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Development and internal
validation of a machine
learning algorithm for
the risk of type 2 diabetes
mellitus in children
with obesity
Jin-Xia Yang 1,2†, Yue Liu1,3†, Rong Huang4†, Hai-ying Wu2,
Ya-yun Wang2, Su-ying Cao2, Guo-ying Wang2,
Jian-Min Zhang5, Zi-Sheng Ai1* and Hui-min Zhou2*

1School of Medicine, Tongji University, Basic Medical Science, Shanghai, China, 2Children’s Hospital of
Soochow University, Endocrine Genetic Metabolism, Suzhou, China, 3Gongli Hospital, Pudong New
District, Department of Orthopedic Surgery, Shanghai, China, 4Shanghai First Maternity and Infant
Hospital, School of Medicine, Tongji University, Shanghai, China, 5Children’s Hospital of Soochow
University, Department of Traditional Chinese Medical, Suzhou, China
Aim: We aimed to develop and internally validate a machine learning (ML)-based

model for the prediction of the risk of type 2 diabetes mellitus (T2DM) in children

with obesity.

Methods: In total, 292 children with obesity and T2DM were enrolled between

July 2023 and February 2024 and followed for at least 1 year. Eight ML algorithms

(Decision Tree, Logistic Regression, Support Vector Machine (SVM), Multilayer

Perceptron, Adaptive Boosting, Random Forest, Gradient Boosting Decision

Tree, and Extreme Gradient Boosting) were compared for their capacity to

identify key clinical and laboratory characteristics of T2DM in children and to

create a risk prediction model.

Results: Forty-nine children were diagnosed with T2DM during the follow-up

period. The SVM algorithm was the best predictor of T2DM, with the largest area

under the receiver operating characteristic curve (0.98) and accuracy (93.2%).

The SVM algorithm identified eight predictors: BMI, creatinine, prealbumin,

glucose (180 min), glycosylated hemoglobin A1c, thyrotropin, total thyroxine

(T4), and free T4 concentrations. Thus, an ML-based prediction model accurately

identifies children with obesity at high risk of T2DM. If externally validated, this

tool could facilitate early, personalized interventions aimed at preventing T2DM.
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Discussion: The rising prevalence of obesity in childhood is associated with an

increase in the risk of early-onset T2DM. Therefore, the early identification of

individuals at high risk is crucial to prevent the development of this disease. In a

comparative analysis of the performance of multiple ML algorithms, we found

that the SVM algorithm was the best predictor of the development of T2DM.
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Introduction

Obesity is a chronic metabolic disease that is characterized by

excessive fat deposition, and it is one of the top 10 chronic diseases

worldwide, according to the World Health Organization (WHO)

(1). In recent years, the number of children with obesity has been

increasing, especially in Asia (1). According to the WHO, the global

number of children <5 years of age with obesity or overweight

reached 41 million in 2016, and children in Asia accounted for 48%

of the total (2). The latest edition of the World Obesity Report,

published onMarch 3, 2024 by theWorld Obesity Federation, states

that by 2035, the number of children and adolescents 5–19 years old

with overweight or obesity worldwide will rise to 770 million.

Furthermore, between 2020 and 2035, an annual growth rate of

2.0% in childhood overweight or obesity is predicted, such that the

prevalence of overweight or obesity in this age group will be 72% in

2035. Thus, obesity has become a serious public health problem that

jeopardizes children’s health worldwide (3, 4).

Childhood obesity is an important risk factor for type 2 diabetes

mellitus (T2DM). Furthermore, with the increasing global

prevalence of obesity, the number of children and adolescents

with T2DM has been rising year on year. An epidemiologic

dataset collected in the United States showed that the prevalence

of T2DM in children and adolescents increased from 34/100,000 in

2001 to 46/100,000 in 2009, and 67/100,000 in 2017 (5). Large

longitudinal cohort studies have shown that the incidence and

prevalence of T2DM and comorbidities are increasing rapidly,

and this is seriously affecting the physical and mental health of

children and adolescents and increasing the burdens associated with

their prevention and control. The trend in the prevalence of T2DM

in children and adolescents in China has paralleled the trend in the

prevalence of obesity in this group. Specifically, the prevalence of

T2DM increased in China from 4.1/100,000 in 1995 to 10.0/100,000

in 2010 (6, 7).

The prevalence of diabetes in children is of global concern, and

in particular the prevalence of T2DM is increasing in children and

adolescents, secondary to an increase in the prevalence of obesity in

childhood (8, 9). However, it may not be cost effective to screen for

T2DM in the general population or in every young person with

overweight or obesity. The U.S. Preventive Services Task Force

concluded that the available evidence is insufficient to assess the
02
benefits and drawbacks of T2DM screening in children and

adolescents (10). In addition, the International Society for

Pediatric and Adolescent Diabetes (ISPAD) guidelines

recommend that only children and adolescents with significant

risk factors for diabetes are screened (11). Although the prevalence

of T2DM in children and adolescents is increasing, universal

screening of adolescents is not currently recommended owing to

the high cost. However, the early screening of individuals with risk

factors can increase treatment success, improve quality of life, and

delay the development of diabetes-related complications. Predictive

models could help with the early identification of children and

adolescents with overweight or obesity who are at risk of diabetes,

and the identification of specific predictors should inform the

subsequent development of risk prediction tools.

Recent epidemiological studies indicate that the incidence of

T2DM in children with obesity is increasing at an annual rate of

4%–5%, with these individuals facing a 4- to 7-fold higher risk than

that of their normal-weight peers (12). Early-onset T2DM is

particularly concerning owing to its aggressive disease

progression, with accelerated b-cell deterioration and earlier onset

of diabetic complications compared with those for adult-onset

cases. Although guidelines from the American Diabetes

Association (ADA) recommend annual HbA1c screening for

obese children, current risk stratification tools—such as BMI

percentile cutoffs and oral glucose tolerance tests (OGTT)—

exhibit suboptimal sensitivity (52–68%) and specificity (71–79%),

leading to significant underdiagnosis (13).

Conventional risk prediction models for T2DM, predominantly

based on logistic regression, fail to capture complex, nonlinear

interactions among metabolic, genetic, and lifestyle factors (14).

Machine learning (ML) has emergedas a promising approach to

address these gaps. ML models can potentially analyze large-scale

population based datasets, incorporating a wide range of variables

to predict the probability of developing T2DM and its associated

complications and mortality (15). While ML algorithms

have demonstrated superior predictive performance for T2DM

in adults, their application in pediatric populations remains

underexplored. Existing pediatric models often rely on static

clinical variables, neglecting dynamic growth patterns,

longitudinal metabolic changes, and socioenvironmental

determinants—critical factors influencing diabetes risk in
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children (16). Furthermore, most algorithms lack interpretability,

l imit ing their cl inical ut i l i ty for decis ion-making in

pediatric endocrinology.

To address these gaps, we developed and internally validated an

interpretable ML algorithm to predict the risk of T2DM in children

with obesity. Our study introduces several innovations, including a

multidimensional feature matrix integrating dynamic growth

trajectories, metabolic biomarkers, and socioenvironmental

exposures. We evaluated eight ML algorithms (Decision Tree,

Logistic Regression, Support Vector Machine (SVM), Multilayer

Perceptron, Adaptive Boosting, Random Forest, Gradient Boosting

Decision Tree, and Extreme Gradient Boosting) for the capacity to

identify the key clinical and laboratory characteristics of T2DM in

children. By leveraging high-dimensional data and robust

validation, this study provides a basis for early, personalized

interventions for high-risk pediatric populations, ultimately

mitigating the long-term burden of T2DM.
Materials and methods

Study sample and design

The study was reviewed by the hospital ethics committee, the

final approval number of ethics was 2024CS141. Ethical review

content includes scientific approval of research projects, review of

observational study protocols, human genetic resource

management commitment letters, explanations of clinical research

project funding sources or statements of no self-funded support,

clinical research agreements, etc. In this study, all the children’s

parents agreed to participate and signed the informed consent form,

and all the children’s informed consent was signed by the parents

together in the same informed consent form.

Between July 2023 and February 2024, children with obesity

who attended outpatient clinics or were admitted to wards of the

Department of Endocrinology, Genetics, and Metabolism at the

Children’s Hospital of Soochow University were selected using

simple random sampling. From patients with pediatric obesity,

we randomly selected participants using a random number

sequence to ensure representativeness. To ensure reproducibility,

all random processes were controlled using Python numpy

pseudorandom number generator with a fixed seed.

The inclusion criteria for the obesity/no T2DM group were age

<18 years old and the presence of obesity. According to the simple

diagnostic criteria for obesity in “Zhufutang Practical Pediatrics”

(8th edition), an actual body mass of >20% based on the standard

height and body mass of the reference population is defined as

obesity. The formula for calculating the height-to-weight ratio (%)

is as follows: Standard weight (kg) for children of the same height/

Actual weight (kg) * 100. The height-to-weight ratios for mild,

moderate, and severe obesity were defined as 20.1% to 30.0%, 30.1%

to 50.0%, and ≥50.1%, respectively. Informed consent from the

child’s father or mother. The exclusion criteria for this group were

the presence of other serious chronic systemic diseases (such as

congenital heart disease, epilepsy, and blood disorders), the
Frontiers in Endocrinology 03
presence of secondary obesity caused by a specific disease or

drug, and the use of lipid-lowering drugs.

The inclusion criteria for the obesity/T2DM group were age <18

years old, and a diagnosis of obesity, categorized as described above,

and a diagnosis of T2DM. Diabetes mellitus was diagnosed in

children using a two-step process. The first step was to identify

the presence of diabetes mellitus of any type, using the criteria of the

American Diabetes Association (ADA) or ISPAD (the criteria of the

ADA are for the definition of diabetes mellitus in adults). Diabetes

mellitus was diagnosed when symptoms of hyperglycemia

(polyphagia, polydipsia, polyuria, and/or unexplained weight loss)

occur alongside one of the following laboratory findings: blood

glucose concentration (FPG) ≥7.0 mmol/L; blood glucose

concentration 2 h after a glucose load ≥11.1 mmol/L; HbA1c

≥6.5%; or a random glucose concentration ≥ 11.1 mmol/L. If

there were no clear symptoms of hyperglycemia, any abnormal

laboratory findings were confirmed by retesting on a subsequent

occasion. The second step was to determine the type of diabetes

present. Glutamic acid decarboxylase antibody, islet cell antigen 2

antibody, zinc transporter 8 antibody, and insulin autoantibody

testing were performed because islet autoimmunity is common in

children who have been clinically diagnosed with T2DM. Genetic

testing should be performed when necessary to confirm mature-

onset diabetes of the young. Informed consent from the child’s

father or mother. The exclusion criteria for this group were the

presence of secondary obesity; the presence of an acute

complication of diabetes mellitus, such as ketoacidosis; the

presence of another serious chronic systemic disease, such as

heart disease or kidney disease; the use of a lipid-lowering drug;

and the recent use of a drug that might affect the blood

glucose concentration.

Data collection and quality control methods: Prior to data

collection, the researchers designed a data collection form that

included the following content: General clinical data, Laboratory

test data, Diabetes-related indices. All survey information was

obtained from the patients’ case records and filled in. This study

strictly adhered to the inclusion and exclusion criteria for research

subjects. Researchers who had undergone standardized training

used a standardized script to provide survey participants with

detailed explanations of the purpose and significance of the study,

as well as the parts of the research process that required the

cooperation of the participants. Prior to entering the study,

written informed consent was obtained from the parents of the

children to ensure their informed consent. During the study, a total

of 300 cases were included. After excluding invalid data such as

missing survey items, 292 cases were ultimately included.
Laboratory measurements and clinical
characteristics of the participants
1. General clinical data: the sex, ethnicity, year of birth,

growth and development data, family history, history of

drug allergy, history of previous illnesses, duration of the

disease, clinical symptoms, use of medication, history of
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Fron
control of blood glucose or HbA1c, height, body mass, and

body mass index (BMI; body mass (kg)/[height (m)]2 of the

participants were collected.

2. Laboratory test data: routine biochemical data, indices of

glucose and lipid metabolism, glucocorticoid-related

indices, diabetes autoantibody titers, indices of thyroid

function, and urine protein profile data were collected.

3. Diabetes-related indices: the homeostasis models of

assessment-insulin resistance (HOMA-IR) and b-cell
function (HOMA-b) were calculated as follows.
HOMA-IR = fasting blood glucose (mmol/L) × fasting insulin

(mIU/L)/22.5. The values obtained were converted to grades as

follows: grade I (mild insulin resistance): HOMA-IR <3.0; grade II

(moderate insulin resistance): HOMA-IR: 3.0–5.0; and grade III

(severe insulin resistance): HOMA-IR ≥5.0.

HOMA-b = fasting insulin (mIU/L)/[fasting blood glucose

(mmol/L) × 3.5]. A normal HOMA-b value is 100%; a low

HOMA-b value suggests that pancreatic islet b-cell function is

poor and a high value suggests substantial pancreatic islet b-cell
secretion. Grading criteria were as follows: greater than 50%

indicates normal pancreatic b-cell function or good compensatory

ability, less than 50% indicates impaired pancreatic b-cell function,
and greater than 300% may indicate early compensatory stage

of diabetes.
Statistical analysis

Statistical analysis was performed using SPSS v.24.0 software

(IBM, Inc., Armonk, NY, USA) and Python software v.3.10.4

released by the Python Software Foundation on March 24, 2022.

Normally distributed clinical data are described using mean ±

standard deviation; Student’s t-tests were used for comparisons

between two groups, and one-way ANOVA plus Tukey’s post-hoc

tests were used for comparisons among multiple groups. Non-

normally distributed clinical data are described using median (first

quartile, third quartile); two groups were compared using the

Wilcoxon rank-sum test, and multiple groups were compared

using the Kruskal–Wallis test, with P-values adjusted using the

Benjamini–Hochberg correction. Categorical data are expressed as

numbers (percentages) and were analyzed using the chi-square test

and ANOVA was used with post hoc tests. Logistic regression

models were used to compare the T2DM and No T2DM groups

with respect to clinical, demographic, and laboratory data diabetes-

related indices. P < 0.05 was regarded as indicating

statistical significance.
Model development

Before developing the machine learning algorithm, we

compared the differences in patient data between “obese patients

without T2DM” and “obese patients with T2DM,” We then further

incorporated data with statistically significant differences (P<0.05)
tiers in Endocrinology 04
into a logistic regression model. Ultimately, we determined the

predictors through the logistic regression model and developed and

evaluated machine learning models for data with statistical

differences. Eight machine learning algorithms were used to select

the key parameters that differentiated the groups and build risk

prediction models: Decision Tree (DT), Logistic Regression (LR),

Support Vector Machine (SVM), Multilayer Perceptron (MLP),

Adaptive Boosting (AdaBoost), Random Forest (RF), Gradient

Boosting Decision Tree (GBDT), and Extreme Gradient Boosting

(XGBoost), (Table 1). Using simple random sampling, the

participants were randomly allocated to training (75%) and

validation (25%) sets, and the models were developed using the

training set (75% of data) and internally validated using the

validation set (25% of data). Ten-fold cross-validation was

performed using the training set, with one-tenth of these data

being reserved for testing and each of the remaining nine-tenths

being used in turn for training. Nomograms were constructed using

the results of the ML models. To control overfitting or underfitting

issues in machine learning models, we implemented measures such

as data preprocessing and partitioning, cross-validation, and model

selection. First, the code performed thorough data preprocessing,

including missing value imputation, standardization, and one-hot

encoding. Continuous features are imputed using the median of the

training set, while categorical features are imputed using the mode

(or 0 if all values are missing). Categorical variables are converted to

integer type. This approach avoids model instability caused by

missing data or different scales, thereby reducing the risk of

underfitting. Subsequently, continuous variables are standardized

to ensure that the mean of the features is 0 and the variance is 1.

This is particularly important for algorithms such as logistic

regression, SVM, and neural networks to prevent model bias

caused by certain features being too large in scale. Additionally,

categorical variables are one-hot encoded to introduce them into

the model (one-hot encoding increases the feature dimension, and

during training, align ensures that missing dummy variable

columns in the test set are filled with 0). Second, during model
TABLE 1 Hyperparameters of machine learning algorithms.

Model Param grid range Best params

DT max_depth: [5, 10, 20];
min_samples_split: [2, 5, 10]

max_depth=5;
min_samples_split=5

LR C: [0.1, 1, 10]; solver: [‘liblinear’, ‘saga’] C=0.1; solver=‘liblinear’

SVM C: [0.1, 1, 10]; kernel: [‘linear’, ‘rbf’] C=10; kernel=‘rbf’

MLP hidden_layer_sizes: [(50), (100),
(150)],; activation: [‘relu’, ‘tanh’]

hidden_layer_sizes=
(50),; activation=‘relu’

AdaBoost n_estimators=50, learning_rate=1.0 No tuning (defaults)

RF n_estimators: [50, 100, 200];
max_depth: [10, 20, 30]

n_estimators=50;
max_depth=10

GBDT n_estimators=100, learning_rate=0.1,
max_depth=3

o tuning (defaults)

XGBoost n_estimators: [50, 100, 200];
learning_rate: [0.01, 0.1, 0.3]

n_estimators=50;
learning_rate=0.3
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training, a cross-validation strategy was introduced to effectively

mitigate overfitting risks. The best parameters were selected based

on the average score from cross-validation, thereby avoiding

overfitting configurations caused by the randomness of a single

split. In addition to the above-mentioned hyperparameter and

structural control for each model, the code also focused on

metrics such as ROC AUC in model evaluation. Overall, these

eight models achieved similar performance on the training and

validation sets through various measures such as data cleaning,

regularization hyperparameters, and cross-validation selection,

without showing obvious overfitting (such as validation scores

significantly higher than test scores) or underfitting (such as low

training and validation scores). The SMOTE oversampling method

was used to address the imbalance in the training data during model

development and evaluation. In addition, SMOTE was applied to

the training set prior to grid search training of each model,

synthesizing oversampling of the minority class to balance the

class distribution. Currently, no category weights are used in

model training to reduce majority class bias.
Assessment of model performance

Five key metrics were used to evaluate the efficacy of the models:

Cross-Validation (CV) accuracy, Area Under the Curve (AUC),

overall accuracy (ACC), recall, and F1 score. AUC values between

0.5 and 0.7 indicated a low level of accuracy, values between 0.7 and

0.9 indicated a moderate level of accuracy, and values >0.9 indicated

a high level of accuracy.
Results

Basic characteristics of the participants

Forty-nine patients developed T2DM (16.8%) during the

follow-up period. The mean age of the participants was 11.96 ±

2.29 years, and 162 (55.5% of 292 total participants) were male. The

laboratory test data and demographic characteristics of the

participants are shown in Table 2.
Laboratory data and clinical characteristics
of the participants

There were significant differences (P<0.05) between the T2DM

group and the No T2DM group with respect to the age, body mass;

height; BMI; lipase activity; total or direct bilirubin concentrations;

aspartate aminotransferase, creatine kinase, lactate dehydrogenase,

or alpha hydroxybutyrate dehydrogenase activities; glycocholic

acid, random glucose, glucose 0, 30, 60, 120, or 180 min post-

glucose load concentrations; glycosylated hemoglobin A1c level;

insulin, C-peptide, Low-Density Lipoprotein (LDL)-cholesterol,

triglyceride, total cholesterol, apolipoprotein B, cortisol,

thyrotropin, total T3, free T3, or free T4 concentrations; urinary
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creatinine, immunoglobulin G, microalbumin, or transferrin

concentrations; a1-microglobulin, b2-microglobulin, or N-

acetylaminoglucosidase concentrations; HOMA-IR; or HOMA-b.
Key predictors

Variables included in the logistic regression analysis included

BMI, creatinine, prealbumin, glucose (180 min), glycosylated

hemoglobin A1c, thyrotropin, total T4, and free T4, as shown

in Table 3.
Development of machine learning
algorithms

Eight ML algorithms were used (DT, LR, SVM, MLP, AdaBoost,

RF, GBDT, and XGBoost) to identify the key clinical and pathologic

characteristics of the T2DM group and to create a risk prediction

model for T2DM in children. The SVM algorithm was the best

predictor of the progression to T2DM because it showed the highest

AUC (0.98) and ACC (93.2%) (Table 4, Figure 1). The eight models

have distinct characteristics. DT is intuitive and interpretable and

does not require feature scaling; however, it is prone to overfitting.

LR outputs calibrated probabilities and has strong clinical

interpretability but only captures linear relationships. SVM is

effective for classification in high-dimensional spaces but is

sensitive to hyperparameters and has high computational costs

(Figure 2). MLP models complex nonlinear relationships but

requires a large amount of data and has black-box characteristics.

AdaBoost can iteratively correct error samples and is sensitive to

noisy data. RF is resistant to overfitting and assesses feature

importance; however, it may underestimate the impact of extreme

values. GBDT has high predictive accuracy and handles mixed data

types but has long training times. XGBoost prevents overfitting

through regularization and supports parallel computing; however,

hyperparameter tuning is complex.

The ROC curve evaluates the performance of the classifier by

plotting the true positive rate against the false-positive rate at different

thresholds. As shown in Figure 1, the MLP model yielded the highest

AUC value of 0.961, indicating that it was the best classifier of the test

data. The LR and RF models also yielded high AUC values of 0.945

and 0.938, respectively, and the DT model yielded the lowest AUC

value of 0.789, representing a relatively poor performance. The other

models (SVM, AdaBoost, GBDT, and XGBoost) yielded AUCs

between 0.8 and 0.9, indicative of moderate performance. However,

Table 4 shows that SVM performed best with respect to a

combination of the AUC and F1 score, with values of 0.904 and

0.7500, respectively. MLP and XGBoost performed best with respect

to CV accuracy, both yielding values of 0.983. SVM performed best

with respect to accuracy, yielding a value of 0.9322. The recall value

was 0.5000 for all the models except for SVM, which yielded a value

of 0.6000. The F1 score was highest for SVM (i.e., 0.7500). Thus,

overall, SVM performed best using the present set of data, especially

with respect to the AUC and F1 score.
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TABLE 2 Comparison of groups with and without type 2 diabetes mellitus (T2DM).

Item No T2DM (n=243) T2DM (n=49) Statistical value P value*

Age (year) 11.79 ± 2.26 12.80 ± 2.25 8.145 0.005

Weight 72.33 ± 18.05 64.07 ± 18.04 8.555 0.004

Height 157.42 ± 12.34 162.41 ± 11.17 6.883 0.009

BMI 28.77 ± 4.15 24.03 ± 5.48 45.033 <.001

Lipase 25.51 ± 5.31 33.85 ± 50.86 6.271 0.013

Total Bilirubin 11.00 ± 4.91 13.62 ± 5.25 11.334 <.001

Direct Bilirubin 3.74 ± 1.66 4.41 ± 1.55 6.884 0.009

Aspartate aminotransferase 31.46 ± 18.19 38.76 ± 42.41 3.785 0.053

Creatine kinase 115.27 ± 52.03 99.39 ± 62.16 3.549 0.061

Lactate dehydrogenase 252.56 ± 61.96 224.52 ± 58.70 8.496 0.004

Lactate dehydrogenase 188.67 ± 48.82 165.32 ± 39.46 9.896 0.002

Glycocholic
Acid Measurement

1.52 ± 0.68 2.41 ± 5.20 6.642 0.01

Glucose 5.09 ± 0.64 7.78 ± 4.32 85.549 <.001

Glucose 0 min 4.50 ± 0.58 6.03 ± 1.59 135.677 <.001

Glucose 30 min 7.95 ± 1.38 8.72 ± 2.22 10.1 0.002

Glucose 60 min 8.03 ± 1.88 11.54 ± 3.40 103.338 <.001

Glucose 120 minutes 6.94 ± 1.61 12.19 ± 3.97 236.303 <.001

Glucose 180 minutes 5.38 ± 1.45 10.64 ± 3.83 270.06 <.001

Glycated hemoglobin A1c 5.55 ± 0.47 10.64 ± 3.83 297.242 <.001

Insulin Measurement 612.18 ± 348.82 236.72 ± 242.80 51.65 <.001

Serum C-peptide
measurement

4.84 ± 1.72 1.80 ± 1.40 135.587 <.001

LDL Cholesterol 2.66 ± 0.61 3.00 ± 1.00 10.112 0.002

Triglycerides 1.29 ± 0.68 1.64 ± 1.57 6.263 0.013

Total Cholesterol 4.39 ± 0.75 4.79 ± 1.19 9.612 0.002

Apolipoprotein B 0.80 ± 0.17 0.91 ± 0.28 13.89 <.001

Cortisol Measurement (AM) 405.83 ± 183.93 472.08 ± 189.88 5.232 0.023

Thyrotropin 2.90 ± 1.48 2.35 ± 0.91 6.434 0.012

Total T3 1.98 ± 0.17 1.80 ± 0.39 25.407 <.001

Free T3 6.16 ± 0.69 5.75 ± 0.84 13.865 <.001

Free T4 15.30 ± 1.77 17.06 ± 2.59 33.764 <.001

Urine Creatinine 10513.93 ± 3380.19 9300.64 ± 5313.10 4.225 0.041

Urine Immunoglobulin G 4.45 ± 5.51 9.20 ± 25.47 6.941 0.009

Urinary
Microalbumin (UMAL)

20.98 ± 45.35 46.09 ± 136.34 5.365 0.021

Porphyrins,
Porphyrites, Porphyrites

3.49 ± 5.89 8.14 ± 29.10 5.207 0.023

Alpha 1 Microglobulin 10.39 ± 4.37 12.09 ± 8.16 4.369 0.037

Cortisol 0.44 ± 0.22 0.62 ± 0.32 21.23 <.001

(Continued)
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Discussion

Pathogenesis of type 2 diabetes mellitus

Obesity is closely associated with the development of T2DM

and the two are linked at multiple levels, with insulin resistance

being a key defect. Many previous studies have shown that obesity

increases the risk of insulin resistance and T2DM, but not all

individuals with obesity develop T2DM, and some maintain their
Frontiers in Endocrinology 07
insulin sensitivity and relatively normal metabolism (12–16).

Numerous studies have shown associations of non-esterified fatty

acids, metabolites, and pro-inflammatory molecules with obesity,

insulin resistance, and T2DM, and some of these can be used as

specific markers for the presence of a combination of obesity and

T2DM (17–23).
Predictors of the development of diabetes
in obese children

The predictors identified in this study reflect both the

pathophysiological mechanisms of diabetes and the metabolic

characteristics of obese children and have important clinical

significance and statistical value. (1) With respect to the

predictive value of glucose metabolism-related indicators, glucose

(180 minutes) and glycated hemoglobin A1c, which were included

in the model, are core indicators for assessing glucose metabolism

status. Glucose (180 minutes) serves as a critical time point in the

oral glucose tolerance test, sensitively reflecting the degree of insulin

resistance and beta-cell function in children. Glycated hemoglobin

A1c, as an indicator of long-term blood glucose control, also

demonstrated good predictive efficacy in this model. Notably, in

obese children, even when A1c is within the normal high range

(5.7%–6.4%), the risk of diabetes is significantly increased. This

supports the prospective value of the American Diabetes
TABLE 2 Continued

Item No T2DM (n=243) T2DM (n=49) Statistical value P value*

Glycosaminoglycosidase 10.62 ± 3.59 12.15 ± 8.81 4.034 0.046

Insulin Resistance Index
HOMA-IR

20.35 ± 11.57 10.92 ± 12.65 26.246 <.001

Pancreatic b-cell
secretion index

3.82 ± 0.49 4.26 ± 0.68 60.899 <.001
*ANOVA.
TABLE 3 Logistic regression analysis of factors associated with T2DM.

Items B Standard error
Wald degrees of

freedom significance
Significance Exp(B)

BMI .676 .207 10.691 .001 1.967

Creatinine -.153 .067 5.189 .023 .858

Pre-Albumin -.037 .019 3.623 .057 .964

Glucose 180 min -1.351 .369 13.368 <.001 .259

Glycated
hemoglobin A1c

-3.995 1.481 7.275 .007 .018

Thyrotropin .946 .470 4.048 .044 2.576

Total T4 -.116 .048 5.771 .016 .891

Free T4 -.663 .388 2.917 .088 .515

constant 56.174 16.571 11.491 <.001 2488298875938576000000000.000
R2 = 0.544.
TABLE 4 Results of a validation study of the machine
learning algorithms.

Model CV
accuracy

AUC Accuracy Recall F1
score

DT 0.961 0.789 0.8983 0.5000 0.6250

LR 0.974 0.945 0.9153 0.5000 0.6667

SVM 0.983 0.904 0.9322 0.6000 0.7500

MLP 0.978 0.961 0.9153 0.5000 0.6667

AdaBoost 0.970 0.849 0.8983 0.5000 0.6250

RF 0.974 0.938 0.9153 0.5000 0.6667

GBDT 0.957 0.833 0.9153 0.5000 0.6250

XGBoost 0.983 0.829 0.8983 0.5000 0.6250
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Association’s use of A1c ≥ 5.7% as a screening criterion for high-

risk populations. (2) One of the innovative findings of this study is

the important role of thyroid function indicators (thyroid-

stimulating hormone, total T4, and free T4) in diabetes

prediction. Research data shows that the higher the T4 level, the

lower the risk of developing type 2 diabetes mellitus (B=-0.116,

P=.016), indicating that high T4 levels are a protective factor against

the development of type 2 diabetes mellitus. Thyroid hormones may

influence glucose metabolism through multiple mechanisms,

including regulating basal metabolic rate and energy expenditure,

affecting insulin sensitivity and glucose transport, and regulating

hepatic gluconeogenesis and glycogenolysis. Our data show that

TSH levels are correlated with diabetes risk, suggesting that a

comprehensive assessment of thyroid function is indispensable in

evaluating diabetes risk in obese children. A study conducted in

Anhui, China, in 2025 showed that changes in thyroid function
Frontiers in Endocrinology 08
parameters (such as elevated TSH, decreased FT3, or decreased

FT4) are associated with increased inflammatory activity and

impaired glucose and lipid metabolism in patients with type 2

diabetes mellitus (T2DM) (24). Additionally, TSH levels are

associated with an increased risk of diabetic microvascular

complications, such as nonproliferative diabetic retinopathy. This

also suggests that changes in thyroid hormone levels (such as TSH

and FT4) may serve as potential predictive indicators for diabetes

and its complications (such as diabetic nephropathy and

retinopathy). This finding is consistent with the innovative

discoveries of this study. (3) With respect to the predictive

significance of renal function and nutritional status markers, the

inclusion of creatinine and prealbumin reflects the model’s

comprehensive consideration of multi-system effects. Elevated

creatinine levels may indicate early renal dysfunction, and renal

insufficiency may further exacerbate glucose metabolism disorders.

Prealbumin, as a sensitive indicator of nutritional status and

protein-energy metabolism, often predicts metabolic reserve

depletion when levels are reduced. Children with obesity often

have micronutrient deficiencies and protein metabolism

abnormalities, making prealbumin an important indicator for

predicting metabolic outcomes.
Clinical implications of the modeling

The early identification of children who are at high risk for

obesity is critical to facilitate preventive interventions, but the

existing tools, such as the ADA guidelines, comprise single

threshold values. The strength of the optimal ML model

identified in the present study is its compatibility with

personalized risk stratification. Unlike with the population-based

thresholds, ML models provide personalized risk assessments that

enable clinicians to prioritize high-risk individuals. In addition, in
FIGURE 1

ROC curve for each prediction model.
FIGURE 2

ROC curve for SVM model.
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the present study, we have comprehensively evaluated potential

predictors, which included anthropometric, laboratory, and

metabolic data and indices. Using these we developed and

internally validated an ML algorithm for the prediction of the risk

of T2DM in children with obesity. We aimed to evaluate the

performance of a range of ML models for the prediction of the

risk of T2DM and to select the most suitable model for use in the

clinic. The selected model identified 180-min glucose, HbA1c, and

BMI as the best predictors, consistent with the established screening

guidelines for pediatric diabetes (6). A SHAP value analysis of data

from three independent global cohorts showed that age is the most

important predictor of T2DM, followed by fasting blood glucose,

hemoglobin, g-glutamyltransferase levels, and body mass index (15,

25–28). However, unlike conventional risk scores, ML can capture

nonlinear relationships (e.g., relationships with creatinine and

prealbumin concentrations), which may account for its greater

accuracy than those of previous models.
Comparison of model performance

As shown in Table 4, SVM performed well according to several

assessment metrics. Specifically, SVM achieved high scores for F1 score

(0.7500), indicating that it performs best with respect to the balancing of

true and false-positive rates. In addition, the accuracies of SVM (0.9322)

and AUC (0.904) were relatively high, second only to MLP and

XGBoost. These results are consistent with those of previous studies,

showing that SVM performs well with unbalanced datasets (29).

MLP and XGBoost performed the best with respect to CV

accuracy, with both achieving values of 0.983, implying that they

have high levels of stability and accuracy for cross-validation.

However, despite the excellent performance of these two models

in terms of CV accuracy, they had relatively low AUC values of

0.961 and 0.829, respectively, which may indicate that they are less

appropriate for use with unbalanced datasets. This finding is

consistent with those of Hastie et al. (30), who showed that the

CV accuracy of a model may not fully reflect its performance with

unbalanced datasets. LR and RF also performed well with respect to

CV accuracy, yielding values of 0.974 and 0.974, respectively, but

the values for AUC were slightly lower than those for SVM and

MLP. Nevertheless, RF outperformed most other models with

respect to AUC (0.938), implying that it is particularly useful for

the analysis of complex data. This finding is consistent with those of

Breiman et al. (31), who demonstrated the utility of RF for the

analysis of high-dimensional data. AdaBoost and GBDT showed

more balanced performance with respect to all the evaluation

metrics but performed slightly worse than SVM and RF with

respect to AUC and F1 score. This may be related to a lack of

suitability of these models for the analysis of complex data. The

study by Freund and Schapire (32) also showed that AdaBoost may

require further optimization to improve performance.

It is worth noting that the recall value of 0.5000 that was

achieved for all the models except SVM suggests that these models
Frontiers in Endocrinology 09
have some shortcomings in the identification of positive class

samples, i.e., for the prediction of a high risk of T2DM. The recall

of 0.6000 for SVM is substantially higher than that for the other

models, which may indicate its superiority with respect to

unbalanced datasets. This result is consistent with that of

Joachims et al. (33), who demonstrated the superiority of SVM

with respect to unbalanced data.

SVM also performed best with respect to F1 score (0.7500),

implying that it has a good balance between precision and recall.

MLP and RF also yielded relatively high F1 scores (0.6667), suggesting

that they have some advantages for the analysis of specific types of data.

This is consistent with previous findings that suggest that these models

may be more effective for certain applications (34).

In addition, we also outlining plans for multi-center validation

now that internal performance is established and future external

validation performed using different populations in multiple centers

is needed to ensure the wide applicability of the model.
Considerations involved in model selection

When selecting the best model, multiple evaluation metrics

should be used. Although SVM performed well with respect to

several metrics, it performed slightly less well than MLP and

XGBoost in terms of CV accuracy. Therefore, for practical

applications involving complex and unbalanced data, SVM may

be preferable, whereas if model stability and accuracy are the

primary considerations, MLP and XGBoost may be more

appropriate. In addition, RF performs well with complex data

structures, but it was slightly inferior to SVM with respect to

AUC and F1 score. Therefore, RF may need to be further

optimized for use in scenarios in which precision and recall need

to be balanced. This observation is consistent with the results of

previous studies, which emphasize the need to consider multiple

factors when selecting the most appropriate model (35).
Limitations

The present study was a retrospective single-center study, and

unmeasured confounders (e.g., genetic predisposition) may have

affected the predictions made. Therefore, future external validation

performed using different populations in multiple centers is needed

to ensure the wide applicability of the model. Furthermore, the

inclusion of longitudinal changes, such as in body mass, might also

improve the predictive accuracy of the model. In addition, the

average age was significantly younger in the obese children group

than in the diabetic children group, suggesting that age is an

important confounding variable. This also suggests that obese

children may experience a gradual increase in insulin resistance

as they age and that b-cell dysfunction typically manifests around

puberty, which may explain the older average age in the

diabetic group.
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Conclusion

In this study, we compared the performance of multiple ML

algorithms for the prediction of the risk of T2DM in children with

obesity. We found that SVM performs well with respect to several

evaluation metrics, especially with unbalanced datasets. MLP and

XGBoost performed the best with respect to CV accuracy but were

slightly inferior to SVM with respect to AUC and F1 score. RF

performed well with complex data but was slightly inferior to SVM

with respect to the balance between precision and recall. Future

studies should further evaluate the performance of these models

with different datasets and applications to determine the optimal

model selection strategy. In addition, the ease of interpretation and

flexibility of the model are also important to consider when

selecting a model for use in the clinic.
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