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The hypothalamus plays a central role in regulating metabolism by integrating
neuropeptide signaling with environmental cues to maintain energy homeostasis.
Adverse environmental factors, such as obesogenic diet, undernutrition, stress, and
sedentary lifestyles, can disrupt the normal regulation of key hypothalamic
neuropeptides and metabolic hormone receptors through epigenetic
mechanisms, including DNA methylation, histone modifications, and microRNA
regulation. These epigenetic alterations are not merely transient; they can be
heritable and may influence metabolic health across generations, highlighting the
critical need to understand the underlying epigenetic mechanisms. In this review, we
provide a comprehensive overview of how environmental factors shape the
epigenetic landscape of hypothalamic neuropeptides (pre-opiomelanocortin,
neuropeptide Y, and agouti-related peptide) and metabolic hormone receptors
(leptin receptor and insulin receptor), thereby modulating their expression and
contributing to long-term metabolic outcomes. A better understanding of
environment-epigenome interactions holds promise for the development of
innovative therapeutic strategies to combat obesity and metabolic disorders.

hypothalamus, epigenetics, neuropeptides, metabolism, obesity, metabolic hormone
receptors, energy homeostasis

1 Introduction

The brain is a critical organ in regulating metabolism, with several anatomical regions
pivotal to maintaining energy homeostasis (1, 2). Among these, the hypothalamus emerges
as a central regulator, coordinating many physiological processes in the body, including the
control of appetite, energy metabolism, stress response, thermoregulation, circadian
rhythms, the autonomic nervous system, the regulation of body fluid, control of
endocrine systems, and emotional and behavioral responses (3). Key hypothalamic
nuclei involved in energy regulation include the arcuate nucleus (ARC), ventromedial
hypothalamus (VMH), dorsomedial hypothalamus (DMH), and paraventricular nucleus
(PVN) (4-10). These structures work synergistically to integrate internal and external cues,
maintaining energy balance through neuropeptides and metabolic receptors.
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Hypothalamic neuropeptides such as neuropeptide Y (NPY),
agouti-related peptide (AgRP), pro-opiomelanocortin (POMC), and
cocaine- and amphetamine-regulated transcript (CART) play
contrasting roles in energy homeostasis. NPY and AGRP stimulate
appetite, promote food intake, and reduce energy expenditure (11, 12),
whereas POMC and CART inhibit food intake, promote satiety, and
increase energy expenditure (13). Additionally, receptors for metabolic
hormones like leptin and insulin contribute to metabolic function in
the hypothalamus. Dysregulation of leptin and insulin signaling has
been linked to the development of metabolic disorders (14, 15).

Environmental factors, including diet, stress, and physical
activity, modulate hypothalamic neuropeptides and metabolic
hormone receptors expression, and dysfunction in their expression
has been linked to metabolic disorders (16-19). Overnutrition,
particularly energy-dense diets, and chronic stress have been
implicated in epigenetic modifications leading to the development
and progression of metabolic diseases, particularly obesity (20). Such
changes are often prolonged, persisting across an individual’s lifespan
and potentially being transmitted across generations (21, 22). This
has led to a growing interest in understanding the role of epigenetics
as a key regulator of gene-environment interactions in the
development of metabolic disorders. Thus, exploring the epigenetic
underpinnings of these structures and their activities will improve our
understanding of the anomalies associated with metabolic health and
provide potential remedies.

Epigenetic mechanisms, including DNA methylation, histone
modifications, and non-coding RNAs such as microRNAs
(miRNAs), have been identified as key regulators of hypothalamic
neuropeptides and metabolic hormone receptors (23). These
mechanisms influence cellular transcriptional potentials, thereby
modulating phenotypes associated with energy regulation (24). For
instance, stress and diet-induced epigenetic changes have been
implicated in altered expression of neuropeptides like POMC,
AgRP, and NPY, and receptors such as the leptin receptor (LepRb)
and the insulin receptor (InsR) (25-28). Additionally, the CART and
endocannabinoid system (ECS) represent other epigenetically
modulated pathways with implications on energy homeostasis.
Recent advancements in understanding the complex interactions
between epigenetic modifications and neuropeptide gene expression
have increased the potential for therapeutic interventions. This review
considers an overview of the current understanding of the epigenetic
regulation of hypothalamic neuropeptides and some metabolic
hormone receptors and their functional roles, followed by an in-
depth analysis of how environmental factors influence their responses
or expression. This will deepen our understanding and hold promise
to advance personalized therapeutic strategies in preventing and
treating metabolic diseases.

1.1 DNA methylation

DNA methylation is a key epigenetic mechanism involving the
addition of a methyl group to the fifth carbon of cytosine (one of the
four nitrogen bases in DNA, the others being adenine, thymine, and
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guanine) to form 5-methylcytosine (29). This modification
primarily occurs at cytosines adjacent to guanine nucleotides,
known as CpG sites, although evidence suggests methylation can
also occur at non-CpG sites (30). CpG islands, regions with a high
density of CpG sites, are often located near gene promoters,
especially the housekeeping genes (31). These regions are crucial
in gene regulation, as they regulate chromatin structure and
transcription binding factors. Methylation of the CpG islands
typically results in gene silencing, whereas unmethylation or
demethylation promotes gene expression (32). Environmental
factors, such as diet and stress, have been implicated in altering
DNA methylation patterns, linking this mechanism to metabolic
disorders like diabetes and obesity (33). Given that the thymus and
the brain are the two most highly methylated human tissues (34),
the hypothalamus, being a critical regulator of energy homeostasis,
emerges as an important area for exploring the crosstalk between
DNA methylation and metabolic regulation.

1.2 Histone modifications

The DNA is condensed in a complex structure known as
chromatin, which is made up of histones H2A, H2B, H3, and H4
(35, 36). The degree of chromatin compaction determines the
accessibility of DNA to transcription, repair, and replication
machinery. Opening up the chromatin structure facilitates gene
activation, while more tightly packed chromatin suppresses gene
expression. Histone modifications, such as acetylation, methylation,
phosphorylation, sumoylation, deamination, and proline
isomerization, play a crucial role in gene expression by
influencing the access of transcription factors to DNA (37).
Acetylation and phosphorylation promote transcription by
loosening the chromatin and enhancing transcription factor
access (38), whereas sumoylation, deamination, and proline
isomerization generally lead to gene silencing. Depending on the
specific lysine residues involved, methylation and ubiquitination
exhibit dual roles, either activating or repressing genes (39, 40). Two
primary mechanisms underlie these histone modifications: (a)
disrupting nucleosome-nucleosome interactions to open
chromatin and (b) recruiting non-histone proteins that further
modify chromatin through enzymatic activities (39). These
dynamic modifications are critical for understanding the
regulation of metabolic pathways, especially in the hypothalamus,
which governs energy balance and appetite control.

1.3 MicroRNAs

miRNAs are small non-coding RNA molecules of 21 - 26
nucleotides that regulate gene expression by binding to the 3’
untranslated region (3UTR) of message-encoding RNAs (41-43).
This binding can either degrade the resulting messenger RNA
(mRNA) or inhibit its translation, depending on the level of
complementarity between the miRNA and its target mRNA.
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Perfect complementarity results in cleavages and degradation,
whereas imperfect complementarity initiates mRNA silencing by
specific mechanisms, including translational repression,
sequestration in cytoplasmic processing bodies, and/or slicer-
dependent mRNA degradation (44). The outcome of miRNA
processes is gene repression or silencing, which has been
implicated in many diseases, especially metabolic disorders
(45-47). Dysregulated miRNAs influence key hypothalamic
neuropeptides involved in appetite and energy balance,
contributing to conditions like obesity. Thus, we shall review the
metabolic effects of hypothalamic neuropeptides and receptors in
light of these epigenetic changes.

1.4 Pro-opiomelanocortin

In the brain, POMC, a 30-kDa prohormone, is highly expressed
in the arcuate nucleus of the hypothalamus, pituitary gland, and brain
stem (48, 49). Depending on the expression levels of prohormone
convertases, POMC gives rise to various active peptides and
hormones, such as melanocyte-stimulating hormones (MSH) (-
MSH, B-MSH, and y-MSH), adrenocorticotropic hormone (ACTH),
corticotropin-like intermediate lobe peptide (CLIP), Lipotropin (y-
lipotropin and B-lipotropin), and met-enkephalin (50, 51). As an
anorexigenic peptide, POMC suppresses appetite and increases
energy expenditure, leading to weight loss primarily through the
melanocortin signaling pathway, an important mechanism for
maintaining energy balance (52). Beyond regulating metabolism,
these products also regulate stress response, the immune system,
and sexual functions (53-55).

The pivotal role of POMC was illustrated by Krude et al. (56),
who described two patients with congenital absence of the Pomc
gene and its derived peptides. One patient carried two nonsense
mutations in exon 3, which led to losing key Pomc-derived peptides,
including ACTH, o-MSH, and B-MSH. The second patient had a
homozygous mutation in the 5’-untranslated region of Pomc,
impairing the proper translational initiation of the POMC
protein. Both patients presented with early-onset obesity due to
hyperphagia linked to impaired melanocortin signaling in the
hypothalamus, along with hypercortisolemia and distinctive
physical traits like pale skin and red hair due to reduced
activation of MCIR in melanocytes (56). Further evidence by
Farooqi et al. (57), demonstrated that loss of even one allele of
Pomc predisposes individuals to obesity, with 11 out of 12
heterozygous patients being either overweight or obese (57).
Animal studies also alluded to the role of Pomc in energy balance,
as Pomc-deficient mice and zebrafish developed severe obesity,
increased food intake, and insulin resistance (58-62). These
findings emphasize that hypothalamic POMC is critical for
regulating energy balance.

Various factors mediate the epigenetic modifications of Pomic,
influencing the phenotypic expression and metabolic outcomes. For
instance, a high-fat diet (HFD) has been shown to influence DNA
methylation of the Pomc gene promoter, thus affecting its
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expression. In a study by Cifani et al. (63), rats fed an HFD (45%
kcal fat) were classified as diet-induced obese or diet-resistant rats
based on their weight gain. While there was no difference in the
Pomc expression levels at the 5th week between diet-induced obese
and diet-resistant rats, by the 21st week, Pomc levels were elevated
in diet-resistant rats. Examination of the Pomc promoter revealed
decreased DNA methylation at the CpG sites 1,2,6, and 7 in
diet-resistant rats compared to diet-induced obese rats (63).
Furthermore, rats fed an HFD (60% kcal fat) from post-weaning
to adulthood exhibited DNA hypermethylation in specific regions
of the Pomc promoter, leading to reduced Pomc expression and
increased body weight when compared to the control (64). These
findings indicate that HFD promotes DNA hypermethylation of
the Pomc promoter, which decreases Pomc expression. This
reduction disrupts energy balance and feeding behavior,
potentially contributing to HFD-induced obesity.

Similar results were observed in human studies. However, due to
the challenges associated with directly investigating epigenetic changes
in the living human hypothalamus, researchers have explored the use
of alternative approaches, such as postmortem hypothalamus. In a
study using postmortem hypothalamic samples from obese and
normal-weight individuals with no history of neurodegenerative
disease or cancer, researchers performed a laser microdissection of
MSH-positive neurons. They found that the Pornc methylation in these
neurons positively correlated with the basal metabolic index of the
individual (65). Specifically, obese individuals showed increased
methylation at a CpG island at the intersection between Pomic intron
and coding exon 3, compared to non-obese individuals, thereby
suggesting that the Pomc hypermethylation in the MSH neurons
may impair satiety signaling and promote obesity. Additionally,
using leukocytes, one study examined the effects of an 8-week
hypocaloric weight loss program designed to induce a 30% energy
restriction (500 - 600 kcal/day) with a macronutrient composition of
55% carbohydrate, 15% protein, and 30% fat, on Pomc methylation in
obese male subjects. The participants were categorized as either “weight
regainers” or “non-regainers” based on weight changes observed 32
weeks after stopping dieting. Interestingly, the CpG sites 10 and 11 of
Pomc showed higher methylation levels in the regainers than non-
regainers at baseline (66). This finding suggests that the methylation
status of the Pomc promoter region is critical to regulating weight gain
and may provide a useful biomarker for potential early detection and
differential diagnosis of the predisposition to regain dietary-induced
weight loss.

Another factor that affects the methylation status of Pomc is
undernutrition, which is culpable in anorexia nervosa. The
peripheral blood mononuclear cells of healthy women,
underweight patients, and weight-recovered patients with
anorexia nervosa were examined for specific DNA methylation of
the Pomc gene expression (67). The researchers found that Pomc
expression was higher in underweight patients than in weight-
recovered patients or healthy controls. Although there was no
significant difference in the overall DNA methylation between the
groups, specific associations were found between the DNA
methylation of single CpG residues and the expression of Pomc
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mRNA (67). This suggests that changes in Pomc expression
observed in patients with anorexia nervosa may be more closely
related to nutritional deficiencies rather than the direct effects of
DNA methylation patterns or modifications.

Other factors, like stress and gender, also influence the DNA
methylation of Pomc. A study on the early life stress caused by 3
hours of daily separation of pups from their dams over 10
consecutive days reduced DNA methylation, increasing Pomc
mRNA in the pituitary gland (68). This suggests that early stress
exposure may upregulate Pomc mRNA, potentially influencing
long-term energy homeostasis. However, how much stress
exposure will be beneficial is still debatable, given that
prolonged stress has long-term metabolic consequences. Sex-
specific differences in the DNA methylation status of the Pomc
gene have been reported in various species, highlighting the role of
epigenetic regulation of hypothalamic neuropeptides in
metabolism. For instance, a study that determined the sex
differences in the DNA methylation patterns across eight sites of
the Pomc promoter of a 3-week-old chicken observed different
methylation patterns across the promoter. Female chickens
displayed higher methylation levels across the Pomc promoter
than males (69). This elevated methylation in females was
associated with reduced Pomc gene expression, suggesting that
sex-specific epigenetic modifications may contribute to differences
in metabolic regulation between male and female chickens.

However, demethylating the Pomc promoter does not always
produce lean or energy-regulated phenotypes. For example, the
cafeteria diet (CAF), which is an experimental rodent diet model
that provides up to 4.85 kcal/g, 49% of energy as fat, 7% as protein,
and 44% as carbohydrate, has been shown to influence Pomc
expression (70). Exposure to the CAF diet was found to reduce
methylation at the Pomc promoter in rats after 11 weeks and 20
weeks of feeding; however, this demethylation of the Pomc
promoter did not adequately counteract the increased food intake
observed, suggesting that an additional orexigenic mechanism is
responsible for the increase in body weight observed (71). Similarly,
targeted demethylation of the Pomc promoter by using CRISPR-
dCas9-TET1 in HED (60% kcal fat) fed rats did not prevent weight
gain. Methylation repression using CRISPR-dCas9-DNMT3a also
failed to alter body weight significantly (72), suggesting that Pomc
promoter methylation changes may result from weight gain during
obesity development rather than being its direct cause.

Further studies explored how adverse environmental factors
influence histone modifications at the Pomc enhancer region using
chromatin immunoprecipitation (ChIP) analysis. In one study,
pups fed a high-carbohydrate diet exhibited decreased histone
acetylation of H3K9 (H3K9ac) at the Pomc promoter compared
to mother-fed pups, thereby reducing Pomc expression and
contributing to diet-induced obesity (73). Adolescent alcohol
exposure in rats was shown to increase histone acetylation of
H3K9/14 at the Pomc promoter, leading to elevated Pomc mRNA
levels that continued into adulthood (74). However, the result is
different for offspring born to parents who consumed alcohol. A
study also showed that prenatal exposure to ethanol in rats led to
the production of offspring with suppressed histone activation
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marks (H3K4me3) and increased repressive marks (H3K9me2),
thereby reducing Pornc mRNA levels (75). The differences might be
because prenatal exposure affects the early development of the brain
during critical epigenetic reprogramming, whereas key brain
structures like the hypothalamus are already developed before
adolescent alcohol exposure. Nonetheless, it is clear that
environmental factors such as diet and alcohol can influence
histone marks and Pomc expression, affecting metabolic outcomes.

miRNAs play critical regulatory roles in gene expression,
including modulating hypothalamic Pomc expression, which is
pivotal in maintaining energy homeostasis. For example, in
leptin-deficient (ob/ob) mice, several miRNAs, such as miR-383,
miR-384-3p, and miR-488, were upregulated and have been shown
to negatively regulate Pomc mRNA expression (76). The
downregulation of Pomc leads to disruptions in energy balance
and contributes to the development of obesity. Importantly, with
the treatment of leptin in these animals, there was the restoration of
Pomc mRNA levels, underscoring the dynamic regulation of Pomc
by leptin-induced changes in miRNAs, positioning them as
potential therapeutic targets for metabolic disorders (76). Further
evidence that shows the involvement of miRNAs in metabolic
regulation comes from a study on the effect of prenatal alcohol
exposure to mice between postnatal day 2 and postnatal day 6,
which is the equivalent of the third trimester in humans due to the
similarity in brain development. It was observed that
prenatal alcohol exposure upregulated miR-383 and miR-384
while the Pomc gene expression was reduced in the mediobasal
hypothalamus at postnatal days 6 and 60, respectively (77). These
findings emphasize the influence of environmental factors, such as
diet and prenatal exposure, on miRNA-mediated Pomc regulation,
revealing a critical pathway by which miRNAs may impact
metabolic health and disease risk across the lifespan.

Moreover, miRNA-specific manipulations can influence Pomc
expression in the brain, particularly the hypothalamus. For
instance, the knockdown of miR-342 in mice increased Pomc
expression in response to a high-fat, high-sucrose diet, leading to
reduced food intake and reduced body weight, thus implicating
miR-342 expression in the development and progression of obesity
(78). Additionally, loss of miR-29a in Pomc neurons contributes to
hyperphagia, decreased energy expenditure, and obesity in female
mice (79). Suffice it to mention that miR-375 has been identified as a
negative regulator of Pomc expression in the pituitary gland.
Inhibition of miR-375 led to an approximately 40% increase in
the Pomc expression levels, while upregulation of miR-375
decreased Pomc expression levels (80). Put together, these
findings highlight the intricate regulatory network governed by
miRNAs in the hypothalamus, particularly in the Pomc neurons,
and targeting these miRNAs could be beneficial in managing
obesity and its related comorbidities.

The transgenerational effect of diet and environmental factors
on epigenetic regulation of DNA methylation of hypothalamic
neuropeptides is gaining attention among researchers. The DNA
methylation of the Pomc promoter can occur as early as embryonic
development and at different cell states. One study examining the
Pomc DNA methylation of human embryonic stem cells (hESCs)
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observed that naive cells showed decreased DNA methylation
compared to primed HI cells, even after differentiation (81).
However, when capacitated cells were used for hypothalamic
neuronal differentiation, there was a marked increase in Pomc
DNA methylation at the progenitor stage and even in Pomc-
expressing neurons. The researchers further identified a negative
correlation between Pomc DNA methylation and Pomc gene
expression at CpG 1 to 7 during human embryogenesis (81). This
early occurrence of DNA methylation of the Pomc gene implies that
metabolic disease risk could be programmed at the cellular level
before birth. As a result, if the methylation patterns persist or are
exacerbated postnatally by either diet or environmental factors, they
could predispose individuals to metabolic diseases by disrupting
energy balance and promoting obesity.

Neonatal DNA methylation is often associated with maternal
gestational age and nutritional patterns during these periods (82).
In one study, offspring of mice dams fed with a high-fat,
high-sucrose diet during pregnancy exhibited increased Pomc
mRNA expression and hypomethylation of Pomc promoter in the
hypothalamus, contributing to metabolic dysfunction in adulthood
(83). Also, mice dams exposed to ethanol consumption had
offspring with increased DNA-methylation enzyme (DNMTI),
causing an increase in Pomc gene methylation and a concurrent
reduction in Pomc mRNA expression (75). These findings suggest
that the parents’ nutritional status has the potential to alter the
methylation status of Pomc in the offspring, which may impact the
Pomc expression, causing altered regulation of food intake, energy
expenditure, and glucose homeostasis in adulthood.

1.5 Agouti-related peptide

AgRP is a potent orexigenic neuropeptide that stimulates
appetite and reduces energy expenditure, acting as an antagonist
to melanocortin receptors and predominantly present in the arcuate
nucleus (84-86). In mice, using designer receptors exclusively
activated by designer drugs (DREADD) to stimulate AgRP
neurons resulted in increased food intake, reduced energy
expenditure, and increased adiposity. On the other hand,
inhibition of AgRP neuronal activity reduced food intake,
highlighting the critical role of AgRP in regulating feeding and
energy balance (87). Also, when rats were exposed to a low-protein
diet, they exhibited increased AgRP mRNA expression and
enhanced food intake, whereas intracerebroventricular injection
of amino acids decreased AgRP mRNA and suppressed food
intake (88). When AgRP is knocked out in mice and Siberian
hamsters, the animals exhibit a reduced feeding drive and
reduced weight gain (89, 90). All of these findings show the
pivotal role of AgRP in influencing energy balance.

It is noteworthy that the different parts of the hypothalamus do
not respond the same way to factors initiating AgRP activation. For
example, a study in rats found an increased AgRP expression in the
PVN and VMH, and a reduction in the ARC, following a cafeteria
diet (91). When rat dams were fed a restricted protein diet during
gestation and lactation, their pups displayed reduced AgRP
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expression in the PVN, while there was no change in the
dorsomedial and lateral hypothalamus among pups fed by (92).

DNA methylation of the AgRp promoter region is less studied
because of the lack of CpG sites in the promoter region. Some
researchers could not even examine the DNA methylation of the
AgRP promoter because it does not contain any CpG sites in the
1200 nucleotides upstream of the transcription sites (91, 92). In one
study where rat pups born to caloric-restricted dams showed an
increased AgRP expression and a decrease in birth weight, the
researchers found that three CpG sites were 75% to 96% methylated
(93). Another study on maternal HFD exposure revealed sex-
specific differences in AgRP promoter methylation; male offspring
displayed increased methylation at four CpG sites associated with a
reduction in AgRP expression when compared to female offspring
(94). However, all these sites are positioned outside the CpG islands
of the AgRP promoter region.

Histone modification of AgRP has been observed to play a
crucial role in regulating feeding behavior in the hypothalamus by
influencing its expression and involvement in energy homeostasis.
In rats that experienced caloric restriction following HFD-induced
obesity, reduced repressive histone 3 lysine 9 methylation
(H3K9me2) at the promoter of AgRP led to increased AgRP
expression and heightened hunger signaling, suggesting
anxadaptive response to restore energy homeostasis (95).
Additionally, male rat offspring nursed by high-fat fed (60% Kcal
fat) dams and weaned to control diet (10% Kcal fat) had elevated
AgRP expression at six months with a significant increase in lysine-
specific histone demethylase 1 (LSD1) and a decrease in histone
deacetylase 1 (HDACI) highlighting the effects of maternal HFD on
the hypothalamic energy regulation of their offspring (96).

Not many studies examined the regulatory roles of miRNAs in
AgRP gene expression, likely due to the intricate feedback and
redundant signaling mechanisms that control appetite and
metabolism. In sheep, brain-derived neurotrophic factor (BDNF)
infusion increases AgRP expression in the ARC with a concurrent
increase in miRNA-33a-5p, miRNA-33 b-5p, and a reduction in
miRNA-377-3p and miRNA-214-3p, suggesting the role of these
miRNAs in the regulation of AgRP expression (97). Further
research, however, is still required to examine how miRNAs
influence AgRP gene expression in the hypothalamus, as this gene
is crucial in energy homeostasis.

1.6 Neuropeptide Y

NPY is an orexigenic peptide that is abundantly present in the
arcuate nucleus of the hypothalamus (98). It plays a key role in
regulating feeding behavior by stimulating appetite and increasing
hunger, leading to increased food consumption, fat accumulation,
weight gain, and obesity (99). NPY exerts its effects by binding to its
G protein-coupled receptors, primarily Y1R, which is a key receptor
driving appetite, along with other receptors like Y2R, Y4R, Y5R, and
Y6R (100). Npy and AgRP neurons are colocalized in the arcuate
nucleus, providing synergistic effects (101). A study reported that
mice deficient in Npy exhibited normal food intake and body weight
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under basal conditions, a phenomenon similarly observed in AgRP
knockout mice (102). A knockout of Npy or its receptors rarely
yields a marked phenotype because compensatory mechanisms,
such as other appetite-regulating neuropeptides like AgRP, adjust to
offset the deficiency (102).

Recent research has significantly advanced our understanding
of how epigenetic modifications impact Npy mRNA and its
promoter under different environmental influences. For example,
a study employed the use of restriction enzymes to assess the DNA
methylation status of the Npy promoter in rats fed a cafeteria diet
(CAF) at different feeding periods (71). They found that there was a
reduction in DNA methylation of the Npy promoter at 11 weeks
(medium term) and 20 weeks (long term) but not 4 weeks (short
term), leading to an increase in Npy mRNA contributing to
overeating and weight gain (71). This finding indicates that the
duration of environmental exposure significantly influences
epigenetic modifications in neuropeptides like Npy, potentially
explaining variations in metabolic phenotypes. Another study
showed that diet-resistant rats exhibited DNA methylation at the
5™ CpG site of the Npy promoter region when compared to diet-
induced obese rats (63). The increased methylation in diet-resistant
rats corresponded with reduced Npy expression, which correlated
with lower food intake and weight gain resistance compared to diet-
induced obese rats, thus preventing the rats from gaining weight.
Additionally, a clinical study examined the methylation status of the
Npy promoter region in obese males undergoing an 8-week
hypocaloric diet intervention and observed at 8 and 32 weeks
after the intervention, using leukocytes. The weight regainers
showed a significant decrease in the methylation levels of Npy
CpG sites 4 and 8 compared to non-regainers, even at baseline (66).
Apart from the fact that hypomethylation at these sites is associated
with decreased Npy expression, this finding also suggests that the
methylation status of the Npy promoter region may provide a useful
biomarker for potential early detection and differential diagnosis of
the predisposition to regain dietary-induced weight loss.

Furthermore, studies have also shown that there is a
transgenerational effect of diet-induced epigenetic changes in Npy
expression. For example, pups of dams fed a high-carbohydrate diet
showed reduced DNA methylation at the Npy promoter, leading to
increased Npy expression (73). These epigenetic alterations were
associated with hyperphagia, leading to increased weight gain and,
subsequently, obesity. This finding highlights that parental
epigenetic marks can persist through epigenetic reprogramming
during conception, thereby influencing the susceptibility to
metabolic diseases in adulthood.

Histone modification at the Npy promoter has also been
studied. Rats fed a high-carbohydrate diet showed increased
acetylation of H3K9 at the Npy promoter, which was linked to
elevated Npy expression, contributing to obesity. The same diet did
not significantly affect H3K9 methylation levels, suggesting that
histone acetylation may play a more prominent role in diet-induced
obesity (73). In another study where sex differences in the mice
hypothalamic neurons are explored, the researchers found that
H3K27me3 at the Npy promoter was higher in males than in
females, indicating a more suppressive effect in males. siRNA-
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mediated knockdown of Kdméa, a histone demethylase that
specifically targets H3K27, resulted in increased H3K27me3 at the
Npy promoter in females but not in males (103). This suggests that
different types of histone modifications, such as methylation and
acetylation, have distinct roles in regulating the target gene
expression of Npy and may be sex-specific.

Besides, stress-related factors have been shown to be associated
with epigenetic changes in Npy. For example, traumatic brain injury
was associated with a significant reduction in H3K9ac levels at the
Npy promoter in the arcuate nucleus, reducing food intake (104).
Likewise, phenyl butyric acid, an endoplasmic reticulum stress
inhibitor as well as a histone deacetylase inhibitor, has been
shown to increase Npy mRNA levels by increasing H3K9/14ac at
the promoter of Npy, further implicating a potential role of histone
acetylation in the development of obesity (105). These findings
suggest that stress or injury-induced changes to histone marks can
suppress Npy expression, thereby reducing appetite and potentially
altering energy balance. Moreover, pharmacologically targeting
histone acetylation can modulate Npy expression and influence
feeding behavior and weight gain.

miRNAs are also involved in regulating Npy expression. For
example, the downregulation of miR-103/107 in mice is associated
with reduced Npy mRNA expression, thereby affecting energy
homeostasis (106). Mice lacking miR-342 showed a significant
reduction in the total number of activated Npy in response to a
high-fat, high-sugar diet in mice (78). In humans, miR-4713 and
miR-452 were shown to be associated with increased Npylr among
obese children when assessed by miRwalk2.0, a tool for miRNA
target prediction (107). These findings suggest that interventions
targeting specific miRNAs might enhance our understanding of
metabolic control to combat obesity through the modulation of
Npy signaling.

1.7 Leptin receptor

The leptin receptor (LepR) belongs to the class 1 cytokine
receptor family (108, 109). It exists in two primary isoforms:
short forms and long forms (110). While the short form has
limited functionality, the long form (LepRb) plays a crucial role
in leptin signaling (111). LepRb is predominantly expressed in the
central nervous system, especially in the hypothalamus, a region
central to energy homeostasis. Circulating leptin, produced from
the adipose tissue, mediates its effect by binding to LepRb in the
brain, stimulating downstream signaling to regulate energy
homeostasis. Studies have demonstrated that the dysfunction of
LepRb or leptin signaling is involved in the development and
progression of obesity. For instance, a mutation in the LepRb
gene in humans resulted in weight gain and hyperphagia similar
to those observed in leptin-deficient transgenic mice (112, 113).
Deletion of LepRb in somatotrophs of the hypothalamus results in
obesity (114), emphasizing the essential role of hypothalamic leptin
receptors in maintaining energy balance.

The epigenetic modification of LepRb within the hypothalamus
is critical to metabolism. One study in mice observed that a
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maternal HFD increased the DNA methylation levels of the LepRb
promoter, increasing weight gain and reducing LepRb expression
among the pups (115). Although specific CpG sites were not
identified, higher global methylation levels were correlated with
the decreased expression of LepRb. Several studies have failed to
detect significant DNA methylation and found no significant
DNA methylation of LepRb in the hypothalamus (116-118),
potentially due to the unique epigenetic environment of this brain
region. It is likely that leptin signaling may rely more on post-
translational modifications or receptor sensitivity rather than DNA
methylation changes.

Histone modification of leptin receptors in the hypothalamus
has been shown to regulate metabolism. It was found that mice fed a
high-fat diet upregulated slug, a transcription factor that recruits
EZH2, which represses LepRb expression by increasing H3K27
dimethylation/trimethylation (H3K27me2/3) at the LepRb
promoter in the hypothalamus (119), suggesting that HFD can
epigenetically impact leptin receptor expression, thereby promoting
and developing metabolic disorders.

miRNA also regulates LepRb expression. The inhibition of miR-
200 in the hypothalamus was observed to increase the expression of
LepRb, resulting in suppressed appetite, reduced food intake, and
ultimately leading to reduced body weight (120), suggesting the
potential roles of microRNAs in regulating LepRb mRNA. Further
research on histone and miRNA modifications is needed to fully
elucidate the impact of epigenetic changes on regulating LepRb to
combat metabolic diseases.

1.8 Insulin receptor

In the brain, InsR is highly expressed in various brain regions,
including the hypothalamus, olfactory bulb, cerebral cortex,
cerebellum, and choroid plexus (121-123). InsR has two isoforms
known as “A” and “B” (124). The “A” isoform is primarily found in the
brain, while the “B” isoform is expressed in the liver, muscle,
adipocytes, and kidney (125). Insulin, produced from the beta cells
of the pancreas, crosses the blood-brain barrier to activate InsR in the
brain. However, InsR’s role extends beyond glucose metabolism
because only a fraction of glucose supplied to the neurons is insulin-
dependent. In the hypothalamus, InsR, as well as their substrates, are
vital for energy balance (126). In a transgenic mouse model where Insr-
2 is knocked out, the female mice had an increase in food intake and
body weight when compared to the control mice. No changes were
observed in male mice (127). When a selective decrease in
hypothalamic insulin receptor expression was performed using
osmotic pumps to infuse oligodeoxynucleotide antisense, the rats
became hyperphagic, had increased fat mass, and glucose intolerance
(128, 129). These findings highlight the importance of hypothalamic
insulin receptors in energy homeostasis and the need to examine how
epigenetic modifications impact their functions.

Overfeeding or overnutrition has been shown to alter the DNA
methylation of InsR. In a study that examined the effects of neonatal
overfeeding on InsR in the hypothalamus, the researchers observed
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an increase in methylation of the CpG island of the insulin receptor
promoter in over-nourished rats, resulting in rapid weight gain and
the development of metabolic syndrome (130). Another study in
rats showed that a maternal HFD led to hypermethylation of the
hypothalamic InsR in male offspring but not female, leading to
hyperleptinemia, hyperinsulinemia, impaired glucose tolerance,
increased insulin resistance, and obesity (131). Collectively,
these findings suggest early life overnutrition can induce sex
-specific epigenetic modifications of hypothalamus InsR, thereby
predisposing offspring to long-term metabolic dysregulation
and obesity.

miRNAs have been observed to regulate InsR in the
hypothalamus. In diabetic rats, miR-194-5p and miR-200a-3p are
upregulated, leading to reduced InsR protein levels while Inhibition
of these miRNAs restores InsR levels (132). Similarly, inhibition
of miR-200 in the hypothalamus of db/db mice increased InsR
expression, suppressed appetite, reduced food intake, and
decreased body weight (120). These findings highlight the roles of
hypothalamic miRNAs in regulating central insulin sensitivity and
energy balance.

1.9 CART and endocannabinoid system

In addition to well-characterized neuropeptides such as NPY
and POMC, several other hypothalamic regulators, including
CART, and components of endocannabinoid systems, play a
pivotal role in controlling energy homeostasis, feeding behaviors,
and metabolic adaptation. Although their physiological
significance is well established, the epigenetic mechanism
governing their expression and activity in response to
environmental cues remains incompletely understood.

CART is a key neuropeptide in the hypothalamus that plays a
crucial role in regulating energy balance and feeding behavior. As
an anorexigenic peptide, CART suppresses appetite and reduces
food intake (133). Knockout studies have shown that deletion of
Cart results in increased body weight and the development of
obesity (134, 135), emphasizing its critical role in maintaining
energy balance. Hypermethylation of the Cart promoter has
been linked to reduced Cart mRNA expression in calorie-
restricted rats, contributing to imbalanced energy intake and
obesity (136). Although the epigenetic regulation of Cart remains
underexplored, it has been suggested that many of its physiological
effects may overlap with those of Pomc. This highlights the need for
more studies on the epigenetic regulation of Cart, particularly in the
context of metabolic adaptations and disease.

The endocannabinoid system, which consists of the
cannabinoid receptor 1 (CBIR) and cannabinoid receptor 2
(CB2R), is an important mechanism involved in metabolism.
Activation of CBIR in the ARC and VMH stimulates appetite
and promotes energy storage, contributing to obesity,
inflammation, and insulin resistance (137, 138). Mice lacking
CBIR are resistant to diet-induced obesity, demonstrating the
regulatory roles of endocannabinoid signaling in energy balance
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(139). Maternal HFD increases CB1R expression in the offspring
and leads to sex-specific epigenetic modifications. For instance,
female offspring of rats not affected by maternal HFD exhibited
lower methylation at a CpG site within the CB1R intron but higher
histone H3 acetylation in the promoter region. In contrast, male
offspring exposed to maternal HFD showed increased histone
acetylation (140). These findings suggest that diet-induced
epigenetic modifications in CBIR may differ by sex and
environmental exposures. Although CB2R has also been implicated

10.3389/fendo.2025.1645474

in body weight control and glucose homeostasis, its epigenetic
regulation within the hypothalamus remains unexplored.

2 Conclusion and future direction

The hypothalamus is a complex neuronal network with notable
cell populations equipped to maintain energy homeostasis by
integrating hormonal, neural, and nutrient-related signals. It
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hormone receptors involved in the regulation of energy metabolism. Sustained exposure to these factors may lead to impaired metabolic signaling,

contributing to the development of obesity and related metabolic disorders.
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regulates both short-term appetite and long-term metabolic
adaptation to prevent energy imbalance and the development of
metabolic disorders such as obesity (141). Despite increasing
evidence linking hypothalamic dysfunction to metabolic disease,
the role of epigenetic regulation in this brain region remains
underexplored, warranting a comprehensive review to synthesize
current knowledge and identify future research gaps. In this review,
we have discussed how adverse environmental factors such as
malnutrition, alcohol consumption, stress, traumatic brain injury,
and sex-specific differences can trigger epigenetic changes in the
hypothalamus. Clinical and preclinical studies have demonstrated
that epigenetic changes, including DNA methylation, histone
modification, and regulation by non-coding RNA (miRNAs), can
modify the expression of genes critical for energy balance, such as the
neuropeptides (POMC, AgRP, NPY, CART) and metabolic hormone
receptors (LepRb, InsR, cannabinoid receptors). Disruption of these
signaling pathways within the hypothalamic nuclei (ARC, VMH,
DMH, PVN) impairs the brain’s ability to integrate metabolic cues,
leading to abnormal appetite regulation and reduced energy
expenditure. Over time, these changes promote the development of
obesity and related metabolic disorders (Figure 1).

Despite robust evidence from animal models, translating these
mechanistic insights to humans remains challenging. Ethical and
logistical constraints severely limit access to human hypothalamic
tissue, hindering direct validation of animal-based findings. Potential
solutions include the use of postmortem hypothalamic tissue
repositories, the generation of human induced pluripotent stem cell
(iPSC)-derived hypothalamic neurons, and the development of 3D brain
organoids to model human-specific epigenetic regulation (142).
Furthermore, non-invasive neuroimaging integrated with circulating
biomarkers, such as miRNAs, may provide functional proxies for
hypothalamic activity in living subjects. Beyond accessibility, the
complexity of epigenetic regulation, being cell-type specific, dynamic,
and shaped by multiple environmental inputs, requires advanced
methodologies. Future research should incorporate single-cell
epigenomic profiling, longitudinal study designs, and careful
consideration of sex differences to achieve a more precise
understanding of hypothalamic epigenetic mechanisms in
metabolic diseases.

A deeper grasp of these mechanisms creates a foundation for
novel therapeutic strategies targeting hypothalamic epigenetic
dysregulation in metabolic disease. One promising strategy is
miRNA modulation, such as miR-200 and miR-34a, which
influence neuropeptide and hormone receptor expression involved
in appetite control and energy homeostasis (120, 143-145).
Therapeutic agents like miRNA mimics or antagomirs could
normalize dysregulated pathways and restore metabolic balance.
Another approach involves reprogramming histone modification
states through drugs that activate or inhibit histone deacetylases
(HDACs:), histone methyltransferases (HMTs), or demethylases.
Importantly, some HDAC inhibitors are already in clinical use or
undergoing trials for cancer (146-149), offering opportunities for
repurposing toward metabolic disorders. Finally, precision epigenetic
editing tools, such as CRISPR-Cas9-based epigenetic editors, could
allow locus-specific modulation of gene expression, directly correcting
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pathogenic chromatin states within the hypothalamic neurons.
Collectively, these strategies rapidly define an emerging field, where
mechanistic insight and technological innovation converge to combat
obesity and metabolic syndrome at their epigenetic roots.
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