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Stockholm, Sweden, 2Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal
Science, the Centre for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences,
Uppsala, Sweden, 3Department of Energy and Technology, Swedish University of Agricultural
Sciences, Uppsala, Sweden, 4Department of Animal Biosciences, Faculty of Veterinary Medicine and
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Background: Growing evidence links chemical exposure to declining

reproductive function in both humans and dogs. Our aim was to investigate

the exposure of a wide range of per- and polyfluoroalkyl substances (PFAS) in

dog serum and to investigate the association between PFAS exposure and

endocrine parameters as well as semen quality.

Method: Semen samples (n=65) were collected from Bernese mountain dogs

during 2020. Sperm motility was evaluated under a phase-contrast microscope

(100×, 200×). Total sperm count was calculated using a Bürker chamber. Sperm

morphology was evaluated using standard protocols in wet preparations of

semen fixed in buffered formalin and stained with carbolfuchsin-eosin. Serum

was analyzed using a combined targeted and suspect screening approach for

quantitative analysis of 50 PFAS. Following extraction, instrumental analysis was

performed using an ultra-high-performance liquid chromatograph coupled to a

Q ExactiveOrbitrap mass spectrometer. PFAS concentrations were associated

with semen quality and endocrine biomarkers using Least Absolute Shrinkage

and Selection Operator (LASSO) regression.

Results: In all samples, PFOA, PFNA, PDFA, PFPeS, PFHxS and PFOS could be

detected, although PFPeS levels were not above the quantification limit. The

levels of the dominant congeners were on average (5th-95th percentile) PFOA

0.44 (0.05-1.3) ng/g serum, PFHxS 0.39 (0.05-0.96) ng/g serum, and PFOS 2.1

(0.35-6.4) ng/g serum. Fifteen suspect PFAS congeners were identified, where

perflouro-4-ethylcyclohexanesulfonate (PFECHS), H-PFOA, H-PFNA, and H-

PFDA were found in > 60% of the samples. Significant associations were found

between PFBS motility (b = 136.56, p = 0.03) and free androgen index (b =

0,931, p=0.02).

Conclusion: For the first time, levels of a wide range of target and suspect PFAS

are described in dog serum. PFAS levels in dog serumwere similar to those in cats

and humans, confirming that humans and pets, to a considerable extent, may
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share exposure to PFAS through the home environment. The study contributes to

bridging the existing knowledge gap of exposure to endocrine disruptors and

health effects in dogs, and thus to the research infrastructure bridging between

species with the benefit of both humans and pets in a true One Health approach.
KEYWORDS
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1 Introduction

Per- and polyfluoroalkyl substances (PFAS) are a group of

synthetic compounds characterized by their strong carbon-

fluorine bonds, rendering them resistant to degradation. Their

pervasiveness in everyday products such as firefighting foams,

non-stick cookware, and waterproof fabrics has led to their

widespread distribution in the environment and subsequent

global exposure (1, 2). PFAS have emerged as a class of persistent

organic pollutants (POPs), listed under the Stockholm Convention

(3). In recent decades, research has intensified to unravel the

intricate relationship between PFAS exposure and its impact on

various aspects of human health, including endocrine-

disrupting properties.

Current research indicates potential links between PFAS

exposure and adverse health outcomes in experimental animal

models, including but not limited to immunotoxicity,

hepatotoxicity, and disruption of endocrine function (4–9).

Epidemiological studies in humans have highlighted associations

between PFAS exposure and increased risks of certain cancers,

thyroid disease, serum lipids, and impaired immune function,

raising significant concerns about their long-term impact on

public health (10–12). The endocrine-disruptive properties of

PFAS have been attributed mainly to the activation of peroxisome

proliferator-activated receptors (PPARs) (13, 14), active in glucose

and lipid metabolism. However, PFAS also exert other mechanisms

of toxicity. This has been illustrated in experimental animal PPAR-

null models (15–17). For example, PFAS have been suggested to

have an antagonistic effect on the androgen receptor (18).

Reproductive function is sensitive to hormone alterations, and

emerging evidence suggests a correlation between PFAS exposure

and adverse reproductive outcomes in humans, such as reduced

fertility, pregnancy-induced hypertension, gestational diabetes, and

low birth weight or lower IQ in offspring (10, 19–23). The

mechanisms are still unclear but could be due to either direct

effects of PFAS on reproductive tissue or to effects mediated by

altered hormone function after endocrine-disruption by PFAS. In

men, declining semen quality has been reported over the last

decades (24, 25). The data on the potential association between

PFAS and semen quality in men is scarce, but serum or seminal

plasma concentrations of PFAS have been associated with altered

reproductive hormones and semen parameters (26, 27).
02
Given the shared environment and common lifestyle practices

between humans and companion animals, particularly dogs, there is

a dual advantage of utilizing dogs not only for understanding the

exposure and potential health effects in the species, but also for

extrapolating findings from dogs to their owners (28). Due to

widespread use, almost all humans have quantifiable levels of

PFAS in their blood. Few studies have been performed on dogs,

but PFAS has been detected in police- and experimental animal

dogs in China (29) and in dogs near a fluorochemical industry in

the US (30). PFAS have also been analyzed in dogs’ fur (31).

Although less researched, similar trends as reported in humans

have been observed in dogs, with deteriorating semen quality,

increased incidence of testicular malformation, and reproductive

cancers (32–34). Compared to humans, dogs have shorter lifespans,

and especially within breeds, the variation in phenotype is low,

which offers an advantage when studying complex relationships,

such as between endocrine disruptors and health parameters.

In this study, we aimed to investigate the exposure of a wide

range of PFAS congeners in dog blood, using both target and

suspect screening. Further, we investigated the association between

PFAS exposure and endocrine parameters associated with semen

quality. With the advantage of using samples from one specific

breed, we could minimize the variation in confounding factors such

as size and conformation among the dogs.
2 Materials and methods

2.1 Dog recruitment, questionnaire and
ethical considerations

The cohort has been described previously (35). In brief, during

the period of March to October 2020, a cohort of privately owned

Bernese Mountain Dogs (n=65) was included in the study. Owners

were provided with both oral and written information detailing the

study’s purpose and procedures, and subsequently granted

informed consent by signing an agreement. All data handling

adhered to the guidelines outlined in the General Data Protection

Regulation (GDPR) and institutional guidelines. Ethical approval

was obtained from the regional animal ethical committee under

reference number 5.8.18-17395/2018. Preceding sample collection,

owners were asked to complete a brief questionnaire (35). This
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questionnaire encompassed a combination of open-ended and

closed questions concerning the dogs’ medical history, medication

usage, and breeding records. This study uses previously collected

samples (35), which is in line with the 3R principles.
2.2 Clinical examination and sample
collection

The sampling procedure has been described previously (35).

Briefly, all dogs underwent clinical examinations, including

assessment of body weight (kg), palpation of the testicles, and

rectal palpation of the prostate gland. Semen samples were

collected via manual stimulation, whenever feasible, in the

presence of a female dog in oestrus. Blood samples were drawn

from the cephalic vein into tubes without additives and

subsequently underwent centrifugation at 1300 × g for 10 min to

retain the serum. The resulting supernatants were then stored in

separate aliquots at –80°C until analysis. Sample collection took

place across various clinics (n=15) spanning the northern to

southern regions of Sweden. These samples were frozen and

transported to the Swedish University of Agricultural Sciences for

subsequent processing and analysis of biomarkers and to Stockholm

University for PFAS analysis.
2.3 Assessment of semen quality and
quantification of endocrine markers

Analysis of semen and endocrine variables has been detailed

elsewhere (35). In brief, sperm motility (%) was assessed

subjectively using a phase-contrast microscope at magnifications

of 100× and 200×, accompanied by recording of the ejaculate

volume. Subsequently, the ejaculate volume, color, sperm

concentration and total sperm count was assessed at the

Department of Clinical Sciences, Swedish University of

Agricultural Sciences (Uppsala, Sweden). Evaluation of sperm

morphology involved standard procedures, observing wet

preparations fixed in buffered formalin and air-dried smears

sta ined with carbolfuchsin-eosin . The proport ion of

morphologically normal spermatozoa (MNS) and abnormalities

in the head, midpiece, or tail, as well as proximal droplets,

were recorded.

Regarding endocrine markers, quantification had been

performed in serum or seminal plasma (35). To provide a brief

overview, seminal plasma alkaline phosphatase (ALP) levels were

quantified in all dogs utilizing an Architect c4000 (Abbott

Laboratories, Köln, Germany). The assessment of anti-Müllerian

hormone (AMH) had been conducted in serum using a sandwich

ELISA (AMH Gen II ELISA, Beckman Coulter, Indianapolis, IN,

USA). In addition, serum analyses measured Inhibin B with a

canine ELISA (AnshLabs, Wedster, TX, USA), serum hormone-

binding globulin (SHBG) using a canine ELISA (MyBioSource, San

Diego, CA, USA), and Insulin-like peptide 3 (INSL-3) via a

quantitative sandwich ELISA (MyBioSource). Total serum
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testosterone concentrations were analyzed using Immulite 2000

(Siemens Healthcare Diagnostics, Erlangen, Germany). Canine

prostate-specific esterase (CPSE) had been evaluated in serum

using the SpeedTM CPSE immunoassay reader (Virbac, La Seyne-

sur-Mer, France). Metadata, including dog characteristics and

endocrine variables, are available in the Supporting Information,

Supplementary Table S1.
2.4 Chemical analysis of PFAS in serum

The internal, recovery and native PFAS standards were all from

Wellington labs, Ontario, Canada, except 11H-Perfluoroundecoic

acid from Appollo Scientific, Manchester, UK (CAS:1765-48-6),

8H-Perfluorooctanoic acid (CAS: 13973-14-3) and 9H-

Hexadecafluoronananoic acid (CAS: 76-21-1) from Combi-

B l o c k s , S a n D i e g o , CA , U SA , a n d p e r fl o u r o - 4 -

ethylcyclohexanesulfonate (PFECHS) was purchased from

Wellington labs. All target analytes and corresponding internal

standards used for quantifications are reported in Supplementary

Table S2.

2.4.1 Sample preparation
The sample preparation was performed according to a previous

publication analyzing PFAS in human serum (36). Dog serum (0.5

g) was fortified with a mixture of internal standards (IS, 0.5 ng) in a

polypropylene (PP) tube and left overnight at 4°C to equilibrate.

The sample was extracted using 4 mL acetonitrile (HPLC, gradient

grade ≥99.9%, Sigma Aldrich, Darmstadt, Germany), vortexed, and

ultrasonicated for 15 min. After centrifugation (1500 × g, 5 min),

the supernatant was transferred to a new PP tube and the extraction

repeated once. The extract was concentrated to 1 mL under a gentle

stream of nitrogen gas and transferred to a pre-weight Eppendorf

tube containing 25 mg ENVI-Carb (bulk packing Superclean™,

Supelco, Darmstadt, Germany) and 50 µL glacial acetic acid (p.a.

ACS reagent ≥99.8%, Sigma Aldrich). The weight of the extract was

noted. The tube was vortexed and centrifuged (7300 × g, 10 min)

and 500 µL of the supernatant was transferred to another Eppendorf

tube, in which the recovery standard (RS, 0.5 ng) and 4 mmol/L

ammonium acetate (EMSURER ACS, Reag. Ph Eur, Merck KGaA,

Darmstadt, Germany) in MilliQ water (200 µL) were added. The

samples were stored at -20°C until instrumental analysis.

2.4.2 Instrumental analysis
The instrumental analysis was performed according to a

previously published method (36). The samples were analyzed

using a Dionex UltiMate™ 3000 Ultrahigh performance liquid

chromatograph (UPLC, Thermo Fisher Scientific Inc.) combined

with a Q Exactive™ HF hybrid Quadrupole-Orbitrap™ mass

spectrometer (MS) (Thermo Fisher Scientific Inc.). A BEH C18

column (2.1 x 50 mm, 1.7 µm particle size, Waters) combined with a

guard column BEH C18 (2.1 x 5 mm, 1.7 µm particle size, Waters)

were used for chromatographic separation. To avoid background

contamination from the mobile phases, an isolator column

XBridge™ C18 (2.1 x 50 mm, 3.5 µm particle size, Waters) was
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mounted before the injector. The buffer of the mobile phases was 2

mmol/L ammonium acetate in either 95% pure MilliQ water and

5% acetonitrile (mobile phase A) or 95% acetonitrile and 5% MilliQ

water (mobile phase B). An injection volume of 5 µL and a flow rate

of 0.4 mL/min were used. The initial ratio of the mobile phases was

90% A and 10% B. After 0.5 min, mobile phase B was increased

linearly up to 99% during 7.5 min. The ratio of 100% was held for 3

min and then switched to 90% A for column equilibration for two

min. The total time of each run was 13 min.

The MS was run in negative mode, in full scan (150–2000 Da),

using data-dependent acquisition. A list of 87 target analytes was

used (including 22 internal standards and 2 recovery standards,

Supplementary Table S2) together with an inclusion list of 311

analytes for suspect screening (37). M8PFOS was used as the

recovery standard for the perfluoralkyl sulfonic acids (PFSAs) and

M8PFOA was used as the recovery standard for the PFCAs. The

target and suspect data processing were done using Tracefinder

version 4.1 (Thermo Fisher Scientific Inc.) and Xcalibur

Qualbrowser for MS2 spectra (Thermo Fisher Scientific Inc.).

2.4.3 Quality assurance/quality control for PFAS
analysis in serum

The sample preparation was conducted in four batches, each

comprising 17 individual samples. For each batch, two to three

method blank samples (empty tubes) and one in-house reference

sample of human blood were included for quality control. In

addition, two sampling blanks were created by using the serum

collection tubes and syringe. An 8-point calibration curve was

created with a concentration span of 0.02–15 ng/mL, using linear

curve fit with 1/x weighting. The calibration curve was injected

before and after the samples in the instrumental analysis.

An analyte was considered below the limit of detection (LOD) if

there was no well-shaped bell curve with a minimum peak/noise

ratio of more than 3. The limit of quantification (LOQ) was set to

the lowest calibration point where a well-shaped peak was seen. If

an analyte was detected in the blank samples, the method LOQ was

calculated as the mean concentration in blanks plus three times the

standard deviation. Generally, the background contamination was

lower than the LOQ based on the lowest calibration curve. Only two

analytes, PFHxA and PFOS were found in blank samples, in 33%

and 56% of the nine blank samples, respectively. This increased the

method LOQ to be 0.37 ng/g for PFHxA and 0.16 ng/g for PFOS.

The method LOQs for all validated analytes are reported in

Supplementary Table S3.

During suspect screening, if a suspect feature was found in any

blank sample, the feature was disregarded and not processed

further. Features detected in the solvent peak (<1 min) were

excluded. Additionally, the threshold for the isotopic pattern

score (IPS) was set to above 60% and the mass-to-charge ratio

<5 ppm.

A recovery test was performed prior to the batch analysis of the

samples. Two triplicates of serum reference samples fortified with

native standards (0.5 ng and 1 ng, respectively) were analyzed. Of

the 65 PFAS target analytes evaluated in the project, 9 compounds,

along with all branched isomers (n=11) were not available in the
Frontiers in Endocrinology 04
native standard mixture for evaluation. Consequently, 45 PFAS

were evaluated for the analytical method. Of these, 35 PFAS showed

satisfactory recovery in the method (50-150%) (Supplementary

Table S3). Those PFAS that could not be validated in the

recovery test were semi-quantified using a structurally similar

compound in the calibration curve. In summary, 55 PFAS were

included in the target analysis of the dog serum.

Only compounds found above the LOD (detection frequency

[DF] > 0%) in at least one dog serum sample are reported in the

result tables (Supplementary Table S4). These are 24 validated PFAS

and 7 semi-quantified PFAS (PFPeS, PFHxS-br, PFHpS, PFHpS-br,

PFOS-br, PFNS, PFDS-br). Further, 15 PFAS were quantified

(quantificat ion frequency [QF] > 0%) in dog serum

(Supplementary Table S4).

For quality assurance, three samples of certified reference

material (CRM) for human blood analysis (NIST 1957) were

analyzed and compared to reported values in literature and from

NIST to demonstrate accuracy. The results were in good agreement

with other reported values (Supplementary Table S5).
2.5 Data processing and statistical methods

For the statistical evaluations, the summation of the branched

and linear congeners of the target PFAS was used. Values below

LOD were set to zero, while values above LOD but below LOQ were

replaced by LOQ/2. Free testosterone was estimated using the free

androgen index (FAI), calculated as the ratio between testosterone

and SHBG. The percentage morphologically normal spermatozoa

(MNS) was calculated by subtracting the sum of percentage of

spermatozoa without defects (counted by wet preparation with

formol saline solution) and percentage of spermatozoa with distal

cytoplasmic droplets (wet preparation with formol saline) with the

percentage of spermatozoa with pathological heads (smear stained

with William’s stain). A percentage range of morphologically

normal spermatozoa was then obtained. The percentage of MNS

was calculated by adding the higher and the lower range and then

divided by two. Total sperm count was calculated by multiplying the

volume of the ejaculate with the concentration and presented as

× 106.

The relationships between PFAS exposure and semen quality,

and between PFAS exposure and endocrine biomarkers, were

investigated. PFAS that were above LOQ in more than 25% of the

samples (PFOA, PFNA, PFDA, PFBS, PFHxS, and PFOS) were

included, as well as the summation of PFAS (total PFAS). Age and

weight were included as potential confounders, identified through a

directed acyclic graph (DAG; Supplementary Figure S1). Weight

was added as a proxy for body-mass-index, BMI, or body condition

score (BCS), as the variation in size was limited because the cohort

consisted of dogs from one specific breed. Previous research has

demonstrated associations between endocrine markers in serum

and semen parameters (35). Consequently, for sperm-related

outcomes, endocrine markers were considered potential

mediators and investigated as outcomes, while age and weight

were identified as potential confounders.
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First, the correlations between individual target PFAS detected

in >25% of the samples, total PFAS, endocrine biomarkers, and

semen quality were investigated using Spearman’s correlation. A p-

value <0.05 and correlation coefficient (r) > ± 0.25 were considered

indicative of a significant association.

To further examine the associations between sperm quality

parameters (motility, total sperm count, and MNS), hormonal

biomarkers (AMH, Inhibin, FAI, INSL3, ALP, and CPSE), and

exposure to PFAS, multivariate regression analyses were conducted

using both multiple linear regression (MLR) and Least Absolute

Shrinkage and Selection Operator (LASSO) regression (38). Age

and weight were included as potential confounders. MLR was

employed to estimate the effects of explanatory variables on each

response variable. Where assumptions of normality and

homoscedasticity were not met, response variables were log- or

square root–transformed, and Box-Cox transformations were

applied where appropriate. Model diagnostics, including residual

analysis and the detection of influential observations, were used to

validate model assumptions. LASSO regression, a penalized

regression technique that shrinks less relevant coefficients toward

zero, was used to enhance model selection and reduce the risk of

overfitting, particularly in the context of potentially correlated

predictors (38). Initially, both MLR and LASSO models included

age, weight, and total PFAS concentration (total PFAS) as

predictors. In a subsequent analysis, the predictor set was

expanded to include individual PFAS congeners (PFBS, PFDA,

PFHxS, PFNA, PFOA, and PFOS). All models were applied to

both sperm quality and hormone outcome variables. Statistical

significance was defined as p < 0.05, and all analyses were

performed using Minitab (Minitab version 19.2020.1 (64 bit)) and

R version 4.4.1 (R Core Team, 2025), LASSO regression was

performed using the glmnet package (version 4.1.8).

In addition, for the discussion, PFAS exposure in cats, humans,

and dogs from Sweden were compared using raw data on cat serum

sampled in 2013-2014 (39), and human samples from 2020 (40),

both from Stockholm region, Sweden. The concentrations of PFAS

analyzed in all three species (PFOS, PFOA, PFNA, PFHxS, PFHpA,

PFDoDA, and PFDA) were compared using one-way ANOVA (car

package, R 4.3.1). A p-value <0.05 was considered significant.
3 Results

3.1 PFAS exposure assessment

3.1.1 Target analysis
Statistics on PFAS levels in dog serum are reported in Table 1

and details on individual samples are given in Supplementary Table

S4. In all dog serum samples, PFOA, PFNA, PFDA, PFPeS, PFHxS,

and PFOS could be detected (detection frequency, DF = 100%),

although PFPeS levels were all below LOQ. The most frequently

quantified PFAS analytes were PFOA, PFNA, PFBS, PFHxS (linear),

and PFOS (linear and branched) with a quantification frequency

(QF) >70%. The highest average levels (5-95th percentile) of PFAS

were 0.44 ng PFOA/g serum (0.05-1.3), 0.39 ng PFHxS/g serum
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(0.05-0.95), and 2.1 ng PFOS-tot/g serum (0.35-6.4). Maximum

levels reported in individual serum samples were 17 ng 8:2 FTSA/g,

12 ng PFOS-tot/g, 5.3 ng PFOA, and 4.5 ng PFHxA/g

serum (Table 1).

3.1.2 Suspect screening
Of 311 PFAS in the inclusion list for suspect screening, 15 could

be tentatively identified in at least one sample (Table 2). The

confidence level for PFAS identification was between 4

(unequivocal molecular formula) and 2a (probable by library

spectrum match) according the definition presented by Charbonnet

and co-workers (41). Perflouro-4-ethylcyclohexanesulfonate

(PFECHS) was detected in 97% of the samples, followed by the

hydrogen-substituted H-PFOA, H-PFNA. H-PFDA was found in

more than 60% of the samples.

3.1.3 Correlation between PFAS target and
suspect compounds

In general, a significant correlation was found between

individual PFAS compounds (Supplementary Figure S2). The

relatively newly identified suspect H-PFCA in human serum

[Table 2, H-PFOA, H-PFNA, H-PFDA, and H-PFDoDA (42)]

correlated with each other. Suspect PFECHS correlated with all

target PFAS except PFOA, but not the other suspects (42).
3.2 Association between semen quality,
endocrine biomarkers and PFAS levels in
blood

Spearman’s correlation indicated a negative correlation between

semen quality and age (Supplementary Figure S2). There were also

some correlations observed between individual PFAS congeners

and endocrine biomarkers and/or semen quality (Supplementary

Figure S2). Only PFBS significantly correlated with higher age

(p<0.05). The correlation between PFAS and semen quality was

in general positive (positive correlation with MNS while negative

correlations with proportion specific defects, Supplementary

Figure S2).

The association between PFAS, endocrine biomarkers and

semen quality was investigated considering the possible

confounders age and weight. Multiple linear regression models

(MRLs, Supplementary Table S7) and LASSO regression

(Tables 3, 4) were used to evaluate these relationships. Age

emerged as a frequent and important predictor for semen quality

(Tables 3, 4). PFBS (b = 136.56, p = 0.026) was identified as a

relevant predictor for motility (Figure 1). For the proportion of

MNS, PFBS (b = 24.88, p = 0.086) was included in the model,

although only age was statistically significant. Total PFAS exposure

was not a significant predictor, and no variables were selected as

predictive for total sperm count.

Several significant associations were observed between age and

endocrine biomarkers, indicating that age is an important predictive

variable (Tables 3, 4). LASSO regression did not select weight as an

important predictor for endocrine biomarkers.
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In the investigation of association between PFAS and endocrine

biomarkers, PFBS was selected as a significant positive predictor for

FAI (b = 0,931, p=0,015). Additionally, PFBS was selected as

predictor for ALP concentrations in ejaculates (b = 6685544, p =

0.051), Inhibin B (b = 210,16, p=0.055), INSL-3 (b = -1269,5 p=

0.36) and CPSE (b =-1269,5, p=0,36) although none of these

associations reached statistical significance. PFOS was selected by

LASSO as a predictor for CPSE but not retained after ordinary least
Frontiers in Endocrinology 06
square (OLS) adaptation (b = 74.42, p = 0.09). Similarly, total PFAS

burden was included in the model for CPSE by LASSO regression,

although it did not reach statistical significance (b= 7.725, p=0.066).

There were no significant predictors for AMH.

Multiple linear regression showed no significant association

between PFAS exposure and semen quality, but a significant

positive association was observed between total PFAS exposure

and CPSE (p=0.03, Supplementary Table S7).
TABLE 1 Average, median, 5th and 95th serum levels (ng/g serum) of PFAS in dogs (n=65), together with the detection frequency (DF) and
quantification frequency (QF).

Target analyte Average Median 5th 95th Max DF (>LOD) QF (>LOQ)

PFBA 0.02 0.02 <LOQ <LOQ 0.11 36% 2%

PFPeA 0.01 0.014 <LOQ <LOQ 0.089 55% 5%

PFHxA 0.26 0.18 <LOQ 0.63 4.5 74% 11%

PFHpA 0.037 0.051 <LOQ <LOQ 0.18 70% 2%

PFOA 0.44 0.22 0.051 1.3 5.3 100% 79%

PFNA 0.24 0.15 0.032 0.74 1.1 100% 95%

PFDA 0.088 0.051 0.051 0.23 0.35 100% 29%

PFUnDA 0.071 0.051 0.051 0.21 0.30 98% 15%

PFDoDA 0.049 0.051 0.051 <LOQ <LOQ 97% 0%

PFTriDA 0.038 0.051 <LOQ <LOQ <LOQ 76% 0%

PFTeDA 0.0048 <LOQ <LOQ <LOQ <LOQ 33% 0%

PFHxDA 0.029 0.051 <LOQ <LOQ <LOQ 58% 0%

PFBS 0.023 0.015 0.0041 0.072 0.091 95% 74%

PFPeS 0.05 0.051 0.051 <LOQ <LOQ 100% 0%

PFHxS 0.39 0.33 0.051 0.95 1.7 100% 82%

PFHxS-br 0.0061 <LOQ <LOQ <LOQ <LOQ 12% 0%

PFHpS 0.048 0.051 0.013 <LOQ <LOQ 94% 0%

PFHpS-br 0.038 0.051 <LOQ <LOQ <LOQ 76% 0%

PFOS 1.5 0.93 0.27 4.1 9.9 100% 98%

PFOS-br 0.54 0.4 0.051 1.4 2.3 98% 91%

PFOS-tot 2.1 1.4 0.35 6.4 12 98% 98%

PFNS 0.0031 <LOQ <LOQ <LOQ <LOQ 6% 0%

PFDS 0.00066 <LOQ <LOQ <LOQ <LOQ 5% 0%

PFDS-br 0.00022 <LOQ <LOQ <LOQ <LOQ 2% 0%

4:2 FTSA 0.079 0.08 <LOQ 0.17 4.1 39% 18%

8:2 FTSA 0.29 0.29 <LOQ 0.14 17 29% 6%

9Cl-PF3ONS 0.0014 0.0014 <LOQ <LOQ <LOQ 33% 0%

EtFOSA 0.00019 0.00019 <LOQ <LOQ <LOQ 5% 0%

EtFOSAA 0.0012 0.0012 <LOQ 0.0031 0.05 6% 3%

FOSAA 0.00069 0.0007 <LOQ 0.0065 <LOQ 11% 0%

MeFOSAA 0.00063 0.00057 <LOQ 0.0041 <LOQ 15% 0%

NADONA 0.0005 0.00051 <LOQ 0.0041 <LOQ 12% 0%
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TABLE 2 Detected suspect features (abbreviation and chemical name), with detection frequencies (DF), chemical formula (neutral), theoretical mass to charge (m/z), m/z difference within the samples (delta m/z),
retention time (RT), isotopic pattern score (IPS) and level of confirmation according to Charbonnet et al., 2022 (41).

nfirmation

Detected in humans

Confirmation
DF RT

IPC
(mean)

Level 4

Level 4

Level 2a 28% 3,4 ± 0,2 100% Level 1b

Level 2a 12% 3,9 ± 0,2 80% Level 1b

Level 2c 62% 3,9 ± 0,2 100% Level 2c

Level 2c 12% 4,8 ± 0,2 100% Level 2c

Level 4 17% 4,6 ± 0,1 98% Level 4

Level 4

Level 3d 27% 4,1 ± 0,2 83% Level 3d

Level 3d 23% 4,4 ± 0,1 81% Level 3d

Level 3d 35% 4,8 ± 0,1 85% Level 3d

Level 2a 100% 4,3 ± 0,2 100% Level 1b
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Level 4 95% 4,5 ± 0,2 93% Level 4
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Abbreviation
From inclusion list

Chemical
formula

Theoretical
m/z

Delta m/z
[ppm]

Results this study

C
Chemical name DF RT IPS (range)

10:2 FTSA
10:2 Fluorotelomer sulfonic
acid

C12F21SO3H5 626,95513 <1,1 4,5% 5,6 ± 0,04 100%

12:3 FTCA
12:3 Fluorotelomer carboxylic
acid

C15F25O2H5 690,9818 <4,3 3,0% 5,6 ± 0,1 70-84%

H-PFOA H-substituted PFCA n=8 C8F14H2O2 394,97475 <2,5 74% 3,5 ± 0,4 68-100%

H-PFNA H-substituted PFCA n=9 C9F16H2O2 444,97207 <3,4 70% 4,2 ± 0,1 62-100%

H-PFDA H-substituted PFCA n=10 C10F18H2O2 494,96899 <3 61% 4,5 ± 0,1 100%

H-PFDoDA H-substituted PFCA n=12 C12F22H2O2 530,9664 <2,8 21% 5,4 ± 0,3 100%

mOPFLSA n=3
Multiple ether-substituted
perfluoroalkyl (linear)
sulfonic acids, n=3

C7HF15O5S 480,92324 <1,9 6,0% 4,9 ± 0,1 75-100%

ClOPFLSA n=6
Cl-substituted,ether-
substituted perfluoroalkyl
(linear)sulfonic acids, n=6

C8HF16O4SCl 530,89558 <0,5 1,5% 5,4 ± 0,1 76-100%

ClPFLCAs n=7
Cl-substituted perfluoroalkyl
(linear) carboxylic acids, n=7

C8HF14O2Cl 428,93688 <1,5 27% 4,4 ± 0,1 21 >60%

ClPFLCAs n=8
Cl-substituted perfluoroalkyl
(linear) carboxylic acids, n=8

C9HF16O2Cl 478,93368 <1,8 9,0% 4,7 ± 0,1 66-97%

ClPFLCAs n=9
Cl-substituted perfluoroalkyl
(linear) carboxylic acids, n=9

C10HF18O2Cl 528,93049 <1 12% 5,1 ± 0,1 66-100%

PFECHS (d/C PFSA
n=8)

Double bond/cyclic PFSAs
n=8

C8F15SO3H 460,93341 <2 97% 4,5 ± 0,4 63-100%

dPFAmCACEs n=7
Double bond perfluoroalkyl
amine carboxylic acids/
carboxyl esters, n=7

C15F28O2N 757,94874 <2,5 8,0% 6,7 ± 0,01 91-100%

eecec PFSA n=8
Enol ether-/cyclic ether-/
carbonyl-perfluoroalkyl
sulfonates n=8

C8F15SO4H 476,92833 <2,6 29% 4,6 ± 0,3 68-100%

PFAmCEs_i n=4
Perfluoroalkyl amine carboxyl
esters_i, n=4

C14H2F26O5N 757,95233 <4,2 6,0% 6,7 ± 0,01 75-97%

The results are compared to reported suspects in human blood samples from 2020, Engelhardt et al., 2025 (42).
o
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4 Discussion

In this study we present data on a wide range of target and

suspect PFAS in sera from a population of Bernese Mountain dogs

in Sweden sampled during 2020. By comparing PFAS levels

between dogs (this study), cats (39) and humans (40, 42) from

Sweden, we could show that the species have a similar exposure,

coming from the shared indoor environment (Figure 2). The

profiles in all species were dominated by PFOS, followed by

PFOA and PFHxS. Generally, cats were more exposed to the

PFCAs than dogs and humans, and humans had a higher

concentration of PFOS than cats and dogs. The higher

concentrations of PFOS in humans compared to both cats and

dogs are likely due to the fact that PFOS correlates with age in

humans (40). Except for PFBS, this study did not observe a

correlation between PFAS and age in our population, which could

be explained by the shorter lifespan of dogs compared to humans.

Similarly, no associations have been observed between exposure and

age in cats (39). Differences in exposure between species can be

attributed to variations in diet. In humans, diet is an important
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source of PFAS exposure (43), and specific food products have been

associated with exposure to certain congeners (44–46). In dogs,

dietary exposure appears to account for a smaller proportion of the

total exposure (29).

In humans, several adverse health outcomes have been

associated with PFAS exposure, resulting in revisions of the

legislation to counteract risks. There is a gap in knowledge about

possible adverse health outcomes associated with exposure to pets

(47), which calls for more research to understand the contribution

of PFAS in the development of disease in pets.

Infertility is a concern within the canine population with both

genetic and environmental etiology. A negative trend in semen

quality in dogs has been suggested (32), similar to the one reported

in humans (24). Parallel trends in both species point toward

potential environmental influences, such as exposure to

endocrine-disrupting chemicals from our shared environment.

However, our results do not suggest that PFAS exposure is a

major contributor to the decreased semen quality observed in

dogs. In humans, conflicting results have been reported regarding

associations between PFAS exposure and semen parameters or
TABLE 3 LASSO regression analysis investigating the association between PFAS levels in serum, semen quality and possible confounders Age, Weight.
Estimates (p-values), where NA indicate variables with no significant predictive value.

Response Intercept Age Weight PFBS PFDA PFHxS PFNA PFOA PFOS

Motility 74,83 -0,27 (0.005) NA 136,56 (0.026) NA NA NA NA NA

Total sperm count 1,15 NA NA NA NA NA NA NA NA

MNS 55,454 -0,26 (0.018) NA 24,88 (0.086) NA NA NA NA NA

AMH 5,55 NA NA NA NA NA NA NA NA

Inhibin 0,18 -0,01 (0.89) NA 210,16 (0.055) NA NA NA NA NA

FAI 0,061 -0,0008 (0.01) NA 0,931 (0,015) NA NA NA NA NA

INSL3 144,49 -0,63 (0.54) NA -1269,5 (0.36) NA NA NA NA NA

ALP 146217,2 -1599 (0.53) NA 6685544 (0.051) NA NA NA NA NA

CPSE 182,71 3,48 (<0.0001) NA 74,42 (0.09) NA NA NA NA NA
fr
PFDA was selected as predictive for FAI, PFNA for INSL-3 and PFOS for CPSE but excluded when OLS was performed.
TABLE 4 LASSO regression analysis investigating the association between total PFAS exposure semen quality, endocrine biomarkers including
possible confounders Age, Weight. Estimates (p-values), where NA indicate variables with no significant predictive value.

Response Intercept Age Weight PFAS_tot

Motility 77.08 -0.301(0.0016) NA NA

Total sperm count 1.1522 NA NA NA

MNS 55.844 -0.267(0.01) NA NA

AMH 5.55 NA NA NA

Inhibin 33.11 NA 0.976 (0.0499) NA

FAI 0.153 0.00098(0.0397) NA NA

INSL3 141.1 NA NA NA

ALP 208564.7 NA NA NA

CPSE 328.34 3.467(0.000002) -4.33(0.29) 7.17 (0.066)
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FIGURE 2

PFAS levels (average and min and max error bars) in blood serum determined in dogs (this study), cat (39) and humans (40) from Sweden.
FIGURE 1

Samples divided by quartiles of PFBS exposure vs sperm motility (%). There was a significantly increased motility (%) with higher PFBS exposure
(p=0.03).
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reproductive hormone levels (26, 27), possibly reflecting the

complexity of infertility. In dogs, data remain limited. By focusing

on a single breed in the current study, we minimized the

confounding from factors such as genetic variability, size, and

conformation, which are known to affect semen quality (48, 49).

Nonetheless, unmeasured confounders, including potential breed-

related predispositions, cannot be excluded. More research is

needed across diverse populations to clarify the possible

contribution of PFAS exposure to reproductive outcomes,

particularly concerning endocrine function.

We observed a potential positive association between PFBS

exposure and male reproductive parameters, specifically increased

sperm motility and elevated FAI. These findings should be

interpreted with caution, given the limited and inconsistent

literature. For example, a study in 740 healthy men reported a

negative association between PFBS and sperm count, but no

significant association with motility or total PFAS burden (50).

Another study found a negative correlation between PFBS and

motility, with stronger associations seen for PFAS concentrations in

semen compared to serum (51). Such findings suggest that

individual PFAS congeners may exert effects independent of total

exposure, in line with the results from the current study.

The potential mechanisms by which PFAS may influence male

reproductive function remain unclear. Conflicting results have been

reported, with PFAS mixtures inversely associated with estradiol and

E2/testosterone ratios in young men (50). In contrast, positive

associations between PFOA/PFOS and testosterone levels have been

found in highly exposed populations (52). Experimental studies in

other species also report inconsistent effects on testosterone regulation

(53). PFAS effects on biochemical parameters have also been noted in

canine studies (29, 30), although we did not assess biochemical

parameters in the present study, which may limit our mechanistic

interpretation. Taken together, these conflicting findings suggest that

PFAS may affect endocrine pathways with potential implications for

semen quality, though a clear understanding is still lacking.

The discrepancy between MLR and LASSO modelling in our

analysis further reflects this complexity. LASSO identified PFBS and

PFOS as potential predictors, whereas these associations were not

consistently significant in traditional MLR models. This difference

is likely attributed to issues such as multicollinearity among

predictors or small effect sizes, both of which can obscure true

associations in standard regression analyses.

Finally, PFAS-related effects may extend beyond reproductive

hormones. Our study found a positive association between total

PFAS exposure and CPSE. There is a positive association between

CPSE and prostatic size in dogs (54), where a large prostate

indicates prostate hyperplasia (55). The development of prostatic

hyperplasia in dogs and humans are similar, which means that

comparative aspects are of interest. In humans, associations have

been reported between PFOS and elevated PSA levels, as well as

PFAS mixtures and prostate hyperplasia (56). Although prostatic

hyperplasia is not equivalent to prostate cancer risk in dogs,

findings from human occupational cohorts suggest that PFAS

exposure may influence DNA methylation at prostate cancer risk

loci (57), warranting further investigation.
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Overall, our findings contribute to a growing and complex field

of research. Inconsistencies between studies, species, and analytical

approaches, combined with uncertainties in biological mechanisms,

underscore the need for further integrated research to better

understand the effects of PFAS on male reproductive health. This

study strengthens the foundation for a cross-species research

infrastructure, supporting the One Health perspective.

Furthermore, the research on dog cohorts on one specific breed,

or larger cohorts on mixed breeds, could be valuable for

investigating other health outcomes in males or females related to

exposure to endocrine disruptors.
5 Conclusions

This study presents the first data on a wide range of target and

suspect PFAS congeners in dog blood in Sweden, and associates the

levels with semen quality and endocrine biomarkers and a biomarker

for prostatic size. Our finding supports the notion that humans, dogs,

and cats share exposure to PFAS through the home environment,

highlighting the advantage of studying associations between exposure

and adverse health effects in these species. The study is a significant

contributor to the existing knowledge gap on exposure to endocrine

disruptors and health effects in dogs, contributing to the research

infrastructure bridging between species (58) with the benefit of both

humans and pets in a true One Health approach.
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