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Objective: This study explores the therapeutic potential and mechanisms of

Modified Danggui Buxue Decoction (MDBD) in diabetic retinopathy (DR) using

network pharmacology, bioinformatics, machine learning, Mendelian

randomization (MR), molecular docking, and in vitro experiments.

Methods: A network pharmacology was constructed in order to screen core

components and targets. Analysis of samples from the GEO database was

performed for target and immune cell analysis, resulting in the identification of

significantly differentially expressed core genes (SDECGs). A machine learning

model was utilized to screen feature genes and construct nomogram.

Preliminary validation was carried out using molecular docking, another GEO

dataset, and MR. Subsequently, samples were clustered based on SDECGs

expression and consensus clustering, followed by an analysis between clusters.

SDECGs expression was scored and differences between clusters were analyzed.

Finally, in vitro experiments were conducted on MMCs to assess the effects of

beta-sitosterol, the primary active component of MDBD, and siRNA on DR-

related biomarkers using CCK-8 assays, ELISA, western blotting and RT-qPCR.

Results: This study identified the core components of MDBD, including

quercetin, stigmasterol, beta-sitosterol, kaempferol, and 14 differentially

expressed SDECGs between DR and control groups, with both positive and

negative immune cell regulatory effects. Five feature genes (CCND1, ERBB2,

INSR, TP53, SERPINE1) were identified and used to construct a predictive model.

MR analysis revealed a causal link between elevated ERBB2 levels and increased

DR risk (Odds Ratio [OR]=1.860, 95% CI: 1.247-2.774, P = 0.002) using the

weighted median method. Beta-sitosterol displayed high binding affinity with

CCND1, ERBB2, INSR, and SERPINE1. Cluster analysis categorized DR samples

into four groups, with C1 showing low and C2 high SDECG expression and

immune cell upregulation. Significant differences in SDECGs and DEGs scores

were observed between C1 and C2. In vitro, ERBB2 expression was significantly

elevated in DR cell model. Beta-sitosterol inhibited ERBB2 protein and mRNA
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expression and reduced IL-1b, VEGF, and ANGPTL6 secretion. ERBB2 inhibition

also reduced these biomarkers.

Conclusion: MDBD treats DR by targeting SDECGs, modulating immune

responses, and reducing inflammation. Beta-sitosterol and ERBB2 inhibition

showed significant therapeutic effects, offering valuable insights for clinical

application and future research directions.
KEYWORDS

MDBD, beta-sitosterol, diabetic retinopathy, network pharmacology, molecular
docking, Mendelian randomization, in vitro validation
1 Introduction

Diabetic retinopathy (DR), a major complication of diabetes

mellitus (DM), is the leading cause of visual impairment and

preventable blindness among working-age adults worldwide (1). It is

classified into non-proliferative DR (NPDR) and proliferative DR

(PDR), both of which result from hyperglycemia-induced damage to

retinal blood vessels, causing swelling, leakage, and eventually bilateral

vision loss (2). The global prevalence of DR is estimated to range from

30% to 40%, with developing countries facing higher rates due to

limited access to healthcare and resources (3–5). Currently,

approximately 93 million people are affected by DR globally (6), and

modern lifestyle factors, such as physical inactivity and sedentary

behavior, further contribute to its prevalence (7). Both type 1 and

type 2 diabetes mellitus (T1DM and T2DM) accelerate the

progression of DR, with poor glycemic control, hypertension,

hypercholesterolemia, and insufficient physical activity identified as

key risk factors (8, 9). Alarmingly, the global incidence of DR among

adults is expected to rise to 129.84 million by 2030 and 160.50 million

by 2045 (10). Management strategies for DR aim to mitigate

pathological microvascular changes and preserve visual acuity (11).
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Intravitreal agents, such as anti-VEGF therapies like aflibercept and

ranibizumab, and corticosteroid implants including dexamethasone

and fluocinolone, have shown significant efficacy in reducing vision-

threatening complications, particularly diabetic macular edema (DME)

and PDR (12). However, anti-VEGF therapies are associated with

adverse effects, including macular ischemia, retinal pigment epithelial

tears, elevated intraocular pressure, endophthalmitis, retinal vasculitis,

and retinal artery occlusion (13). Corticosteroid treatments also pose

risks, such as inflammation, cataract formation, vision deterioration,

uveitis, ocular discomfort, blurred vision, and retinal detachment,

which may lead to lens opacity and vision loss (14). These challenges

show the importance of developing new management approaches to

reduce complications and improve patient outcomes.

In China, Traditional Chinese Medicine (TCM) has been widely

applied in the treatment of diabetic retinopathy (DR), with its efficacy

supported by clinical trials. A network meta-analysis has demonstrated

that integrating TCM with conventional Western therapies produces

better outcomes compared to Western medicine alone (15). The

Modified Danggui Buxue Decoction (MDBD), comprising Astragalus

membranaceus (Fisch.) Bge., Angelica sinensis (Oliv.) Diels, and Panax

notoginseng (Burk.) F.H.Chen. in a 1:5:1 ratio, is recognized for its

ability to nourish qi, replenish blood, and resolve stasis, thereby

improving DR (16). Astragalus membranaceus (Fisch.) Bge., a

perennial herb from the Leguminosae family, is a prominent

traditional Chinese medicine known for its function in replenishing

Qi and elevating Yang in TCM theory (17). The dried root of this herb

contains bioactive compounds, such as polysaccharides, flavonoids, and

saponins, which exhibit immunomodulatory, anti-inflammatory, and

anti-tumor activities (18–20). Angelica sinensis (Oliv.) Diels, the dried

root of a perennial herb in the Umbelliferae family, has long been used

in Chinese medicine for its role in nourishing and invigorating the

blood (21). Its therapeutic effects are attributed to mechanisms such as

antioxidant activity, regulation of apoptosis, and modulation of

inflammatory responses (22–24). Panax notoginseng (Burk.)

F.H.Chen., commonly known as a traditional chinese medicinal herb,

a widely utilized traditional Chinese medicinal herb, has been employed

for centuries to promote blood circulation and stop bleeding, making it

a vital component in haemostatic and tonic formulations (25). Its

pharmacological properties include significant effects on the
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cardiovascular and immune systems, as well as haemostatic, anti-

inflammatory, and anti-tumor activities (26–28). MDBD integrates

the synergistic effects of three potent herbs, offering a comprehensive

therapeutic approach to addressing blood-related disorders and

promoting overall health.

Sudies have demonstrated the compounds extracted from

Astragalus membranaceus (Fisch.) Bge., Angelica sinensis (Oliv.)

Diels, and Panax notoginseng (Burk.) F.H.Chen. in MDBD may

contribute to its benefits for DR. For example, astragaloside I,

extracted from Astragalus membranaceus, has been shown to reduce

renal fibrosis in diabetic kidney disease by inhibiting HDAC3 and

TGF-b1, thereby regulating the Klotho/TGF-b1/Smad2/3 pathway

(29). Similarly, Angelica polysaccharides from Angelica sinensis have

demonstrated the ability to alleviate glycemic disorders in T2D KKAy

mice by improving gut microbiota composition and function (30). In

addition, ginsenoside Rb1, the main active compound from Panax

notoginseng, has been reported to reduce high glucose-induced

podocyte apoptosis and mitochondrial damage by targeting aldose

reductase, slowing the progression of diabetic kidney disease (31).

Our previous clinical studies have shown that MDBD effectively

improves retinal health in patients with non-proliferative diabetic

retinopathy (NPDR). Fundus images revealed reductions in

microaneurysms, hemorrhages, and exudations, alongside

improvements in visual acuity, both superior to the untreated

NPDR or calcium dobesilate group (32–34). Key indicators of

blood routine, including White Blood Cell Count (WBC) and

Neutrophil Count (NE), liver function indicators Alanine

Aminotransferase (ALT) and Aspartate Aminotransferase (AST),

and kidney function indicators Blood Urea Nitrogen (BUN),

Creatinine (CRE), and Uric Acid (UA), remained within normal

ranges, with no significant differences observed after treatment (32,

33). MDBD demonstrates comparable efficacy and a favorable

safety profile, showing promise as a reliable and safe treatment

option. Furthermore, our previous study revealed that MDBD

protects retinal Müller cells from hypoxia-induced apoptosis by

inhibiting the ATF4/CHOP pathway, reinforcing its protective role

in DR (35). Despite these encouraging results, the mechanisms

behind MDBD’s therapeutic effects in DR remain unclear.

This study aims to comprehensively analyze MDBD’s role in DR

treatment, employing network pharmacology to identify its key

components and therapeutic targets. Differentially expressed core genes

(SDECGs) were identified using samples from the GEO database.

Validation was conducted through molecular docking, additional GEO

datasets, and Mendelian randomization (MR) to elucidate the specific

mechanisms and pathways involved. These findings provide a

foundation for further experimental validation (Figure 1).

2 Method

2.1 Collection of the components and
targets of MDBD

Active constituents and targets of Astragalusmembranaceus (Fisch.),

Angelica sinensis (Oliv.) Diels, and Panax notoginseng (Burk.) F.H. Chen

were identified via the Traditional Chinese Medicine Systems
Frontiers in Endocrinology 03
Pharmacology (TCMSP) platform (https://tcmsp-e.com/tcmsp.php).

Criteria for filtering included oral bioavailability (OB) of at least

30% and drug-likeness (DL) of at least 0.18. Target validation was

subsequently performed utilizing the UniProt database.
2.2 Identification of targets associated with
DR

Target genes associated with diabetic retinopathy were retrieved

by searching Genecards (https://www.genecards.org/), OMIM

(https://omim.org/), PharmGKB (https://www.pharmgkb.org/),

and Drugbank (https://go.drugbank.com/). The collected target

genes were consolidated, and duplicates were eliminated.
2.3 Development of the drug-component-
target network

The Venn package was employed to identify intersections between

active ingredients in MDBD and DR-related targets. Cytoscape

V3.10.0 was then used to construct a network, incorporating

diseases, drugs, components, and DR-related targets as nodes, with

their interrelationships represented as edges. Topological analysis was

conducted to identify core components within the network.
2.4 Construction of protein-protein
interaction network

The intersecting targets’ PPI network was retrieved from the

String database (https://string-db.org), specifying Homo sapiens as

the species and setting the minimum interaction score at 0.40.

Using Cytoscape V3.10.0, a network was constructed with nodes

representing diseases, drugs, components, and DR-related targets,

while edges depicted their relationships. To pinpoint key

components and core PPI targets, the MCODE plugin was

applied for clustering and topological analysis.
2.5 Acquisition and processing of GEO
samples

The keyword ‘Diabetic retinopathy’ guided sample searches in

the GEO database (https://www.ncbi.nlm.nih.gov/geo/), with

constraints on data type (expression profiles) and species (Homo

sapiens). Gene expression and clinical data were extracted to

evaluate core gene expression levels related to MDBD treatment

for diabetic retinopathy across normal and DR groups.
2.6 Differential expression and correlation
analysis of core genes

Core gene expression levels were extracted from control and DR

groups, followed by differential expression analysis using R

packages such as ‘limma’, ‘pheatmap’, and ‘ggpubr’ in R V4.3.3.

Results were visualized via box plots and heatmaps, identifying
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genes with P < 0.05 as SDECGs. Perl scripts determined the

chromosomal positions of these genes, which were then displayed

in circular plots using the R package ‘Rcircos’. The ‘cor’ function

calculated and visualized correlation coefficients for each SDECG.
2.7 Immune cell infiltration and correlation
in DR samples

The CIBERSORT command in R was employed to conduct

1000 simulations, determining the relative abundance of immune

cells. A bar graph was used to illustrate immune cell content per
Frontiers in Endocrinology 04
sample. Single-sample gene set enrichment analysis (ssGSEA) was

performed using R packages ‘GSVA’ and ‘GSABase’ to compare

immune cell content differences between normal and DR groups,

with results shown in box plots. Correlation testing was conducted

between SDECGs and ssGSEA scores, and coefficients were

visualized. CIBERSORT results were finalized.
2.8 Development of predictive models for DR

Four predictive models, Random Forest (RF), Support Vector

Machine (SVM), Generalized Linear Model (GLM), and Extreme
FIGURE 1

Study flowchart.
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Gradient Boosting (XGB), were developed based on SDECG

expression data. Feature genes were selected using residual

cumulative distribution plots, residual boxplots, and Receiver

Operating Characteristic (ROC) curves. The optimal model was

constructed incorporating feature genes and their expression levels

across normal and DR groups. Decision and calibration curves were

formulated to evaluate model accuracy.
2.9 MR analysis between feature genes and
DR

A two-sample Mendelian Randomization (MR) analysis was

conducted to explore the causal link between feature genes and DR

risk, with SNPs designated as instrumental variables (IVs). Feature

gene SNPs were sourced from the Integrative Epidemiology Unit

(IEU) database (https://gwas.mrcieu.ac.uk/) as exposure variables,

while DR-related SNPs were outcome variables . The

“TwoSampleMR” package facilitated MR analysis, employing the

inverse variance weighted (IVW) method to assess the correlation

between feature gene expression levels and DR risk. Heterogeneity

was examined using Cochran’s Q statistic, with P < 0.05 indicating

heterogeneity in IVW results. MR-Egger regression and MR-

PRESSO analysis were used to evaluate potential horizontal

pleiotropy, with P < 0.05 suggesting its presence.
2.10 Molecular docking of core
compounds with feature genes

The 3D structures of the core components and feature genes of

MDBD were re t r i eved f rom the PubChem (ht tps : / /

pubchem.ncbi.nlm.nih.gov) and Protein Data Bank (PDB) (http://

www.rcsb.org/) databases. Molecular docking was performed using

Autodock Vina to preliminarily verify the interaction between the

core network pharmacological components and feature genes,

and the top four docking combinations were selected and

visualized with Pymol. Differential expression analysis of

GEO datasets was performed to identify key genes between the

normal and DR groups, providing additional validation for the

molecular mechanisms.
2.11 Cluster analysis of SDECGs

The R package ‘ConsensusClusterPlus’ was utilized to

categorize DR samples based on SDECG express ion,

employing the k-means clustering technique with Euclidean

distance, allowing for up to nine clusters. Comparative

analysis of clustering outcomes was performed using heatmaps

and boxplots to evaluate expression levels. Principal Component

Analysis (PCA) was conducted to discern inter-cluster

differences. Subsequent ssGSEA analysis on SDECG clusters

generated bar plots to depict immune cell content variations

across clusters. Gene Ontology (GO) and Kyoto Encyclopedia of
Frontiers in Endocrinology 05
Genes and Genomes (KEGG) enrichment analyses were

executed using GMT files from the GSEA platform (http://

www.gsea-msigdb.org/). Gene Set Variation Analysis (GSVA)

was conducted in R V4.3.3 to assess enriched gene expression

across clusters. Differential gene expression analysis, adhering to|

logFC|>1 and adj.P-Value<0.05, was followed by Venn diagram

visualization to identify differentially expressed genes (DEGs)

among clusters.
2.12 Enrichment analysis of DEGs among
SDECG clusters

The DEGs among SDECG clusters underwent GO enrichment

analysis covering biological processes (BP), molecular functions

(MF), and cellular components (CC), alongside KEGG pathway

enrichment. These analyses were executed using R packages such as

“clusterProfiler” and “enrichplot” in R V4.3.3, with a screening

threshold of P-value <0.05. Results were depicted through circular

plots and bar graphs.
2.13 Cluster analysis of DEGs

An additional cluster analysis, based on DEG expression, was

performed using the methodology described in Section 2.11,

selecting the DEG cluster with the highest precision. The DEG

clustering results were used to compare DEG expression levels

across clusters, SDECG expression variations, and immune cell

content differences among clusters. These findings were visualized

using heatmaps and box plots.
2.14 Differential analysis of SDECGs and
construction of alluvial diagrams

Scores for SDECGs were computed for each sample based on

expression levels, utilizing PCA by incorporating PC1 and PC2.

Differential analysis of SDECGs and DEGs clustering scores was

executed using R packages such as “limma” and “ggpubr” in R

V4.3.3. Box plots were generated to depict SDECGs scores across

clustered samples. Additionally, the “ggalluvial” package facilitated

the creation of alluvial diagrams to illustrate relationships and

processes among SDECGs clusters, DEGs clusters, and samples

with varying SDECGs scores.
2.15 Preparation for beta-sitosterol

Beta-sitosterol (HY-N0171A, MedChemExpress, USA) was

dissolved in DMSO (D8371, Solarbio, USA). The solution was

subsequently diluted in complete culture medium for mouse

retinal Müller cells (CM-M117, Procell, China) to prepare various

concentrations as required for the experiments. Fresh solutions

were prepared immediately prior to use.
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2.16 Cell culture and DR cell model
induction

The mouse retinal Müller cells (MMCs) (CP-M117, Procell,

China) were purchased from Pricella Biotechnology Co.,Ltd. The

cells were cultured in in complete culture medium for mouse retinal

Müller cells (CM-M117, Procell, China), and maintained at 37.0 °C

with a CO2 concentration of 5% in a cell culture incubator. When

the confluence of MMCs reached over 80%, they were passaged

using trypsin (2.5% EDTA) (SH30042.01, HyClone, USA).

We induced DR cell model according to our previous study

(35), utilizing a hypoxia-induced injury approach to simulate the

conditions encountered in DR. MMCs were cultured under hypoxic

conditions by placing them in a hypoxia chamber with a controlled

oxygen concentration of 1% for a duration of 48 hours. Beta-

sitosterol were used to incubated MMCs for 24h. The cells were

harvested for subsequent analysis.
2.17 siERBB2 transfection

The RiboFECT™ CP transfection kit (C10511-05, RiboPharm,

China) facilitated cell transfection in a 6-well plate. A solution of

siERBB2 was prepared by mixing 3ml of 30mM stock with 120ml of
1X riboFECT™ CP Buffer, followed by the addition of 12ml of
riboFECT™ CP reagent to form the transfection complex. This

complex was combined with an antibody-free complete culture

medium and gently agitated. Subsequent treatments led to

incubation of the plates at 37 °C in a CO2 incubator for 24 hours

prior to assays.
2.18 Evaluation of cell viability using CCK-8
assay

Cell viability assessment was conducted using the Cell Counting

Kit-8 (CCK-8) (K009-1000T, Zeta-life, USA). MMCs were exposed

to various concentrations of Beta-sitosterol in medium at 37 °C for

24 hours following hypoxia induction. Post medium removal, 10 mL
of CCK-8 solution was introduced to each well and incubated in a

CO2 incubator for 1 hour. Absorbance was recorded at 450 nm

utilizing a microplate reader.
2.19 Real-time quantitative PCR

Total RNA extraction from MMCs was performed using TRIzol

(DP424, Tiangen, China). cDNA synthesis followed with the

RevertAid First Strand cDNA Synthesis Kit (K1622, Thermo,

USA). RT-qPCR was employed to evaluate mRNA expression

using 2x SYBR Green qPCR Master Mix (B21203, Selleck, USA) on

a CFX96™ real-time system (Bio-Rad, USA). Relative expression

levels of target genes were determined via the 2^-DDCt method, based

on obtained Ct values. Primers for analyzed genes included:
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Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2): forward, 5’-

CTGTGTGACCACCTGCCCCTAC-3 ’ , and reverse , 5 ’-

TGCCCAGACCATAGCATACTCC-3’; Beta-actin (b-actin):
forward, 5’-AGGTCATCACTATTGGCAACGAG-3’, and reverse,

5’-TTGGCATAGAGGTCTTTACGGAT-3’.
2.20 Western blotting

MMC lysis was achieved using the RIPA buffer (R0020,

Solarbio, USA) to facilitate protein extraction for subsequent

analyses. Quantification of proteins in the lysis supernatant was

conducted employing the BCA Protein Assay Kit (P0011, Beyotime,

China). Proteins were separated via SDS polyacrylamide gel

electrophoresis (SDS-PAGE) utilizing the SDS-PAGE Gel Kit

(P1200, Solarbio, USA), followed by transfer onto polyvinylidene

fluoride (PVDF) membranes (IPVH00010, Millipore, Germany).

After blocking and washing, the membranes underwent incubation

with a primary antibody for 20 hours, succeeded by a 2-hour

incubation with a secondary antibody. The proteins on PVDF

membranes were processed with BeyoECL Plus (P0018S,

Beyotime, China) to enhance chemiluminescence. Antibodies

employed for Western blotting included ERBB2 (18299-1-AP,

Proteintech), and glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) (UM4002, UtiBody, China).
2.21 Enzyme-linked immunosorbent assay

The quantification of interleukin-1b (IL-1b), vascular

endothelial growth factor (VEGF), and angiopoietin-like 6

(ANGPTL6) in Müller cells (MMCs) was performed using

specific enzyme-linked immunosorbent assay (ELISA) kits (MM-

0040M1, MM-0128M1, MM-48029M1, Meimian, China). ELISA

assays were conducted strictly following the manufacturer’s

protocols to ensure accuracy and reproducibility. Absorbance

measurements were taken at 450 nm using a calibrated

microplate reader, and the concentrations were calculated by

comparing the absorbance values to standard curves generated

during the assay.
2.22 Statistical analysis

The statistical analysis was conducted using GraphPad Prism 10

software (GraphPad Software, USA). Quantitative data were

expressed as mean ± standard error of the mean (SEM). For

comparisons among multiple groups, one-way analysis of

variance (ANOVA) was applied, followed by Fisher’s LSD test or

Tukey’s post hoc test for pairwise comparisons. Differences between

two groups were analyzed using the Student’s t-test. Statistical

significance was determined by a Type I error probability (a) of
less than 5%, with significance levels presented as P < 0.05, P < 0.01,

or P < 0.001 to denote varying degrees of statistical difference.
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3 Results

3.1 Constituents and targets of MDBD

Active constituents and targets of Angelica sinensis, Astragalus

membranaceus, and Panax notoginseng were acquired via the

TCMSP database. Following the elimination of duplicates and

irrelevant entries, 30 distinct active components and 1207

associated targets were identified (Supplementary Table S1).
3.2 Targets associated with DR

Targets numbering 4848, 185, 64, and 4 were sourced from

Genecards, Pharmgkb, OMIM, and Drugbank, respectively. After

duplicate removal, a total of 4973 DR-related targets were

obtained (Figure 2).
3.3 Network of “drug-component-target”

The intersection between each active ingredient in MDBD and

DR-related targets was determined using the venn package,

resulting in 130 targets directly linked to drug and disease

(Figure 3A). Topological analysis was conducted to pinpoint core

components within the network (Figure 3B).
3.4 PPI network

The PPI network of intersecting targets was extracted from the

String database, with Homo sapiens specified as the species. The

network comprised 80 nodes and 1318 edges, with an average node

degree of 35.5. The MCODE plugin facilitated clustering of the PPI

network to identify core PPI targets, yielding two clustered

networks with a minimum interaction score of 0.40. Seventy-four

core targets were identified, including MAPK8, CASP9, IL1A, IFN,

EGFR, IL1B, CDKN1A, SOD1, ERBB2, NOS3, and CD40LG, which

are deemed significant for MDBD treatment of DR (Supplementary

Table S2; Figure 4).
3.5 Sample acquisition in GEO datasets

The keyword “diabetic retinopathy” was utilized to extract

samples from the GEO database, with restrictions on data type

and biological species. Gene expression and clinical data were

obtained to assess the expression levels of core genes in MDBD-

treated DR within normal and DR cohorts. Two datasets were

selected: GSE160306, GPL20301. Macular tissue analysis was

performed across various clinical stages: DR for diabetic

retinopathy; NPDR for non-proliferative diabetic retinopathy;

PDR for proliferative diabetic retinopathy; DME for diabetic

macular edema, where elevated scores denote more severe lesions.

The study included 20 normal samples and 39 DR samples.
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3.6 Variations in core gene expression,
chromosomal localization, and expression
correlation of SDECGs

Seventy-four core genes of MDBD were identified through

network pharmacology analysis (Supplementary Table S2).

Expression levels were extracted from both the control and DR

groups, followed by differential expression analysis. Fourteen genes,

including NR3C2, PSMG1, INSR, HIF1A, RXRB, IKBKB, CAV1,

RXRA, TP53, CCND1, ERBB2, ADRB1, PLAT, and SERPINE1,

were validated as SDECGs core genes in human samples. Except for

HIF1A, PSMG1, ADRB1, and PLAT, which exhibited high

expression in the control group, the remaining genes were highly

expressed in the DR group (Figures 5A, B). Chromosomal positions

of MDBD core genes were mapped in RCircos (Figures 5C, D).

Correlation analysis among SDECGs in DR samples revealed strong

correlations, encompassing both positive and negative relationships

(Figures 5E, F).
3.7 Immune cell infiltration, differentiation,
and correlation in control and DR samples

Single-sample gene set enrichment analysis (ssGSEA) was

conducted to compare immune cell levels between control and

DR groups (Figure 6A), identifying statistically significant immune

cells such as macrophages M0 with elevated expression in the DR

group and resting dendritic cells with high expression in the control

group. Immune cell infiltration analysis determined the types and

levels of immune cells in each sample, visualizing these levels

(Figure 6B). The intersection of SDECGs with ssGSEA scores for

immune cell correlation testing indicated that correlations between

SDECGs and immune cells included both positive and negative

relationships (Figures 6C, D). Among the immune cells significantly

associated with SDECGs (P < 0.05), dendritic cells resting,

eosinophils, macrophages M0, macrophages M1, neutrophils,

activated NK cells, resting CD4 memory T cells, CD8 T cells, and

regulatory T cells (Tregs) were predominantly positively correlated

with the relevant SDECGs. Conversely, memory B cells, naive B

cells, macrophages M2, resting mast cells, monocytes, plasma cells,

and follicular helper T cells were mainly negatively correlated with

the relevant SDECGs.
3.8 Selection of machine learning models
and construction of predictive models for
DR treatment

Expression data of SDECGs served to construct four predictive

models: RF, SVM, GLM, and XGB. Analysis of residual box plots,

ROC curves, and reverse cumulative distribution plots

demonstrated that the RF model achieved the highest accuracy,

featuring the largest area under the ROC curve and minimal

residuals and reverse cumulative values (Figures 7A–C). The RF

model, selected for further development, facilitated the construction
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FIGURE 2

Targets associated with diabetic retinopathy in multiple databases. The overlapping regions represent duplicates.
FIGURE 3

Drug-component-target network. (A) Venn diagram of intersection between compounds in MBDB and DR-related targets. (B) Interaction network of
drug-component-target. This network comprises three traditional Chinese medicines, encompassing 20 compounds and 130 targets. MBDB,
Modified Danggui Buxue Decoction.
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of a predictive model to derive feature importance scores for the

genes. Results indicated that SERPINE1 had the highest score, with

gene importance ranked as SERPINE1, TP53, ERBB2, CCND1,

INSR, PLAT, NR3C2, CAV1, PSMG1, and RXRA (Figure 7D). The

top five genes, CCND1, ERBB2, INSR, TP53, and SERPINE1, were

utilized for nomogram construction (Figure 7E). Finally, decision

and calibration curves assessed the predictive model’s accuracy,

demonstrating high accuracy based on positive outcomes

(Figures 7F, G).
3.9 Mendelian randomization analysis of
feature genes and DR

MR analysis was executed to investigate the causal relationship

between specific feature genes and DR, with SNPs defined as IVs.

SNPs from signature genes were utilized as exposure factors, while

SNPs related to DR served as outcome factors. Information on the

SNPs for the four highlighted genes CCND1, ERBB2, INSR, and

SERPINE1 can be found in Supplementary Table S3. No SNPs were

identified as weak IVs. Due to insufficient data, MR analysis could not

be performed on TP53. IVW analysis indicated that ERBB2 is linked

to an increased risk of DR (Odds Ratio [OR]=1.70, 95% CI: 1.016 to

2.856, P = 0.04), whereas the other three genes did not exhibit a

significant causal relationship with DR (Figure 8A; Supplementary

Table S4). The IVW results confirmed ERBB2 as a risk factor for DR,

with consistent effect directions observed in the weighted median

analysis (OR = 1.860, 95% CI: 1.247-2.774, P = 0.002), as

demonstrated by both scatter and forest plots (Figures 8B, C).

Cochran’s Q test was employed to evaluate study heterogeneity,

revealing significant heterogeneity among the selected instrumental
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variables (P = 0.003) (Figure 8D; Supplementary Table S5).

Consequently, IVW with random effects was applied in all MR

analyses to mitigate heterogeneity impact. Despite Cochran’s Q test

detecting some heterogeneity, MR-Egger analysis showed minimal

influence from horizontal pleiotropy (P>0.05) (Figure 8D;

Supplementary Table S4), indicating no directional pleiotropy and

affirming stable causal relationships. The leave-one-out analysis

demonstrated consistent MR analysis results upon sequential SNP

removal, indicating robustness and negligible impact on the overall

findings (Figure 8E).
3.10 Molecular docking analysis and
validation of GEO datasets

Autodock Vina was utilized for molecular docking to

preliminarily validate interactions between core pharmacological

components and feature genes. The optimal docking combinations

were selected and visualized using Pymol. Through molecular

docking analysis of feature genes and core components of MDBD,

it was observed that the binding energy for all docking

combinations was below -6.0 kcal/mol, suggesting stable

structures could be formed between feature genes and core

components (Figure 9A; Supplementary Table S6).

Figures 9B–E showed the top docking combinations of four key

gene proteins with the core components of MDBD, while Figure 9F

presented differential expression analysis of GEO datasets between

the control and DR groups. Beta-sitosterol exhibited high binding

affinity with CCND1, ERBB2, INSR, and SERPINE1. Alkyl

interactions with CCND1 residues CYS132, MET31, LEU56, and

ALA153, along with van der Waals forces with CCND1 residues
FIGURE 4

PPI network for modified danggui buxue decoction. (A) Protein-protein interaction network for diabetic retinopathy targets. (B) Sub-networks
highlighting key protein clusters. The protein-protein interaction network, based on targets for diabetic retinopathy, is illustrated. Nodes symbolize
distinct proteins, while edges indicate protein associations, with line thickness reflecting data support strength.
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GLU162, ASP159, MET155, LYS114, MET113, HIS153, VAL27,

ASN131, and ARG59 were noted, with a docking energy of -8.3

kcal/mol (Figure 9B). Conventional hydrogen bonds were formed

with ERBB2 residues TYR100, GLY165, THR164, and SER162,
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along with van der Waals interactions with ERBB2 residues

SER188, ASN99, TYR236, ASN235, and TYR166, and a pi-alkyl

interaction with TYR100, resulting in a docking energy of -8.5 kcal/

mol (Figure 9C). Beta-sitosterol also established a conventional
FIGURE 5

Gene Expression Analysis. (A) Box plot of core gene expression. The horizontal axis is core genes, and the vertical axis is gene expression level. Data
presented as mean ± SEM. *P<0.05; **P<0.01; ***P<0.001. (B) Heat map of SDECGs expression levels. Red presents upregulated genes, and blue
presents downregulated genes. Data presented as mean ± SEM. *P<0.05; **P<0.01; ***P<0.001. (C) Circular plot of chromosomal locations of
SDECGs; (D) Circos plot of 14 SDECGs. (E) Circular plot of the correlation among SDECGs, with red indicating positive and green negative
correlations. (F) Correlation matrix between SDECGs. Red presents positive correlation, and blue presents negative correlations.
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hydrogen bond with INSR residues ARG1092 and a carbon

hydrogen bond with GLU1207. Additional van der Waals

interactions with residues GLU1094, PRO1093, SER1204,

THR1203, PRO1104, MET1109, PRO1235, CYS1234, ASN1233,

ASP1232, and PRO1231, as well as alkyl interactions with LUE1205

and PRO1103, were observed, with a docking energy of -8.4 kcal/

mol (Figure 9D). Furthermore, beta-sitosterol demonstrated high

binding affinity for SERPINE1 residues SER233 through

conventional hydrogen bonding and ASP216 through carbon

hydrogen bonding. Van der Waals interactions with SERPINE1

residues ARG265, LEU267, LEU231, ARG181, and GLN273, along

with pi-alkyl interactions with residues ILE218, TYR204, MET195,

VAL268, PHE352, and PRO237, were also noted, with a docking

energy of -9.3 kcal/mol (Figure 9E).
3.11 Cluster analysis of SDECGs and inter-
cluster comparisons

K-means clustering, utilizing Euclidean distance and a

maximum of nine clusters, was employed to categorize DR

samples based on SDECG expression. The analysis revealed two

distinct clusters, achieving optimal accuracy (Figures 10A, B) and
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demonstrating high cluster stability (Figures 10C, D). Subsequent

examination of SDECG expression in these clusters identified

significantly elevated levels of NR3C2, PSMG1, INSR, HIF1A, and

RXRB in Cluster C1 (P < 0.05, P < 0.01, P < 0.001), whereas IKBKB,

CAV1, RXRA, TP53, CCND1, ERBB2, ADRB1, PLAT, and

SERPINE1 showed increased expression in Cluster C2 (P < 0.05,

P < 0.01, P < 0.001) (Figures 10E, F). Principal component analysis

(PCA) results indicated a discernible separation between Clusters

C1 and C2, with Cluster C1 exhibiting a higher density

(Figure 10G). To assess immune cell level variations between C1

and C2, ssGSEA was conducted, identifying statistically significant

immune cell populations. Notably, Cluster C1 exhibited higher

fractions of CD8+ T cells, resting dendritic cells, and resting mast

cells (P < 0.05, P < 0.01, P < 0.001), while Cluster C2 had elevated

levels of resting CD4+ memory T cells, regulatory T cells (Tregs),

M0 macrophages, and eosinophils (P < 0.05, P < 0.01, P < 0.001)

(Figure 10H). Immune cell infiltration analysis further

characterized the immune cell types and levels in each cluster,

visually depicted in Figure 10I.

GSVA revealed that terms related to the dicarboxylic acid

biosynthetic process, pyrimidine ribonucleoside monophosphate

biosynthetic process, neuron cellular homeostasis, nucleoside kinase

activity, fatty acyl-CoA metabolic process, and oxoglutarate
FIGURE 6

Immune Cell Infiltration Analysis. (A) Bar plot of differences in immune cell fraction between control and DR group. The horizontal axis is immune
cells, and the vertical axis is immune cell fraction. The data are presented as the mean ± SEM. *P<0.05. (B) Distribution proportion of immune cells
within samples. (C) Heatmap of correlations between immune cell infiltration and SDECG. The horizontal axis is SDECGs, and the vertical axis is
immune cells. Red presents positive correlation, and blue presents negative correlations. The data are presented as the mean ± SEM. *P<0.05;
**P<0.01; ***P<0.001. (D) Network and heatmap of correlations between immune cell infiltration and SDECG. Darker colors indicate stronger
correlations between immune cells; thicker lines indicate stronger gene–immune cell correlations. Red presents positive correlation, and blue
presents negative correlations.
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dehydrogenase complex were upregulated in C2 compared to C1.

Conversely, terms associated with the secretory granule membrane,

cyclin-dependent protein serine/threonine kinase inhibitor activity,

lysine acetylated histone binding, polysaccharide binding, and positive
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regulation of histone H3 K4 methylation were downregulated

(Figure 9J). KEGG analysis indicated that pathways such as

proximal tubule bicarbonate reclamation, terpenoid backbone

biosynthesis, riboflavin metabolism, pyruvate metabolism, oocyte
FIGURE 7

(A) ROC curves and AUC for RF, SVM, GLM, XGB. (B) Box plots of residuals distribution. The horizontal axis is residuals, and the vertical axis is
models. Red dot denotes the root mean square of residuals. (C) Reverse cumulative residual distribution. The horizontal axis is residuals, and the
vertical axis is reverse cumulative proportion (%). (D) Feature importance for RF, SVM, GLM, XGB. The horizontal axis is root mean square error loss
after permutations, and the vertical axis is feature genes. The larger the value, the more important the feature gene. (E) Nomogram predicts disease
risk using key features. (F) Calibration plot: predicted vs. actual probability. (G) Performance metrics include RMSE for model accuracy.
FIGURE 8

Mendelian randomization analysis of feature genes and DR. (A) Mendelian randomization analysis of five top feature genes. (B) SNP effects on ERBB2
and diabetic retinopathy. (C) Forest plot of MR effect sizes for ERBB2 on diabetic retinopathy. (D) Funnel plot for MR analysis of ERBB2 on diabetic
retinopathy. (E) Leave-one-out sensitivity analysis for MR of ERBB2 on diabetic retinopathy.
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meiosis, and xenobiotic metabolism by cytochrome P450 were

upregulated in C2 relative to C1, whereas sulfur metabolism, cell

cycle, circadian rhythm, ECM receptor interaction, and prion diseases

were downregulated (Figure 10K).
3.12 DEGs enrichment analysis across
SDECG clusters in DR samples

Enrichment analysis was conducted to elucidate the biological

functions and pathways linked to the 726 DEGs, thereby revealing

the mechanisms through which MDBD influences DR from

various perspectives. The DEGs underwent GO enrichment
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analysis for BP, CC and MF. Findings indicated significant

enrichment of DEGs in BP, primarily involving neuron and cell

development, encompassing neuron projection regulation, axon

development, posit ive regulation of cell development,

axonogenesis, and wound healing. Enrichment in CC included

collagen-containing extracellular matrix, neuronal cell body, and

endoplasmic reticulum lumen, while MF enrichment comprised

growth factor binding, cytokine binding, and voltage-gated

monoatomic ion channel activity (Figures 11A, B). KEGG

enrichment analysis suggested DEG involvement in pathways

such as complement and coagulation cascades, pertussis, TGF-

beta signaling, focal adhesion, and the PI3K-Akt signaling

pathway (Figure 11C).
FIGURE 9

Molecular Docking analysis of feature genes and core components of MDBD and validation of GEO datasets. (A) Heatmap of molecular docking
analysis of feature genes and core components of MDBD. The horizontal axis is five top feature genes, and the vertical axis is core components.
Darker color denotes weaker affinity and lighter color denotes stronger affinity. (B–E) Molecular docking of Beta-sitosterol with CCND1, ERBB2,
INSR, and SERPINE1. (F) Differential expression analysis between the control and DR groups. The horizontal axis is feature genes, and the vertical axis
is gene expresion level. The data are presented as the mean ± SEM. *P<0.05.
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3.13 Analysis of DEG clusters and inter-
cluster comparisons

K-means clustering, utilizing Euclidean distance with a

maximum of nine clusters, was applied to classify DR samples

based on the expression of 726 DEGs. This approach resulted in the

division of samples into two distinct clusters, achieving precise

outcomes (Figures 12A, B) and demonstrating high stability

(Figures 12C, D). A subsequent analysis of DEG expression

within these clusters identified 305 DEGs with significantly
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increased expression levels in Cluster CI and decreased levels in

Cluster CII, including CD163L1, PCYT2, SLC45A1, and ELOVL6.

Conversely, 421 DEGs showed elevated expression in Cluster CII

and reduced levels in Cluster CI, such as LPAR6, CGNL1, SHISA9,

and TNFRSF1B (Figure 12E). Principal Component Analysis (PCA)

revealed a clear distinction between the clusters, with Cluster CI

exhibiting a higher density than Cluster CII (Figure 12F). ssGSEA

results indicated a high expression of naive B cells, CD8+ T cells,

resting dendritic cells, and resting mast cells in Cluster CI (P < 0.01),

whereas regulatory T cells (Tregs), activated NK cells, and M0
FIGURE 10

Clustering and Expression Analysis of SDECGs. (A) A heatmap of the consensus matrix for the clustering of SDECGs across samples. (B) The
cumulative distribution functions derived from the consensus matrix of SDECGs clustering. (C) The cluster consensus plot of mean consensus scores
across different clusters. The horizontal axis shows the number of clusters (k = 2–9), and the vertical axis shows the mean consensus score. Colors
represent the respective clusters. (D) The tracking plot of mean consensus scores for diverse clusters. (E) Heatmap of the expression of SDECGs
between C1 and C2. Red presents upregulated genes, and blue presents downregulated genes. (F) The box plot of he expression differences of
SDECGs between C1 and C2. The horizontal axis is SDECGs, and the vertical axis is gene expresion level. The data are presented as the mean ± SEM.
*P<0.05; **P<0.01; ***P<0.001. (G) The PCA scatter plots of SDECGs between C1 and C2. (H, I) ssGSEA comparison of immune cells between C1
and C2. The horizontal axis is immune cells, and the vertical axis is immune cell fraction in figure 10H. The data are presented as the mean ± SEM.
*P<0.05; **P<0.01; ***P<0.001. (J, K) GO and KEGG gene set enrichment analysis by GSEA of C1 and C2.
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macrophages were more prevalent in Cluster CII (P < 0.05, P < 0.01,

P < 0.001) (Figure 12G). Immune cell infiltration analysis

characterized the types and levels of immune cells expressed in

each sample from both clusters, visually represented in Figure 12H.
3.14 Comparative analysis of SDECG scores
across clusters and alluvial plot
construction

PCA was utilized to evaluate the SDECGs of MDBD in DR

treatment, leading to the establishment of a scoring model. Differences

in scores among various clusters were assessed to determine significant

disparities in SDECGs and to establish the corresponding cluster

relationships, ensuring the findings’ reliability. PCA results indicated a

statistically significant difference between two SDECG clusters

(P < 0.001) (Figure 13A) and two DEG clusters (P < 0.001)

(Figure 13B), demonstrating that C1 has a higher score than C2,

and CI surpasses CII. The alluvial plot suggested that C1 in SDECG

clustering aligns with CI in DEG clustering, while C2 corresponds

predominantly to CII (Figure 13C).
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3.15 In vitro experimental validation of
beta-sitosterol effects

A cell viability assay demonstrated a significant reduction in

viability in the hypoxia-induced model group compared to the

control group (P < 0.001). However, treatment with beta-sitosterol

at concentrations of 8mM, 12mM, 16mM, and 20mM significantly

restored cell viability relative to the model group (P < 0.001 for all

comparisons) (Figure 14A). Notably, the 12mM and 16mM beta-

sitosterol treatment groups exhibited the most pronounced effects,

warranting further investigation.

RT-qPCR analysis revealed a marked upregulation of ERBB2

mRNA expression in the model group compared to the control

(P < 0.001). Treatment with beta-sitosterol at 12mM and 16mM
significantly reversed this upregulation, resulting in a substantial

downregulation of ERBB2 mRNA expression (P < 0.001 for all

comparisons) (Figure 14B). Similarly, Western blot analysis showed

a significant increase in ERBB2 protein expression in the model

group relative to the control, while beta-sitosterol treatment at

12mM and 16mM significantly reduced ERBB2 protein levels

(P < 0.001 for all comparisons) (Figures 14C, D).
FIGURE 11

Enrichment Analysis of DEGs Using GO and KEGG. (A) GO enrichment analysis of DEGs. The horizontal axis is the number of DEGs associated with
each enriched GO term, and the vertical axis is enriched GO terms. BP: Biological Process; CC: Cellular Component; MF: Molecular Function. (B)
Circular diagram of GO enrichment analysis of DEGs. The outermost layer labels each pathway, while the innermost layer summarizes the P value
and enrichment size (gene count). (C) KEGG enrichment analysis of DEGs. The horizontal axis is the number of DEGs associated with each enriched
KEGG pathway, and the vertical axis is enriched KEGG pathways.
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ELISA analysis revealed that the hypoxia-induced model group

showed a statistically significant elevation in IL-1b, VEGF, and
ANGPTL6 levels compared to the control group (P < 0.001)

(Figures 14E–G). Beta-sitosterol treatment at concentrations of 12mM
and 16mM effectively mitigated these increases, with the suppressive

effects being more pronounced at the higher concentration of 16mM
(P < 0.001 for all comparisons) (Figures 14E–G).
3.16 In vitro experimental assessment of
ERBB2 inhibition effects

Cell viability assays indicated a notable reduction in viability

within the model group relative to the control group (P < 0.001).

Conversely, siERBB2 treatment significantly enhanced cell viability

compared to the model group (P < 0.001) (Figure 15A).
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RT-qPCR analysis demonstrated that ERBB2 mRNA expression

was substantially upregulated in the model group compared to the

control (P < 0.001). This upregulation was effectively reversed in the

siERBB2 treatment group, where ERBB2 mRNA expression was

significantly downregulated compared to the model group

(P < 0.001) (Figure 15B). Western blot analysis similarly

confirmed that ERBB2 protein levels were markedly elevated in

the model group versus the control group (P < 0.001). However,

siERBB2 treatment significantly reduced ERBB2 protein expression

compared to the model group (P < 0.001) (Figures 15C, D).

The ELISA results demonstrated a significant increase in IL-1b,
VEGF, and ANGPTL6 levels in the hypoxia-induced model group

compared to the control group (P < 0.001). Furthermore, ERBB2

inhibition notably reduced the elevated levels of IL-1b, VEGF, and
ANGPTL6 in the model group, indicating its suppressive effect

(P < 0.001 for both) (Figures 15E–G).
FIGURE 12

Clustering and Expression Analysis of DEGs. (A) A heatmap of the consensus matrix for DEG clustering across samples. (B) Cumulative distribution
functions from the consensus matrix of DEG clustering. (C) Mean consensus scores for various clusters. The horizontal axis shows the number of
clusters (k = 2–9), and the vertical axis shows the mean consensus score. Colors represent the respective clusters. (D) The tracking of mean
consensus scores across different clusters. (E) Heatmap of the expression of DEGs between CI and CII. (F) PCA scatter plots of DEGs between CI
and CII. (G, H) The comparison of ssGSEA for immune cells between CI and CII. The horizontal axis is immune cells, and the vertical axis is immune
cell fraction in figure 12G. The data are presented as the mean ± SEM. *P<0.05; **P<0.01; ***P<0.001.
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4 Discussion

This study identified quercetin, stigmasterol, beta-sitosterol,

and kaempferol as the main active components of MDBD.

Among the fourteen SDECGs involved in immune regulation,

ERBB2 was confirmed as a key risk factor for DR through MR
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analysis. Beta-sitosterol showed strong binding affinity with

multiple feature genes and effectively reduced ERBB2 expression

in vitro, suppressing IL-1b, VEGF, and ANGPTL6 secretion. These

findings highlight the therapeutic potential of MDBD in targeting

DR pathogenesis. +Five feature genes (CCND1, ERBB2, INSR,

TP53, SERPINE1).
FIGURE 13

Comparative Analysis of SDECG Scores and Cluster Relationships. (A) The scores for SDECG in Clusters C1 and C2. The horizontal axis is sample
groups, and the vertical axis is SDECG score of samples. The data are presented as the mean ± SEM. *P<0.05; **P<0.01; ***P<0.001. (B) The DEG
scores for Clusters CI and CII. The horizontal axis is sample groups, and the vertical axis is DEG score of samples. The data are presented as the
mean ± SEM. *P<0.05; **P<0.01; ***P<0.001. (C) Alluvial plot of the inter-cluster relationships. The alluvial plot shows the relationships and overall
flow between SDECG clusters, DEG clusters, and samples with high and low SDECG scores. Each ribbon represents the flow of samples across
SDECG clusters, DEG clusters, and SDECG score groups (High vs Low).
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4.1 MDBD for DR in TCM

DM, classified within the “Xiao Ke” category in TCM, is

characterized by symptoms such as excessive thirst, hunger,

urination, and weight loss. Its earliest documentation appears in

the Yellow Emperor’s Inner Canon (36). In TCM, DR is referred to

as “Xiao Ke Mu Bing,” an ocular complication of “Xiao Ke,” driven

by internal heat resulting from yin deficiency. This imbalance

disrupts qi and blood flow, leading to stasis and contributing to

DR progression (37, 38). MDBD addresses these pathological

mechanisms by enhancing qi, nourishing blood, and regulating

meridians. Clinical studies have shown that combining MDBD with

calcium hydroxybenzenesulfonate reduces inflammatory and

angiogenic markers such as high-sensitivity C-reactive protein,

tumor necrosis factor-alpha, VEGF, and endothelin-1, effectively

ameliorating DR (39, 40).
4.2 Bioactive components of MDBD for DR

Through analysis of the “drug-component-target” network, the

primary active compounds responsible for MDBD’s therapeutic effects

on DR have been identified. Beta-sitosterol, a naturally occurring

bioactive phytosterol can be found in Angelica sinensis and Panax

notoginseng, is a key component of MDBD. Its chemical structure

closely resembles cholesterol from mammalian cells (41), exhibiting

antioxidant properties and anti-diabetic activity (42, 43). Beta-

sitosterol exhibited high binding affinity with genes implicated in

DR pathogenesis. In vitro experiments using a hypoxia-induced DR
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cell model demonstrated that beta-sitosterol significantly reduced IL-

1b, VEGF, and ANGPTL6 secretion while improving cell viability,

supporting its role in mitigating key pathological processes in DR.

Moreover, a research on ADMET (absorption, distribution,

metabolism, excretion, and toxicity) profiling on beta-sitosterol (44)

verified that beta-sitosterol complies with Lipinski’s Rule of Five,

showing high intestinal absorption and effective permeability across

the blood-brain barrier. These pharmacokinetic attributes indicate

that beta-sitosterol is well-suited for systemic distribution and may

serve as a promising candidate for oral administration.

Additionally, compounds such as stigmasterol from Angelica

sinensis and Panax notoginseng, quercetin from Astragalus

membranaceus, Angelica sinensis and Panax notoginseng, along

with jaranol, hederagenin, isorhamnetin, and bifendate from

Astragalus membranaceus, collectively contribute to the

therapeutic benefits of MDBD. Stigmasterol from displays various

pharmacological properties, including anti-diabetic, anti-tumor,

anti-inflammatory, and antioxidant effects, and has been shown

to inhibit high glucose-induced proliferation and angiogenesis in

retinal cells (45, 46). Quercetin reduces inflammation and enhances

retinal layer thickness, offering therapeutic benefits in DR (47).

Jaranol exhibits antitumor activity against breast and liver cancers

and possesses anti-influenza properties (48, 49). Hederagenin

demonstrates antitumor and anti-inflammatory effects, and has

been shown to attenuate high glucose-induced fibrosis in renal

cells (50–52). Isorhamnetin provides cardiovascular protection and

boosts insulin secretion from pancreatic b-cells (53, 54). Bifendate is
recognized for treating hepatitis, reducing hepatotoxicity, and

showing antifibrotic effects (55, 56). Formononetin is reported to
FIGURE 14

Effects of Beta-sitosterol on Hypoxia-Induced MMCs. (A) Cell viability (n=4). The data are presented as the mean ± SEM; ***P < 0.001 vs MOD
group. (B) RTqPCR results for ERBB2 gene expression (n=6). The data are presented as the mean ± SEM; ***P < 0.001 vs MOD group. (C, D) Western
blotting results of ERBB2 (n=3). The data are presented as the mean ± SEM; ***P < 0.001 vs MOD group. (E) IL-1b levels (n=6). (F) VEGF levels(n=6).
(G) ANGPTL6 levels (n=6). Data presented as mean ± SEM. ***p < 0.001 vs MOD group. CON, Control group; MOD, Model group; b-sitosterol, Beta-
sitosterol; VEGF, Vascular endothelial growth factor; ANGPTL6, aAngiopoietin-like protein 6; IL-1b, Interleukin-1 beta.
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ameliorate type 2 diabetes progression and related complications by

lowering hyperglycemia and insulin resistance in diabetic rats (57).

Calycosin, a phytoestrogen, exhibits potent antioxidant and anti-

tumor properties, mitigating kidney injury and cognitive

impairments induced by diabetes in animal models (58–60).

Kaempferol regulates angiogenesis, apoptosis, metastasis, and

inflammation, enhancing diabetes management through

modulation of endoplasmic reticulum stress (61, 62). Finally,

Ginsenoside Rh2 shows anti-cancer properties against various

cancers and improves immune function, effectively reducing

elevated fasting blood glucose levels in type 1 diabetes mellitus

rats (63, 64). These findings show MDBD’s multi-target therapeutic

potential in DR, combining active compounds to address

inflammation, oxidative stress, and angiogenesis, thereby

providing a comprehensive approach to managing this

complex condition.
4.3 Core genes targeted by MDBD for DR

The core targets were identified using the PPI network, followed

by differential expression analysis to pinpoint SDECGs core genes,

which were subsequently validated in human samples. Among the top

five SDECGs, ERBB2 emerged as a significant target based on feature
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importance scores, demonstrating a strong association with increased

risk for DR. Beta-sitosterol was found to bind to ERBB2, a receptor

tyrosine kinase linked to elevated levels that significantly correlate with

a higher incidence of diabetes mellitus. Individuals with high ERBB2

levels exhibit a markedly increased risk of diabetes compared to those

with lower levels (65). To validate the relationship between ERBB2

and DR, in vitro experiments were conducted using a hypoxia-

induced DR cell model. Results revealed significant upregulation of

ERBB2 at both mRNA and protein levels. However, treatment with

beta-sitosterol (12 mM and 16 mM) and ERBB2 inhibition effectively

downregulated these elevated levels, affirming the interaction between

ERBB2 and DR. These findings suggest that beta-sitosterol may target

the MDBD-related gene ERBB2 to mitigate key pathological processes

in DR. Additionally, significant alterations in inflammatory and

angiogenic factors associated with DR were observed. The

proinflammatory cytokine IL-1b, markedly elevated in the hypoxia-

induced model group, was significantly reduced following beta-

sitosterol treatment and ERBB2 inhibition, highlighting ERBB2’s

role in modulating inflammation. Similarly, angiogenic factors

VEGF and ANGPTL6, crucial for pathological neovascularization,

were modulated. While their levels were initially increased in the

hypoxia-induced model, further downregulation occurred under beta-

sitosterol treatment and ERBB2 inhibition, indicating ERBB2’s

involvement in angiogenesis regulation in DR.
FIGURE 15

Evaluation of siERBB2 Effects on Hypoxia-Induced MMCs. (A) Cell viability (n=4). Data presented as mean ± SEM. ***p < 0.001 vs MOD group.
(B) RTqPCR results of ERBB2 gene expression (n=6). Data presented as mean ± SEM. ***p < 0.001 vs MOD group. (C, D) Western blotting results of
ERBB2 (n=3). Data presented as mean ± SEM. ***p < 0.001 vs MOD group. (E) IL-1b levels (n=6). (F) VEGF levels(n=6). (G) ANGPTL6 levels (n=6).
Data presented as mean ± SEM. ***p < 0.001 vs MOD group. CON: Control group; MOD: Model group.
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Apart from ERBB2, the other top four SDECGs identified in our

analysis include CCND1, SERPINE1, TP53, and INSR. Each of

these genes plays a distinct role in the pathophysiology of DR.

While ERBB2 is associated to DR risk and its strong binding affinity

with beta-sitosterol, which supports the in vitro findings, the

inclusion of these additional targets demonstrates their

complementary roles in DR pathogenesis and reflects a more

comprehensive approach to understanding the DR mechanisms.

CCND1, a protein-coding gene activated by insulin, facilitates

glycemic normalization via the CCND1-CDK4 pathway (66).

SERPINE1 (also known as PAI-1), part of the serine protease

inhibitor family, has shown elevated expression in vitreous

biopsies and neovascular tissue from patients with PDR (67).

TP53, a tumor suppressor protein, exhibited higher expression in

blood samples from T2DM patients with DR compared to healthy

individuals and T2DM patients without DR (68).

IINSR, an insulin receptor, was identified in a genome-wide

association study as strongly correlated with DR in T2DM patients

(69). Differential expression analysis in our study further revealed

high INSR expression in the DR group, showing its significance in

insulin signaling and metabolic regulation. The apparent

contradiction in INSR expression across different studies warrants

further investigation. Previous studies have indicated that

impairments in INSR expression or functionality can lead to

insulin resistance and DM (70, 71). To investigate this apparent

contradiction, further analysis was conducted. Muscle tissues from

DR patients and healthy individuals were analyzed, differing from

detection materials in prior studies, such as skeletal muscle (71),

peripheral blood lymphocytes (72), and various cell lines, including

CEM T-lymphocytes and SW1990 pancreatic cells (73).

Additionally, gene-by-environment interactions were found to

play a critical role in complex gene regulation. Controlled

environmental exposure in vitro across different cell types

revealed diverse transcriptional responses (74). This variation in

INSR expression across cell types may explain its complex

regulation within different cellular environments.

By incorporating secondary targets alongside ERBB2, this study

adopts a broader perspective on DR pathogenesis. These additional

targets provide valuable context about the effect of MDBD,

complementing the primary findings without detracting from the

significance of ERBB2. Moving forward, a systematic and stepwise

evaluation of these targets is essential. Such prioritization should

integrate factors including network-level impact, confidence in

target–ligand interactions, and functional assessments in retinal

endothelial cells under high-glucose conditions.
4.4 Immune cell involvement in DR

The ssGSEA analysis revealed significant differences in immune

cell expression between normal and DR groups. Positive correlations

were observed between SDECGs and immune cells such as

eosinophils, macrophages M0, and resting CD4 memory T cells,

while negative correlations were found with naive B cells and

plasma cells. Among these, macrophages M0 and resting dendritic
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cells exhibited statistically significant differences. Macrophages M0,

precursors to polarized macrophages, can be induced by high glucose

levels to polarize into the M1 subtype (75), playing a key role in DR

progression (76). Similarly, dendritic cells, which enhance immune

responses via antigen presentation, have been identified as a DR risk

factor through HLA DR expression in genome-wide association

studies (GWAS) (77). Further analysis revealed that macrophages

M0 positively correlated with two SDECGs, TP53 and SERPINE1,

while resting dendritic cells showed a positive correlation with INSR

and a negative correlation with ERBB2. All these correlations

demonstrated statistical significance between DR and normal

samples. Resting mast cells, on the other hand, were negatively

correlated with four SDECGs, TP53, SERPINE1, ERBB2, and

CCND1, while positively correlated with INSR, all with statistical

significance. However, no significant differences in resting mast cell

levels were observed between DR and normal samples, which may be

attributed to the distinct and complex regulatory mechanisms between

resting mast cells and genetic samples, leading to varied outcomes.

The RF model was utilized to identify feature genes, including

the top five for construction, to assess DR onset and the sensitivity

and accuracy of MDBD treatment, which showed high sensitivity

and accuracy. Enrichment analysis indicated that MDBD

mechanisms in DR treatment are linked to immunity and

inflammation, aligning with DR pathogenesis and development

factors (78). In DR, elevated blood glucose levels lead to

mitochondrial dysfunction, inflammation, and increased vascular

endothelial growth factor secretion, causing vascular and neuronal

apoptosis, and neovascularization (79). The activation of immune

cells takes place earlier than neuronal dysfunction and intraretinal

microvascular abnormalities (80). Immune cell activation

contributes to neuronal dysfunction and intraretinal

microvascular abnormalities (81, 82). Elevated inflammatory

cytokines such as IFN-g, TNF, and IL-2, secreted by lymphocytes,

have been detected in DR patients (83) and in diabetic rat retinal

tissue (84). Additionally, macrophages have been identified in the

retinal tissue of Akimba mice, a recognized model of diabetic

retinopathy, through single-cell RNA sequencing (85). These

results reveal the complex relationship between immune cell

activation, genetic factors, and inflammatory processes in the

development of DR. The correlations identified between specific

immune cells and SDECGs point to the significant role of immune

regulation in disease progression. The ability of MDBD to influence

these immune-related pathways suggests its therapeutic relevance

for DR. Further investigation into the interaction between immune

cells and genetic factors will be essential for advancing our

understanding of DR and improving treatment strategies.
5 Conclusion

This study employed a multidimensional approach, integrating

network pharmacology, molecular docking, GEO datasets, and

Mendelian randomization analysis, to explore the mechanisms of

MDBD in treating DR. Key genes, including INSR, CCND1,

ERBB2, TP53, and SERPINE1, were identified as critical targets of
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MDBD, mediated by core components such as quercetin,

stigmasterol, beta-sitosterol, and kaempferol. These interactions

alleviate DR by modulating immunity- and inflammation-related

pathways. Notably, the inhibition of ERBB2 and the application of

beta-sitosterol demonstrated therapeutic efficacy, reducing ERBB2

protein and mRNA levels, as well as key inflammatory and

angiogenic factors such as IL-1b, VEGF, and ANGPTL6. These

findings provide valuable insights into the molecular mechanisms

of MDBD and its potential for future clinical applications, though

further experimental validation is required.
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