesis in the S-palmitoylation of eNOS within blood vessels

and the foam cells and inflammatory macrophages are critical

contributors to the pathogenesis in metabolic disorders. The

activity of the CD36-FABP4-p38-PPARd signaling axis can be

effectively attenuated by intervention with palmitic acid and its

target, acyl-CoA synthase-1 (ACSL1). It offers a potential

therapeutic strategy for preventing acute high-fat feeding (AHFF)

induced macrophage foaming and inflammatory responses (50).

The excess saturated fatty acids, such as palmitic acid, could trigger

hepatic lipotoxicity and lead to vasculopathy in NAFLD, a process

in which adipocyte apoptosis is regulated by multiple signaling

pathways (51).
2.3 Oxidative stress

Abnormal metabolism leads the body to produce large amounts

of ROS, and although a moderate increase in ROS is essential for

signal transduction, overproduction triggers oxidative stress, which

in turn leads to abnormal proliferation and migration of vascular

endothelial cells and vascular dysfunction (52, 53). Injuries such as
FIGURE 4

The cross-talk between palmitoylation and phosphorylation/ubiquitination and energy metabolism disorders. Palmitoylation, ubiquitination, and
phosphorylation collectively uphold protein homeostasis, thereby facilitating the synergistic response of essential enzymes, such as ATP synthase, to
cellular energy states. Palmitoylation plays a pivotal role in the post-translational modification of various proteins, functioning as a crucial “molecular
switch” in metabolic regulation. This modification dynamically alters enzymes involved in glycolysis and lipid metabolism, modulating their activity or
intracellular localization to exert specific biological effects.
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high glucose and high fat induce ROS production mainly through

several pathways: activation of protein kinase C isozymes, increased

formation of glycosylation end products (AGEs), and increased

glucose flux through the aldose reductase pathway or the polyol

pathway (54, 55). Hyperglycaemia induces binding of AGEs to

receptors (RAGE) (56, 57), which activates NADPH oxidase,

catalyzing the generation of superoxide from oxygen, and aldose

reductase, which depletes NADPH, weakening antioxidant defenses

via the polyol pathway (58). In addition, metabolic disorders deplete

antioxidants such as glutathione (GSH), reducing the body’s

antioxidant capacity and leading to a decrease in the activity of

antioxidant enzymes such as SOD (59) and catalase (CAT) (60).

As palmitic acid leads to a significant increase in mitochondrial

ROS production accompanied by mitochondrial DNA damage and

dysfunction, apoptosis, and inhibition of insulin signaling, PA damage

to mitochondria can be mitigated by inhibition of the mitochondrial

autophagy-ROS-CTSB-NLRP3 pathway, which reduces lysosomal

membrane permeabilization (LMP) and inhibits inflammation and

cellular pyroptosis (61). In non-alcoholic steatohepatitis (NASH), the

overall peroxiredoxin activity of peroxiredoxin reductase (PRDX) in

the liver is significantly decreased, which is further exacerbated by

palmitic acid (PA) by directly binding to PRDX1 and inhibiting its

peroxidase activity (62). It was shown that ROS/JUN is a common

response pathway for insulin resistance induced by fatty acids in

HepG2 cells (63). Increased oxidative stress may exacerbate vascular
Frontiers in Endocrinology 07
injury by inhibiting the normal function of the antioxidant enzyme

system through palmitoylation modifications. Palmitic acid activates

NADPH oxidase, which in turn generates superoxide anion (O2-) and

the lipid peroxide malondialdehyde (MDA) (64), which are end-

products of palmitic acid oxidation, and can reflect the extent of

vascular damage caused by lipid peroxidation. In addition, palmitic

acid induces apoptosis in endothelial cells by activating endoplasmic

reticulum stress and mitochondrial pathways. Excess palmitic acid may

also increase intracellular oxidative stress by interfering with

autophagic mechanisms, leading to further exacerbation of

inflammatory responses (65). Elevated levels of palmitoylcarnitine

suggest that mitochondrial b-oxidation is impaired, and thus

increased oxidative stress may exacerbate vascular injury by

inhibiting the normal function of the antioxidant enzyme system

through palmitoylation modifications.
2.4 Inflammatory

Inflammation plays a key role in vascular injury in metabolic

diseases and manifests itself in a variety of forms, with chronic

inflammation and immune response being the most prevalent (66).

This inflammation typically presents as an infiltration of immune

cells, such as monocytes, macrophages, and T cells, and damage to

the vessel wall. Damage to the vascular endothelium results in the
FIGURE 5

The treatment integrates therapeutic and maintenance approaches. In pharmacological management, Metformin and Insulin are employed as
primary antidiabetic and lipid-lowering agents. Regarding receptor regulation, TGR5 activation is utilized to reduce fatty acid uptake. For genetic
intervention, experimental studies focus on PKM2 C31S mutations. In terms of gut microbiota, serine palmitoyltransferase (SPT)-catalyzed
palmitylation reactions are applied.
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release of additional inflammatory mediators, such as IL-8, MCP-1

(67), and NLRP3 (68), which attract monocytes and macrophages

for further infiltration. The infiltrating cells transform into foam

cells after phagocytosis of oxidized low-density lipoprotein (oxLDL)

and release pro-inflammatory factors such as TNF-a, which in turn

exacerbate insulin resistance and vascular sclerosis. MD2 has been

shown to drive the inflammatory response in studies of

inflammatory response and myocardial injury induced by factors

such as high fat and high glucose (69). In addition, immune

responses induced by intestinal flora, especially those triggered by

short-chain fatty acids (SCFA) produced by the flora, play an

important role in the pathogenesis of metabolic diseases such as

diabetes (66). In addition, intestinal bacteria are able to convert

carbohydrates and polysaccharides that cannot be broken down by

the host itself into short-chain fatty acids (SCFA), a process that has

been identified as an important potential metabolic target for

glucose metabolism, insulin resistance, obesity prevention, and

T2DM (70).

Vascular cell adhesion molecules (VCAM-1/ICAM-1) are key

target proteins for palmitoylation regulation. In the presence of

DHHC-15, the expression of these molecules on the surface of

vascular endothelial cells is enhanced, thereby promoting leukocyte

adhesion. Thus, excess palmitoylation accelerates atherosclerotic

plaque formation. In addition, palmitoylation modifications may

alter the function of tight junction proteins such as Zonula
Frontiers in Endocrinology 08
Occludens-1 (ZO-1) in endothelial cells, leading to an increase in

vascular permeability and facilitating the infiltration of

inflammatory factors, which in turn exacerbates vascular injury

(71). It has been shown that palmitoylated CD36 receptors

recognize ox-LDL (72, 73) and promote its uptake, thereby

exacerbating the inflammatory response of the vascular

endothelium. In studies of vascular smooth muscle cells, found

that the zDHHC4 enzyme, when modified by palmitoylation,

becomes localized on the surface of the cell membrane and binds

directly to vascular endothelial growth factor (VEGF) and platelet-

derived growth factor (PDGF). This binding inhibits the activation

of these growth factor receptors, thereby blocking the formation of

abnormal pathological neovascularisation (74). In addition,

palmitoylation of Rab3 GTPase-activating protein 1 (Rab3gap1)

by inhibiting zDHHC family activity or blocking it modulates the

exocytotic release of neuropeptides and hormones from

neuroendocrine cells, as well as secretion of atrial natriuretic

peptide (ANP) from cardiac myocytes, resulting in an

improvement of vasodilatory function in patients with heart

failure (75, 76). Palmitoylation also promotes the formation of

integrin adhesion plaques (24, 77), enhances smooth muscle cell

migration to the vessel wall, and is involved in the process of

development of multiple vascular injuries. Also, the effect of

palmitoylation modification on L-type calcium channels alters

their voltage sensitivity, and palmitic acid inhibits their activity,
TABLE 1 A collection of studies on the involvement of palmitoylation modifications in clinical drug therapy for a variety of diseases.

Drugs Diseases
Protein
acyltransferase

Palmitoylation
modification site

Mechanisms

Metformin Atherosclerosis palmitoyl-CoA C60
Reduction of FASN by metformin hinders Akt
palmitoylation (91)

Artemether Liver fibrosis DHHC12 Cys18, Cys21
Induction of HSC ferroptosis via DHHC12-mediated
BECN1 protein S-palmitoylation (99)

Rapamycin Fatty liver disease IRE1a Cys503, Cys504
mTORC1activation triggered by protein
palmitoylation (100)

Disulfiram Myocardial infarction ZDHHC14 Cys192, Cys191
ZHDDC14 induced palmitoylation modulated
GSDMD-N-terminal cytomembrane
localization (101)

Insulin Cardiovascular disease
ubiquitin conjugating
enzymes

C56S, C206S
Stimulation of palmitoylation without affecting
PAFAH1b3 protein abundance (42)

Sorafenib Liver Cancer tyrosine kinas, ZDHHC16 Cys414, Cys600 SLC7A11, PCSK9,AKT, HippoYAP/TAZ (100)

SmStoLP-2
protein vaccine

Schistosomiasis SmStoLP-2 Cys11, Cys61, Cys330 Enhancement of IFN-g and TNF-a production (100)

Melatonin Oocyte aging
almitoyl-protein thioesterase
1, APT1、APT2

Cys12, Cys354 Tubulin, miR-125a-5p/LYPLA1 (102)

Ethanol Neuroblastoma x glioma hybrid palmitoyl thioesterase cys 3 Inhibition of palmitoylation of G proteins (103)

Sorafenib Hepatocellular carcinoma DUXAP8 Cys414 SLC7A1, p62/NRF2 (104)

Lutein Lung tumorigenesis DHHC20 Cys156 EGFR, PI3K, DHHC (105)

5-hydroxyfla-
vone

Lung
tumorigenesis

DHHC20 Cys156 EGFR, PI3K, DHHC (105)

6-hydroxyflavone
Lung
tumorigenesis

DHHC20 Cys156 EGFR, PI3K, DHHC (105)
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leading to decreased vascular contractility (78). Involvement of

palmitoylation in the vascular epithelium The vascular epithelium is

the outermost layer of the vascular wall and consists mainly of

connective tissue, fibroblasts, adipocytes, nerve endings, and

microvessles (79). Abnormal deposition and fibrosis of the

extracellular matrix (ECM) causes the vessel wall to become stiff,

which affects the diastolic function of the vessel. Matrix

metalloproteinases (MMPs) play a key role in this process (80). It

has been shown that palmitoylated MMP-2/9 with enhanced

activity is able to degrade the vascular basement membrane,

which in turn promotes plaque rupture. In addition,

palmitoylation regulates diabetic retinopathy in db/db mice

through activation of the NLRP3/NF-kB signaling pathway (81).

This process promotes nuclear translocation followed by

upregulation of IL-6 and TNF-a expression, exacerbating vascular

inflammation, which may be a potential mechanism of

atherosclerosis (82, 82). In addition, LPA is a bioactive lipid

mediator that triggers inflammation through its receptors 1-6,

further exacerbating vascular injury and fibrosis (83).
3 Exploration of targeted
palmitoylation modifications in clinical
therapeutics

The focus of clinical intervention strategies and research revolves

around a deeper understanding of the characteristics of vascular

injury in metabolic diseases (84) and an emphasis on the role of key

mechanisms of clinical glucose and lipid-lowering therapy (85, 86).

Endothelial dysfunction in patients is strongly associated with the

outcome of vascular injury (87). Aggressive control of primary

disorders of glucose-lipid metabolism, combined with early

comprehensive vascular intervention, is the key to prevention and

treatment. In addition to the widely recommended metformin,

glucagon-like peptide-1 receptor agonists, and sodium-glucose

cotransporter protein-2 inhibitors, research targeting the latest

molecular mechanisms, such as aldose reductase inhibitors,

peroxisome proliferator-activated receptor-gamma agonists,

glucokinase agonists, and mitochondrial energy modulators, is also

being actively pursued.

Canagliflozin attenuated palmitic acid (PA)-induced vascular

cellular senescence by inhibiting the activation of the ROS/ERK and

iron death signaling pathways (88). In addition, it was found that

ghrelin, one of the sodium-dependent glucose transporter protein 2

(SGLT2) inhibitors, was able to delay lipotoxicity-induced vascular

senescence by targeting the ROS/p38/JNK pathway (89). The

metabolic enzyme ethanolamine-phosphate phosphorylase

(ETNPPL) was found to inhibit autophagic flux-mediated PA-

induced insulin resistance in hepatocytes via the ARG2/ROS

signaling cascade, suggesting that targeting ETNPPL may be a

potential approach for the treatment of T2DM (90). Targeted

drug therapy commonly metformin alleviates inflammation by

inhibiting Fas-dependent Akt palmitoylation (91), GLP-1 receptor

agonists (92, 93), SGLT2 inhibitors (94–96), and IRS-1 (97) reduce

inflammation by modulating fatty acid metabolism and attenuating
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the negative effects of palmitic acid. PPARg agonists (rosiglitazone),
on the other hand, provide better control of glycolipid disorders by

improving insulin resistance. There are also drugs that target key

enzymes, such as FASN (fatty acid synthase). Orlistat enhances

vascular endothelial function by reducing the intestinal absorption

of palmitic acid. Meanwhile, drugs that inhibit the palmitate

transporter protein (CD36) and the acylated LDL receptor

(ALDLR) exert a therapeutic effect by reducing the palmitoylated

modification of CD36 (98). As current pharmacological treatments

have limited effectiveness in preventing limb loss, non-traditional

biomarkers, including fibronectin and fatty acids, may offer insights

for new therapies (Figure 3).

The involvement of palmitoylation modification has been well

documented in experimental studies of clinical drugs. Among them,

the involved palmitoylation modification sites are associated with a

variety of disease organs, as shown in the table below (Table 1). A

series of studies on key targets and pathways are important

references for the development of novel drugs for the treatment

of metabolic diseases and vascular injury.
4 Discussion

4.1 Biological properties and functions of
S-acylation

Protein palmitoylation, as a kind of lipid acylation modification,

affects the localization, stability and function of proteins by

covalently binding the unstable thioester bond of palmitic acid to

specific cysteine residues of the protein substrate (4). Palmitoylation

modifications are dynamically reversible, and reversible

modifications are catalyzed by the DHHC acyltransferase family,

which can play a key role in the dynamic regulation of protein

function, localization and stability (4, 10).

Through membrane localization and signaling properties,

water-soluble proteins are able to be anchored to lipid bilayers,

thereby promoting the aggregation of signaling molecules within

lipid rafts. Studies have shown that palmitoylated Ras proteins can

activate the MAPK pathway, which in turn drives cell proliferation

and differentiation (106). Characteristics of metabolic regulation

include activation of fatty acid metabolizing enzymes and lipid

synthases such as fatty acid synthase (107). By affecting the function

of metabolism-related proteins, these regulatory mechanisms exert

a modulatory effect on lipid metabolism. Palmitoylated modified

SREBP-1 was found to promote the expression of cholesterol

synthesis genes (108). It was also shown that DHHC4 and

DHHC5 regulate fatty acid uptake and that they function in

different subcellular localizations (109). The pathogenesis of

metabolic diseases is usually accompanied by an inflammatory

response (110). The release of inflammatory factors such as IL-6

and TNF-a can be influenced by modulating the activity of

inflammatory vesicles such as NF-kB and NLRP3 (111, 112),

which in turn activates caspase-1 and releases IL-1b (113).

Elevated levels of free fatty acids impair insulin-mediated

vasodilation and nitric oxide production (114, 115). Insulin
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resistance decreases arterial prostacyclin synthase and eNOS

activity by increasing fatty acid oxidation in endothelial cells

(116). Fatty acid synthase (FAS) levels in endothelial cells are

reduced in metabolic disorders, and the absence of FAS in

endothelial cells exacerbates inflammatory responses and impairs

angiogenesis (117), the CD36 receptor play a key role in vascular

injury (118, 119). In addition, palmitoylation modifications of

metabolism-related proteins, such as glucose transporter protein 4

(GLUT4) (120) and AMP-activated protein kinase (AMPK) (121),

have been demonstrated to be key metabolite markers and are

important in functional studies. Excessive palmitoylation

modifications may inhibit the normal function of the Akt

pathway, sterol regulatory element binding protein 1c (SREBP-1c)

is hyperactivated and promotes palmitic acid adulteration of

triglycerides, which becomes a molecular target for lipid

reprogramming in hepatocytes (122). Palmitic acid decreases

peroxisome proliferator-activated receptor gamma coactivator 1a
(PGC-1a) expression in blood vessels, which expression was

dependent on peroxisome proliferator-activated receptor alpha

(PPARa) and protein kinase A (PKA), that enhances palmitate

oxidation, thereby attenuating vascular injury (123).Studies have

shown that palmitic acid is able to activate pro-inflammatory

pathways via membrane receptors such as Toll-like receptor 4

(TLR4) (124), a pattern recognition receptor that recognizes

bac ter ia l components inc lud ing l ipopo lysacchar ides

(LPS).Palmitoylation of the TLR4 receptor enhances its

localization to cell membranes, facilitates the recognition of fatty

acids, and further activates the immune response that thereby

triggering vascular injury (125).
4.2 The limitations and challenges of S-
acylation

Although preclinical studies have thoroughly demonstrated that

protein S-acylation significantly influences the occurrence and

development of metabolic vascular damage by regulating key

pathways such as the insulin signaling pathway, inflammatory

response, and oxidative stress, and there is evidence that existing

metabolic-related drugs (91) may partially improve vascular

function by intervening in the acylation process, in-depth

research in this field still faces multiple bottlenecks (126). We not

only concentrate on potential therapeutic targets, such as DHHC

enzymes and APT proteins, but also acknowledge that targeting

palmitoylation in vivo for therapeutic purposes will encounter

numerous challenges. These include drug specificity, off-target

effects, and delivery mechanisms. Firstly, the 23 subtypes of the

ZDHHC family (127), such as the DHHC4 family localized to

different organelles and the deacylation enzymes APT1/2, exhibit

significant spatiotemporal heterogeneity in different types of

vascular cells and metabolism-related organs, their specific

substrate recognition mechanisms remain unclear, and there is a

lack of tissue-specific dynamic localization maps. S-acylation

modifications such as acetylation, phosphorylation, and

ubiquitination form a complex hierarchical network of cross-
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regulatory interactions, collectively influencing the activity of key

targets. However, the interaction patterns of these synergistic or

antagonistic effects under pathological conditions, such as in high-

glucose/high-fat microenvironments have not been systematically

characterized, particularly lacking a deep understanding of the

competitive mechanisms at modification sites. Third, existing

clinical translation models have significant limitations. Systemic

ZDHHC gene knockout models struggle to accurately mimic the

regional characteristics of vascular damage in human metabolic

diseases, such as the differences between glomerular and retinal

microvascular lesions, and cannot reproduce the dynamic evolution

of S-acylation modifications during the natural progression of the

disease. Furthermore, under conditions of lipotoxicity stress, the

nonlinear effects of fluctuating concentrations of acyl donors, like

palmitoyl-CoA, on ZDHHC enzyme activity lack corresponding

quantitative models for assessment. Finally, current intervention

strategies targeting acylation enzymes carry significant off-target

risks. For instance, small-molecule inhibitors such as 2-

bromopalmitoleic acid, which broadly inhibit the activity of

multiple DHHC subtypes, may cause global disruption of

intracellular signaling networks. Developing modulators with

tissue-specific delivery capabilities and subtype selectivity remains

a critical challenge that urgently needs to be addressed (128). As it is

difficult to identify new drug targets while minimizing off-target

effects, the drug development process tends to stall. The attempt to

reconstruct metabolic networks is expected to provide an

economical and efficient platform for testing new drug target

hypotheses and effectively preventing off-target effects (129).

The mechanisms underlying the response of acylation

modification to changes in the metabolic microenvironment are

not well understood, particularly concerning its potential response

to metabolites from the gut microbiota, such as short-chain fatty

acids (130).Additionally, combining patient stratification with

tracking the dynamic changes in palmitoylation may offer new

therapeutic targets for personalized interventions. In the study of

gut microbiota, palmitoylation acts as a key protein modification

mechanism and plays a significant role. It is hypothesized that long-

chain fatty acids, such as palmitic acid, can be utilized by

microorganisms and converted into acetyl-CoA through the b-
oxidation pathway, thereby participating in energy metabolism and

synthetic metabolic processes (131, 132). However, there is

currently no clear evidence indicating that short-chain fatty acids

(SCFAs) in microorganisms can directly participate in

palmitoylation modification, which referring to fatty acids with

carbon chain lengths less than 6, such as acetate, propionate, and

butyrate, are primarily produced by intestinal microbiota

metabolism and play important roles in host metabolism (133).

Nevertheless, research on whether SCFAs can directly participate in

protein palmitoylation modification remains limited. Existing

studies primarily mention palmitoylation processes involving

long-chain fatty acids, such as palmitic acid and myristic acid.

Regarding drug specificity, the DHHC family consists of 23

subtypes, including ZDHHC4/5/7/9/15. These subtypes display

substrate preferences in vascular endothelial and smooth muscle

cells. For instance, ZDHHC4 regulates STAT3 activity, and
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ZDHHC21 affects the palmitoylation levels of multiple enzyme

systems related to vascular function. As for delivery mechanisms.

Palmitation acts as a sorting signal that directs proteins to their

destination, Involving metabolism, nervous system and other

diseases (134–137), DHHC/APT primarily localizes to the

endoplasmic reticulum-Golgi membrane system, posing a

challenge for traditional small-molecule drugs to effectively reach

subcellular regions. Consequently, we should develop innovative

strategies, such as using lipid nanoparticles for targeted delivery of

siRNA (138, 139), for example, ZDHHC5 siRNA to reduce vascular

inflammation in atherosclerosis models, or employing enzyme-

responsive prodrug activation systems, such as releasing APT1

inhibitors at sites of high oxLDL expression. Palmitic acid

regulates cellular signaling pathways, gene expression and

intracellular metabolic processes by interacting with palmitoylated

modifications of proteins. The key role of gene-based regulatory

mechanisms: “ZDHHC3 and ZDHHC7, localized in the Golgi

apparatus, have been identified as key regulatory factors in

cardiac hypertrophy because they part ic ipate in the

palmitoylation process of RAC1. The enhanced activity of

activated RAC1 leads to increased production of ROS, reorganizes

the actin cytoskeleton, and regulates the expression of hypertrophy-

related genes, thereby triggering downstream hypertrophic signal

transduction during early periods of stress overload (140).

ZDHHC13 has been identified as a PKM2 palmitoyltransferase,

which reveals that the palmitylation process of PKM2-C31 plays a

key role in PA induced endothelial injury and cardiovascular

dysfunction (141). Some studies have shown that the effectiveness

of literature mining methods in evaluating the proposed

histoprotein-symptom matrix relationship can help predict the

unexpected effects of drugs and the off-target tissues associated

with their effects (142). This not only helps predict and reduce the

side effects of drugs on off-target tissues, but also provides

opportunities to identify new indications for target drugs.

Current research into the spatiotemporal dynamics of

palmitoylation in specific diseases, such as neurodegenerative

diseases and cancer, is limited. Existing literature primarily

concentrates on molecular mechanisms, such as the regulation of

enzyme activity, or static functional aspects, such as membrane

localization. However, the relationship between spatiotemporally

resolved palmitoylation regulation and disease progression

necessitates further investigation. Developing detection

technologies with spatiotemporal resolution capabilities, such as

subcellular localization dynamic tracing techniques, will be a key

component in elucidating the therapeutic window in the future.

Post-translational modifications (PTMs) of proteins involve the

covalent attachment of functional groups to proteins, including

ubiquitination, phosphorylation, glycosylation, methylation,

acetylation, and glycation. These modifications affect protein stability,

localization, and molecular function. Signal molecules within the cell

and changes in the environment, such as phosphorylation and

ubiquitination, can affect palmitylation (143). Dynamic

palmitoylation indirectly affects protein stability by interfering with

the ubiquitination process. Ubiquitin ligases can be modified by

palmitoylation, such as E3 ubiquitin ligases PHF2 and FBXL2. When
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PHF2 is palmitoylated by zDHHC23, its ubiquitin-dependent

degradation function is enhanced, thereby interfering with the

stability of sterol regulatory element-binding protein 1c (SREBP1c)

(122). Palmoylated FBXL2 was significantly enriched in the ER

(endoplasmic reticulum), which promoted the degradation of IP3R3

through the ubiquitin-mediated pathway (144). zDHHC1 and

zDHHC2 mediate lipid raft formation by modifying the Cys17,

Cys18, and Cys246 sites of Gpm6a, thereby stabilizing the Procr

protein (145); whereas zDHHC4 regulates the ubiquitinisation status

of MAVS by modifying its Cys79 site, thereby enhancing stability and

activating protein activity (146). The expression of malate

dehydrogenase 2 (MDH2) is typically co-regulated by TRIM21-

mediated ubiquitination and USP5-mediated deubiquitination.

Notably, MDH2 can also be palmitoylated at the Cys138 site by

zDHHC18, a modification that inhibits its ubiquitination and

thereby enhances its stability (147). Palmitoylation anchors proteins

to the membrane, and phosphorylation can further regulate their

activity, Ras proteins require palmitoylation for localization, and then

t ransmi t s igna l s through downst ream effec tor s v ia

phosphorylation.zDHHC7 catalyzes the palmitoylation of the STAT3

protein at the Cys108 residue, guiding its localization to the cell

membrane rather than the nucleus. This process not only promotes

the activation and phosphorylation of STAT3 but also enhances its

interaction with proteins such as JAK2. In contrast, APT2 regulates

phosphorylated STAT3 (p-STAT3) and facilitates its transport into the

cell nucleus (148). In the crosstalk between phosphorylation and

palmitoylation, G protein-coupled receptors (GPCRs) play a crucial

role. Post-translational modifications of GPCRs specifically occur

between phosphorylation and palmitoylation. Palmitoylation forms

the fourth intracellular loop (ICL) of GPCRs through membrane

insertion, a process that affects not only the receptor structure but

also serves as the primary domain for phosphorylation sites. In fact,

studies have shown that defects in palmitoylation significantly impair

the phosphorylation process of various GPCRs (149). Palmitoylation

modification at the C341 site can modulate PKA-dependent C-

terminal phosphorylation and receptor responsiveness (150, 151).

Similar phenomena have been reported for the 5-hydroxytryptamine

(5-HT4) receptor: mutant forms that lack palmitoylation exhibit

enhanced receptor phosphorylation levels both in the basal state and

following norepinephrine stimulation (152). Furthermore, in vitro

experiments have further confirmed that certain G protein-coupled

receptors (GPCRs) lacking palmitoylation are more prone to

phosphorylation. Studies on de-palmitoylated adrenergic receptors

and rhodopsin have also found significantly elevated levels of

phosphorylation in these receptors (153). Palmitoleylation is closely

related to lipid metabolism and depends on palmitoleoyl-CoA,

regulating ACC (acetyl-CoA carboxylase, Cys115), carnitine

palmitoyltransferase 1 (Cys305), and CD36 (Cys3, Cys7), among

other key lipid metabolic enzymes and signaling molecules. This

affects the balance between fatty acid synthesis and oxidation,

potentially leading to conditions such as insulin resistance and non-

alcoholic fatty liver disease (NAFLD). Additionally, palmitoylation

participates in glycolysis by modifying key enzymes or regulatory

proteins, such as glyceraldehyde-3-phosphate dehydrogenase

(Cys152, Cys247), pyruvate kinase 2 (Cys474), leading to metabolic
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reprogramming issues such as theWarburg effect, which affects cellular

energy metabolism, signal transduction, and disease onset.

Palmitylation serves as a cross-regulatory hub for glycolysis and lipid

metabolism, A complex regulatory network is constructed between

glycolysis and lipid metabolism, which affects cellular energy

metabolism balance, signal transduction and disease occurrence. Its

dynamic modifications are crucial in the context of diabetes, fatty liver

disease, cancer, and various other conditions, making it a potential

target for metabolic therapies (Figure 4).
4.3 The potential and challenges of
palmitylation-related proteins as
diagnostic/prognostic biomarkers for
metabolic diseases

Dietary fatty acids and their potential to control metabolic diseases

through activation of FFA4/GPR120 receptors deserve to be explored

in depth. It has been shown that diabetes has a significant damaging

effect on endothelial cells (154) and that interference with

communication between endothelial and pericytes may lead to

dysfunction of endothelial and/or pericytes. Notably, organ tissues

derived from human stem cells are highly capable of restoring the

structure and function of the human vasculature (155). Dietary

saturated fatty acids are strongly associated with vascular damage

diseases as well as type 2 diabetes, and studies replacing palmitic acid

with oleic acid have shown that this replacement significantly

attenuates the negative effects of saturated fatty acids on adipose

tissue, skeletal muscle, liver, and beta cells (156). Results from

preclinical studies suggest that dietary replacement of saturated fatty

acids with a high oleic acid diet improves insulin sensitivity in humans.

Combined with other lifestyle changes, this offers the possibility of

reversing or delaying the deleterious effects of metabolic damage.

Increased intake of olive oil, which is rich in oleic acid and contains

antioxidant compounds, Therefore, dietary interventions using

alternative fats, such as replacing palm oil with monounsaturated

fatty acids (olive oil), may be effective in reducing fasting plasma free

palmitic acid levels. In addition, time-restricted eating (10-hour

restriction) may improve the efficiency of palmitic acid metabolism

and reduce hepatic lipotoxicity. Focusing on dietary intake of palmitic

acid and avoiding unhealthy dietary practices, such as excessive intake

of saturated fatty acids, may contribute to metabolic diseases like

insulin resistance and obesity by altering the gut microbiota

(157) (Figure 5).
5 Conclusion

Significant advancements have been achieved in understanding the

mechanisms of protein S-acylation, yet there remains ample

opportunity for further studies from both basic research and clinical

application perspectives. Of particular interest are the complex

interactions between S-acylation and deacylating enzymes, as the

normal function of most ZDHHCs and acyl thioesterases depends

on a series of acylation and deacylation processes. S-acylation presents
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unique research opportunities for a systemic functional understanding,

such as the development of novel inhibitors designed to target a specific

substrate rather than modifying the enzyme (or multiple enzymes),

showcasing highly promising therapeutic alternatives. the major

molecular mechanisms and pathways by which palmitoylation

acylation plays a regulatory role in metabolic diseases, as outlined in

this review, provide a foundation for further pathological studies and

the development of clinical therapeutic approaches. Future research

efforts hold great potential for in-depth exploration of specific enzymes

targeting palmitoylation against specific diseases. Nonetheless, there

remains a lack of in-depth exploration of new methods such as

metabolic reprogramming. Research on key scientific issues,

including drug specificity, off-target effects, and delivery mechanisms,

is insufficient to support clinical drug use requirements. Therefore,

there is an urgent need to explore palmitylation-related proteins or

metabolites as biomarkers for the diagnosis and prognosis assessment

of metabolic diseases. Our future research will continue to monitor

developments in this field and further explore this direction in

subsequent studies.
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