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Background: Macrophage migration inhibitory factor (MIF) rs1007888 is

significantly associated with pancreatic b-cell function and insulin resistance in

patients with gestational diabetes mellitus (GDM). The ArfGAP with RhoGAP

domain, ankyrin repeat, and PH domain-containing protein 1 (ARAP1) rs1552224

locus has been identified as a risk locus for type 2 diabetes, and recent reports

have linked it to elevated blood glucose levels and reduced insulin release upon

glucose stimulation. Few studies have been conducted on these genetic variants

and their risk of GDM. This study aimed to investigate the association between

these two genetic variants (ARAP1) rs1552224 and (MIF) rs1007888 and the risk of

developing GDM.

Methods: A case-control study involving 500 GDM patients and 502 healthy

controls was conducted. DNAwas extracted, and rs1007888 and rs1552224 were

systematically genotyped using the SNPscan™ genotyping kit. Statistical

methods assessed genotype and allele differences linked to GDM risk, followed

by a meta-analysis to evaluate the impact of regional factors on GDM.

Results: Analyses of (MIF) rs1007888 showed no link to higher GDM risk, but

meta-analysis found a significant association (OR>1), indicating a connection to

increased GDM risk. ARAP1 rs1552224 was significantly linked to reduced GDM

incidence (Allele Model A vs. C: OR = 0.624; 95% CI: 0.425-0.916; p-value =

0.016; Dominant Model AA vs. AC+CC: OR = 0.641; 95% CI: 0.429-0.959;

p-value = 0.030), especially in women under 30, rs1552224 Aelle Model (A vs.

C: OR = 0.490; 95% CI: 0.281-0.857; p -value = 0.012), Dominant Model (AA vs.

AC + CC: OR = 0.523; 95% CI: 0.292-0.938; p -value = 0.030). and those with a

BMI≥24, Aelle Model (A vs. C: OR = 0.345; 95% CI: 0.124-0.960; p-value = 0.042).

Conversely, a meta-analysis suggested an increased GDM risk with the ARAP1

variant (OR>1).
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Conclusion: The meta-analysis results demonstrate that there is an enhanced

likelihood of GDM associated with the MIF rs1007888 mutation. Moreover, our

findings indicate that the ARAP1 rs1552224 variant, specifically the AC genotype

and C allele, confers a decreased risk of developing gestational diabetes mellitus

(GDM). The outcomes obtained give GDM testing a theoretical foundation.
KEYWORDS

macrophage migration inhibitory factor (MIF), Ankyrin Repeat and PH Domain1 (ARAP1),
Rs1007888, rs1552224, gestational diabetes mellitus
1 Introduction

Gestational diabetes mellitus (GDM) is a pregnancy-specific

disorder of glucose metabolism, distinct from pre-existing diabetes,

and is increasingly prevalent in China. It poses significant risks to

maternal health, including preeclampsia, higher rates of cesarean

delivery, and a markedly increased likelihood of developing type 2

diabetes mellitus (T2DM) later in life. Offspring of affected mothers

are also at risk of adverse outcomes such as macrosomia, neonatal

hypoglycemia, and long-term metabolic complications (1–3).

Established risk factors for GDM include advanced maternal age,

obesity, family history of diabetes, and genetic susceptibility (4).

Although the pathophysiology of GDM is not fully understood,

it shares essential features with T2DM, including insulin resistance,

impaired glucose tolerance, and b-cell dysfunction (2, 3). Increasing

evidence points to the contribution of genetic variation, particularly

single-nucleotide polymorphisms (SNPs), in modulating GDM risk.

Among candidate loci, the macrophage migration inhibitory factor

(MIF) gene and the ARAP1 locus have been implicated in diabetes-

related traits. MIF rs1007888 has been associated with insulin

resistance and b-cell dysfunction (5, 6), while ARAP1 rs1552224

has been linked to reduced insulin secretion (7). However, their

roles in GDM remain insufficiently investigated.

MIF is a pleiotropic cytokine expressed abundantly by placental

trophoblasts and upregulated in GDM placental tissue, correlating with

fasting glucose levels and insulin resistance (8, 9). Functionally, MIF

influences insulin secretion and glucose metabolism and exerts pro-

inflammatory effects by regulating cytokines such as TNF-a, IFN-g, and
IL-10, thereby contributing to hyperglycemia (9). Elevated systemicMIF

levels are a feature of T2DM (10), but its mechanistic role in pregnancy-

related glucose dysregulation remains poorly defined (8).

Meanwhile, genome-wide association studies (GWAS)

consistently implicate ARAP1 variants in T2DM susceptibility

(11, 12). In particular, rs1552224 has been associated with fasting

glucose levels and impaired glucose-stimulated insulin secretion,

with evidence suggesting the A allele contributes to b-cell
dysfunction (11). Interestingly, preliminary data indicate that this

allele may be protective against GDM (13), highlighting potential

differences between pregnancy-related and non-pregnancy-related

diabetes risk mechanisms.
02
Despite these insights, data on the association between MIF

rs1007888 and ARAP1 rs1552224 with GDM remain sparse,

especially in Asian populations, and no systematic synthesis of

existing findings has been undertaken. Given the high burden of

GDM and the distinct genetic architecture of the Chinese

population, further investigation is warranted.

Therefore, in this study, we examined the associations of MIF

rs1007888 and ARAP1 rs1552224 with GDM in a Han Chinese

cohort and performed a meta-analysis to contextualize our findings

with the broader literature. We aimed to clarify the potential

contribution of these variants to GDM risk and provide new

insights into their role in pregnancy-specific glucose metabolism.
2 Materials and methods

2.1 Study participants

A total of 1002 participants were recruited for the study, including

500 patients with gestational diabetes mellitus (GDM) and 502

pregnant women without GDM who served as controls. This study

protocol was approved by the Ethics Committee of Shunde Women’s

and Children’s Hospital Affiliated to Guangdong Medical University

(approval ID: 2020072). The inclusion criteria were as follows:

participants must provide voluntarily signed informed consent; be of

Han ethnicity; be at least 18 years old; have undergone a 75g oral

glucose tolerance test (OGTT) between 24 and 28 weeks of gestation

and be diagnosed with gestational diabetes mellitus (GDM) or have

standard glucose tolerance according to the criteria of the International

Association of Diabetes and Pregnancy Study Groups (IADPSG). In

the present study, the International Association of Diabetes and

Pregnancy Investigation Groups (IADPSG) diagnostic guidelines

were employed. If one or more points satisfy the following criteria,

GDM was diagnosed: fasting blood glucose (FBG) ≥ 5.1 mmol/L, 1-

hour postprandial glucose (PG) ≥ 10.0 mmol/L, or 2-hour PG ≥ 8.5

mmol/L. Expectant mothers falling below these specified limits were

classified as healthy control subjects.

The exclusion criteria included: presence of pregnancy-related

diseases or use of drugs affecting glucose metabolism; history of

severe cardiovascular and cerebrovascular diseases, hepatic or renal
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insufficiency, tumors, or pathogenic infections; and engagement in

smoking, alcoholism, drug abuse, or presence of intellectual

disability or mental disorders. This study was conducted

following the principles outlined in the Declaration of Helsinki.
2.2 Data collection

During the 24–28 gestational weeks, comprehensive data were

collected, including parity (primigravida or multigravida), pre-

pregnancy weight, ethnicity, age, height, blood pressure, and

blood glucose levels. The collected data were subsequently

employed to compute the pregestational body mass index (pre-

BMI, kg/m²), which was defined as the pregestational weight (in

kilograms) divided by the square of height (in meters). To

determine the obesity status in line with Chinese standards, the

following classification criteria were utilized: underweight (< 18.5

kg/m²), normal weight (18.5–24.9 kg/m²), overweight (25–29.9 kg/

m²), and obese (≥ 29 kg/m²). This method of classification was

adopted based on the research carried out by (14).
2.3 SNP genotyping and quality control

Based on findings from genome-wide association studies

(GWAS) of type 2 diabetes mellitus (T2DM) in Asian

populations, we selected two candidate SNPs, MIF rs1007888 and

ARAP1 rs1552224, for evaluation of their potential association with

GDM. Selection criteria included a minor allele frequency (MAF) >

0.05, supported by evidence from prior studies (8, 15, 16).

For each participant, 2 mL of peripheral blood was collected

into EDTA tubes and stored at −80 °C until analysis. Genomic DNA

was extracted using the QIAamp DNA Blood Kit (Qiagen,

Germany) according to the manufacturer’s protocol. SNP

genotyping was performed using the SNPscan™ method

(Genesky Biotechnologies, Shanghai, China), a high-throughput

and highly accurate technique based on dual ligation probe

hybridization and multiplex fluorescent PCR. The procedure

involves probe ligation to discriminate wild-type and variant

alleles, multiplex PCR amplification with fluorescently labeled

primers, and capillary electrophoresis to separate amplified

fragments. Genotypes were assigned based on fragment length

and fluorescent signal intensity.

To ensure accuracy, rigorous quality control measures were

implemented by Genesky Biotechnologies (12, 17). Pre-experiments

were conducted to optimize assay performance. In addition, 6% of

randomly selected samples were re-genotyped by Sanger

sequencing, yielding 100% concordance with the SNPscan results.
2.4 Statistical analyses

The analytical evaluations were performed via SPSS 20.0 (SPSS

Inc., Chicago, IL, USA), with a bilateral p-value less than 0.05

considered statistically significant. Standard distribution-aligned
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variables were recorded as means ± standard deviations, and the

non-overlapping samples t-test was used to assess the variances in

relevant parameters between the two groups. When the normality

assumption was violated, non-parametric testing methods were

employed. Descriptive data were evaluated using the chi-square

(c2) test. To verify the representativeness of the control group in the

population, the Hardy-Weinberg equilibrium (HWE) test,

estimated by the goodness-of-fit c2, was applied. Six genetic

models, specifically codominant homozygous, codominant

heterozygous, over-dominant, dominant, recessive, and allele

models, were used to assess GDM risk through the c2 test and

logistic regression analysis. The presentation included basic and

adjusted odds ratios (ORs) along with their respective 95%

confidence intervals (CIs), considering variables such as age, pre-

BMI, blood pressure, parity, and more. A stratified analysis was

performed to delve deeper into how age and pre-BMI might affect

the outcomes. A one-way ANOVA was used to explore the link

between SNPs and blood sugar levels. The least significant

difference (LSD) approach was adopted for multiple comparisons.

Investigations of specific subgroups were conducted for both GDM

and T2DM.
2.5 Meta-analysis

A thorough literature review and meta-analysis were conducted

utilizing the Google Scholar, PubMed, and CNKI databases to assess

the association between the MIF rs1007888 and ARAP1 rs1552224

polymorphisms and the risk of gestational diabetes mellitus (GDM)

and type 2 diabetes mellitus (T2DM) (Supplementary Table 7). A

limited number of studies were available for the meta-analysis

concerning these genes and their associated polymorphisms. The

authors propose further studies with these genes. For the analysis of

rs1552224 concerning GDM, one eligible study was included, while

three studies were incorporated for rs1552224 concerning T2DM.

Additionally, four studies were selected for the association between

MIF rs1007888 and GDM (refer to Supplementary Table 7). The

analyses were performed using a fixed-effects model.

The search strategy employed combinations of the terms

rs1007888, rs1552224, type 2 diabetes mellitus (T2DM), and

gestational diabetes mellitus (GDM). Eligible studies were those

that focused on case-control or cohort analyses exploring the

association between the rs1007888 and rs1552224 polymorphisms

and T2DM or GDM, provided they contained sufficient original

data. Studies that did not meet the established diagnostic criteria or

deviated from the Hardy-Weinberg equilibrium were excluded

from the analysis. Data extraction was carried out independently

by two authors, with any discrepancies resolved through

consultation with a third party. The kappa coefficient was

calculated to evaluate inter-researcher agreement, ensuring the

objectivity and accuracy of the study selection process.

Meta-analyses were performed across six genetic models,

employing fixed-effects or random-effects models depending on

the level of heterogeneity observed. Publication bias was assessed

using Egger’s and Begg’s tests. All analyses were conducted using
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STATA version 16.0. This study adheres to the PRISMA guidelines

and the Cochrane Handbook. The protocol has been registered with

PROSPERO, an internationally recognized platform for the

registration of systematic reviews and meta-analyses, under the

registration number CRD420251122128.
3 Results

3.1 Overview of the clinical characteristics
of the subjects

The study’s foundational analysis of 500 GDM patients and 502

non-diabetic controls (Table 1) revealed several critical baseline

differences. Notably, the GDM cohort exhibited significantly higher

mean values for key clinical markers, including systolic blood

pressure (SBP), diastolic blood pressure (DBP), age, pre-

pregnancy body mass index (pre-BMI), fasting plasma glucose

(FPG), 1-hour postprandial glucose (1h-PG), and 2-hour

postprandial glucose (2h-PG) when compared to the control

group (all p < 0.05). This suggests that beyond the defining

glucose dysregulation, the GDM group presents with a broader

metabolic and physiological profile distinct from non-diabetic

individuals, even at baseline. Furthermore, a significant disparity

in parity was evident between the GDM and control groups (p <

0.05), indicating that reproductive history may serve as an

additional differentiating factor. This finding warrants further
Frontiers in Endocrinology 04
exploration into its potential implications for GDM pathogenesis

or its role as a risk indicator. Stratified analyses reinforced the

robustness of these observations. When stratifying the cohort using

age 30 and pre-BMI cut-off points of 18.5 and 24, significant

differences between the GDM and control groups persisted (all

p < 0.05). This reason suggests that broad population characteristics

do not merely drive the observed disparities but remain significant

even within specific demographic and anthropometric subgroups,

emphasizing the pervasive nature of these differences in the

GDM cohort.
3.2 The relationship between genetic
polymorphisms and GDM risk

3.2.1 Overall analysis results
The control group’s genetic data provides crucial insights into

the Hardy-Weinberg Equilibrium (HWE) of two specific SNPs,

rs1007888 and rs1552224. These SNPs are located at chromosomal

positions 11:72722053 and 22:23898914, respectively. For

rs1007888, the major and minor alleles are C and A, with a

Minor Allele Frequency (MAF) of 0.486. For rs1552224, the

major and minor alleles are T and C, and its MAF is 0.079

(Table 2). Critically, the HWE test yielded high p-values for both

SNPs (0.997 for rs1007888 and 0.86 for rs1552224), strongly

indicating that both loci are in Hardy-Weinberg equilibrium

within the studied population. This finding is fundamental, as it
TABLE 1 Fundamental and categorized traits of the study subjects.

Variables Cases (%) (N=500) Controls (%) (N=502) t/x2 P

Age, year (mean ± SD) 31 ± 4 29 ± 4 -8.56 <0.001

pre-BMI, kg/m2 21.51 ± 3.10 20.53 ± 2.58 -5.42 <0.001

SBP, mmHg 117 ± 11 114 ± 10 -3.53 <0.001

DBP, mmHg 70 ± 8 68 ± 7.3 -3.23 0.001

FPG, mmol/L 4.82 ± 0.64 4.50 ± 0.31 -9.75 <0.001

1h-PG, mmol/L 10.17 ± 1.60 7.66 ± 1.27 -26.22 <0.001

2h-PG, mmol/L 8.91 ± 1.60 6.69 ± 0.99 -25.85 <0.001

Parity (n) 8.88 0.003

Primipara 210 (42) 258(51.4)

Multipara 290(58) 244(48.6)

Age, year 49.2 <0.001

< 30 26.60 ± 2.06 25.82 ± 2.70

≥ 30 33.75 ± 2.84 33.01 ± 2.42

pre-BMI, kg/m2 27.8 <0.001

< 18.5 17.53 ± 0.86 17.65 ± 1.47

18.5 ≤ BMI < 24 20.96 ± 1.49 20.67 ± 1.43

≥ 24 26.14 ± 2.82 25.82 ± 3.24
SBP, systolic blood pressure; DBP, diastolic blood pressure; pre-BMI, pre-gestational body mass index; FPG, fasting plasma glucose; 1h-PG, 1-hour postprandial glucose; 2h-PG, 2-hour
postprandial glucose.
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confirms that the control group is representative of an unperturbed

genetic population, making it a reliable baseline for further genetic

association studies.
3.3 Association between SNPs and the risk
of GDM in all of the subjects

In our study, even after accounting for potential confounding

factors such as pre-BMI, systolic and diastolic blood pressure,

maternal age, and parity, a robust association between the

rs1552224 genetic variant and a reduced risk of GDM remained

evident. Specifically, analysis within the dominant model (AA

genotype compared to AC + CC genotypes) yielded an odds ratio

of 0.641 (95% CI: 0.429-0.959; p = 0.030), while the allele model (A

vs. C allele) showed an odds ratio of 0.624 (95% CI: 0.425-0.916; p =

0.016). These findings, detailed in Table 3, strongly suggest a

protective effect of the variant against GDM. Conversely, our

analysis revealed no significant correlation between the rs1007888

locus and GDM risk (Table 3).
3.4 Stratified analysis of the differences
between SNPs in the ARAP1 and MIF genes
and GDM risk in subjects under 30 years of
age.

Our stratified analysis across six genetic models, meticulously

accounting for age and pre-BMI, revealed a compelling association

between specific SNPs and GDM risk in subjects under 30 years of

age. Notably, the ARAP1 rs1552224 allele model demonstrated a

significant protective effect, correlating with a substantially lower

incidence of GDM in women under 30 years of age. This association

remained robust even after comprehensive adjustment for potential

confounding factors (A vs. C: OR = 0.490, 95% Confidence Interval:

0.281-0.857; p = 0.012). Further supporting this finding, the

dominant model (AA vs. AC + CC: OR = 0.523, 95% Confidence

Interval: 0.292-0.938; p = 0.030) also indicated a statistically

significant reduction in GDM risk within this younger subgroup

(Table 4). These results suggest that ARAP1 rs1552224 warrants

further investigation as a potential genetic marker for GDM

susceptibility, particularly in younger individuals.
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3.5 The association between SNPs and
GDM risk in individuals with a pre-BMI of
24 or above

In our investigation, we observed a compelling association

between the ARAP1 rs1552224 allele and a reduced risk of GDM

specifically within a subset of females. Among those with a pre-BMI

of 24 kg/m2 or greater, the presence of the C allele of the ARAP1

rs1552224 SNP was significantly associated with 65.5% lower odds

of developing GDM compared to carriers of the A allele (OR =

0.345, 95% CI: 0.124-0.960; p = 0.042). This finding, presented in

Table 5, suggests a potential protective role of the ARAP1 rs1552224

C allele in GDM susceptibility, particularly in the context of higher

pre-BMI. Further research is warranted to elucidate the underlying

biological mechanisms by which ARAP1 may influence glucose

homeostasis and GDM risk in this specific demographic.

Furthermore, our analysis did not reveal any significant

associations between the genetic factors investigated and GDM

across the other subcategories (Supplementary Tables 1–3).

Furthermore, a one-way ANOVA was conducted to explore

potential relationships between polymorphism genotypes and

various blood glucose parameters. However, the associations

between the genotypes of the SNPs and fasting plasma glucose

(FPG), 1-hour post-glucose (1h-PG), and 2-hour post-glucose (2h-

PG) levels were not statistically significant, as all p-values

consistently exceeded 0.05 (Supplementary Tables 4–6).
3.6 Meta-analysis results

Our meta-analysis findings reveal a significant association

between the rs1007888 polymorphism and an elevated risk of

GDM across multiple genetic models, including the codominant

heterozygote, codominant homozygote, allelic, dominant, and over-

dominant models (Figure 1). This consistent association strongly

suggests a role for rs1007888 in GDM susceptibility. Furthermore,

subgroup analysis highlighted the rs1552224 polymorphism as

significantly linked to an increased GDM risk in the codominant

heterozygote, allelic, dominant, and over-dominant models. While

the codominant homozygote and recessive models for rs1552224

did not show a broad overall effect on T2DM, they did exert a

statistically significant influence specifically on GDM, with

respective p-values of 0.035 and 0.044. Other genetic models for

this polymorphism did not yield substantial correlations (Figure 2).

Regarding potential publication bias, Begg’s test indicated no

substantial bias across the genetic frameworks (all p > 0.05).

However, the observed asymmetry in the funnel plot

(Supplementary Figures 1, 2) warrants consideration. While this

asymmetry could suggest publication bias, it’s also important to

acknowledge that it may arise from other factors, such as underlying

heterogeneity in study outcomes or variations in study size.
TABLE 2 Information on SNPs and Hardy-Weinberg equilibrium (HWE)
test among the controls.

SNP Min/Maj Chr. position MAF HWE (P)

rs1552224 C/A chr11:72722053 0.079 0.86

rs1007888 T/C chr22:23898914 0.486 0.997
SNP, single nucleotide polymorphisms; Min, minor allele; Maj, major allele; HWE, Hardy–
Weinberg equilibrium; MAF, frequency of minor allele.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1650782
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2025.1650782
TABLE 3 The correlations between SNPs and the risk of GDM in all of the subjects.

Model
Cases (%)
(n=500)

Controls (%)
(n=502)

Crude OR
(95% CI)

Crude P
Adjusted OR
(95% CI)

Adjusted P

rs1552224

Codominant model

AA 450(90.0) 427(85.1) 1(ref) 1(ref)

AC 50(10.0) 71(14.1) 0.668(0.455-0.982) 0.04 0.680(0.453-1.020) 0.062

CC 0(0.0) 4(0.80)

Aelle model

A 950(95.0) 925(92.1) 1(ref) 1(ref)

C 50(5.0) 79(7.9) 0.616(0.428-0.888) 0.009 0.624(0.425-0.916) 0.016

Dominant Model

AA 450(90.0) 427(85.1) 1(ref) 1(ref)

AC+CC 50(10.0) 75(14.9) 0.633(0.432-0.926) 0.019 0.641(0.429-0.959) 0.03

Recessive Model

AC+AA 500(100.0) 498(99.2) 1(ref) 1(ref)

CC 0(0.0) 4(0.80) NA NA NA NA

Overdominant model

AA+CC 450(90.0) 431(85.9) 1(ref) 1(ref)

AC 50(10.0) 71(14.1) 0.674(0.459-0.991) 0.045 0.686(0.457-1.029) 0.069

rs1007888

Codominant model

CC 152(30.4) 133(26.5) 1(ref) 1(ref)

CT 230(46.0) 250(49.8) 0.805(0.600-1.080) 0.148 0.783(0.573-1.071) 0.126

TT 118(23.6) 119(23.7) 0.868(0.615-1.225) 0.42 0.867(0.603-1.249) 0.444

Aelle model

C 534(53.4) 516(51.4) 1(ref) 1(ref)

T 466(46.6) 488(48.6) 0.923(0.774-1.100) 0.369 0.931(0.774-1.121) 0.452

Dominant Model

CC 152(30.4) 133(26.5) 1(ref) 1(ref)

CT+TT 348(69.6) 369(73.5) 0.825(0.627-1.086) 0.171 0.813(0.607-1.087) 0.162

Recessive Model

CT+CC 382(76.4) 383(76.3) 1(ref) 1(ref)

TT 118(23.6) 119(23.7) 0.994(0.743-1.331) 0.969 1.037(0.763-1.410) 0.816

Overdominant model

CC+TT 270(54.0) 252(50.2) 1(ref) 1(ref)

CT 230(46.0) 250(49.8) 0.859(0.670-1.100) 0.229 0.822(0.632-1.069) 0.144
F
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TABLE 4 The connections between SNPs in the ARAP1 and MIF genes and GDM risk in subjects under 30 years of age.

Model
Cases (%)
(n=192)

Controls (%)
(n=304)

Crude OR
(95% CI)

Crude P
Adjusted OR
(95% CI)

Adjusted P

rs1552224

Codominant model

AA 173(90.1) 254(83.6) 1(ref) 1(ref)

AC 19(9.9) 46(15.1) 0.606(0.344-1.071) 0.085 0.585(0.324-1.053) 0.074

CC 0() 4(1.3) () ()

Aelle model

A 365(95.1) 554(91.1) 1(ref) 1(ref)

C 19(4.9) 54(8.9) 0.534(0.311-0.916) 0.023 0.490(0.281-0.857) 0.012

Dominant Model

AA 173(90.1) 254(83.6) 1(ref) 1(ref)

AC+CC 19(9.9) 50(16.4) 0.558(0.318-0.979) 0.042 0.523(0.292-0.938) 0.03

Recessive Model

AC+AA 192(100.0) 300(98.7) 1(ref) 1(ref)

CC 0(0.0) 4(1.3) NA NA NA NA

Overdominant model

AA+CC 173(90.1) 258(84.9) 1(ref) 1(ref)

AC 19(9.9) 46(15.1) 0.616(0.349-1.087) 0.095 0.599(0.333-1.077) 0.087

rs1007888

Codominant model

CC 63(32.8) 85(28.0) 1(ref) 1(ref)

CT 82(42.7) 149(49.0) 0.743(0.486-1.133) 0.168 0.740(0.475-1.152) 0.182

TT 47(24.5) 70(23.0) 0.906(0.553-1.483) 0.694 0.971(0.578-1.630) 0.911

Aelle model

C 208(54.2) 319(52.5) 1(ref) 1(ref)

T 176(45.8) 289(47.5) 0.934(0.723-1.207) 0.601 0.968(0.742-1.264) 0.812

Dominant Model

CC 63(32.8) 85(28.0) 1(ref) 1(ref)

CT+TT 129(67.2) 219(72.0) 0.795(0.537-1.176) 0.25 0.818(0.544-1.229) 0.333

Recessive Model

CT+CC 145(75.5) 234(77.0) 1(ref) 1(ref)

TT 47(24.5) 70(23.0) 1.084(0.709-1.655) 0.711 1.159(0.745-1.803) 0.514

Overdominant model

CC+TT 110(57.3) 155(51.0) 1(ref) 1(ref)

CT 82(42.7) 149(49.0) 0.775(0.539-1.116) 0.171 0.756(0.517-1.105) 0.149
F
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TABLE 5 The correlations between SNPs and GDM risk in individuals with a pre-BMI of 24 or above.

Model
Cases (%)
(n=192)

Controls (%)
(n=304)

Crude OR
(95% CI)

Crude P
Adjusted OR
(95% CI)

Adjusted P

rs1552224

Codominant model

AA 89(91.8) 31(73.8) 1(ref) 1(ref)

AC 8(8.2) 10(23.8) 0.279(0.101-0.769) 0.014 0.399(0.124-1.291) 0.125

CC 0(0.0) 1(2.4) NA NA NA NA

Aelle model

A 186(95.9) 72(85.7) 1(ref) 1(ref)

C 8(4.1) 12(14.3) 0.258(0.101-0.657) 0.005 0.345(0.124-0.960) 0.042

Dominant Model

AA 89(91.8) 31(73.8) 1(ref) 1(ref)

AC+CC 8(8.2) 11(26.2) 0.253(0.093-0.687) 0.007 0.337(0.108-1.048) 0.06

Recessive Model

AC+AA 97(100.0) 41(97.6) 1(ref) 1(ref)

CC 0(0.0) 1(2.4) () ()

Overdominant model

AA+CC 89(91.8) 32(76.2) 1(ref) 1(ref)

AC 8(8.2) 10(23.8) 0.288(0.104-0.793) 0.016 0.407(0.126-1.310) 0.132

rs1007888

Codominant model

CC 29(29.9) 11(26.2) 1(ref) 1(ref)

CT 51(52.6) 23(54.8) 0.841(0.359-1.970) 0.69 0.841(0.336-2.104) 0.712

TT 17(17.5) 8(19.0) 0.806(0.271-2.397) 0.698 1.369(0.363-5.160) 0.643

Aelle model

C 109(56.2) 45(53.6) 1(ref) 1(ref)

T 85(43.8) 39(46.4) 0.900(0.538-1.505) 0.687 0.978(0.561-1.705) 0.938

Dominant Model

CC 29(29.9) 11(26.2) 1(ref) 1(ref)

CT+TT 68(86.1) 31(73.8) 0.832(0.369-1.877) 0.658 0.864(0.355-2.107) 0.749

Recessive Model

CT+CC 80(82.5) 34(81.0) 1(ref) 1(ref)

TT 17(17.5) 8(19.0) 0.903(0.356-2.292) 0.83 1.133(0.394-3.258) 0.816

Overdominant model

CC+TT 46(47.4) 19(45.2) 1(ref) 1(ref)

CT 51(52.6) 23(54.8) 0.916(0.443-1.894) 0.813 0.831(0.377-1.830) 0.646
F
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4 Discussion

Baseline characteristics from our cohort showed that women

who developed gestational diabetes mellitus (GDM) had

significantly higher systolic and diastolic blood pressure, fasting

plasma glucose, 1-hour and 2-hour postprandial glucose levels, pre-

pregnancy BMI, and mean age compared with controls (all p < 0.05,

several p < 0.001). These observations are consistent with previous

reports and point to several mechanistic underpinnings (18, 19).
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Although none of the GDM participants met the diagnostic

threshold for hypertension, their higher blood pressure values suggest

early manifestations of insulin resistance–related endothelial

dysfunction and subcl inical inflammation (20). This

pathophysiological background helps to explain the increased risk of

preeclampsia and gestational hypertension in GDM pregnancies (4, 21).

The most pronounced group differences were seen in postprandial

glucose excursions particularly at 1 and 2 hours supporting the concept

that postprandial hyperglycaemia represents the core metabolic
FIGURE 1

A meta-analytic method employing a fixed effects strategy to explore the link between MIF rs1007888 and the vulnerability to GDM. (A) Codominant
Heterozygous Model, CC versus CT (B). Codominant Homozygous Model, CC versus TT (C) Aelle model, C versus T (D) Dominant Model, CC in
contrast to CT+TT (E) Recessive Model, CT+ CC versus TT (F) Over-dominant model, CC+TT versus CT. OR stands for odds ratio, CI for confidence
interval, and I-squared represents the measure used to assess the level of diversity in the meta-analytic method.
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abnormality of GDM (4). This likely reflects inadequate first-phase

insulin release and reduced peripheral glucose uptake.

Pre-pregnancy BMI emerged as another critical determinant.

Even within the “normal” range (18.5–24 kg/m²), women who later

developed GDM had higher pre-BMI values, suggesting that mild

elevations in adiposity may confer risk. Adipokines such as leptin

and TNF-a, secreted from adipose tissue, may further aggravate

insulin resistance and impair b-cell function (22, 23).
Frontiers in Endocrinology 10
Maternal age was also independently associated with GDM: the

mean age of affected women was 31 years compared with 29 years in

controls (p < 0.001), and stratified analysis showed that those

aged ≥30 years had more pronounced metabolic impairments.

This is consistent with evidence that both insulin sensitivity and

b-cell function decline progressively with advancing age (4, 24).

Collectively, these findings underscore that even modest

elevations in blood pressure, adiposity, and maternal age
FIGURE 2

A meta-analytic method employing a fixed effects strategy to explore the link between ARAP1 rs1552224 and the susceptibility to GDM.
(A) Codominant Heterozygous Model, AA versus AC (B). Codominant Homozygous Model, AA versus CC (C) Aelle model, A versus C (D). Dominant
Model, AA versus AC+CC (E) Recessive Model, AC+AA versus CC (F) Over-dominant model, AA+CC versus AC. OR stands for odds ratio, CI for
confidence interval, and I-squared represents the measure used to assess the level of diversity in the meta-analytic method.
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contribute to GDM risk. They highlight the need for pre-pregnancy

counselling and weight optimisation in women of reproductive age

as a preventive strategy to reduce the burden of GDM and

its complications.

The human macrophage migration inhibitory factor (MIF)

gene, located on chromosome 22q11.2, is constitutively and

abundantly expressed in immune cells, particularly T lymphocytes

and macrophages (25). MIF exerts diverse biological functions, and

altered expression has been reported in several inflammatory and

metabolic disorders, including rheumatoid arthritis, atherosclerosis,

and diabetes (26). In the placental decidua, macrophages and

dendritic cells regulate T-cell activation, initiating immune

responses. Subsequent differentiation of T cells into Th1 or Th2

subtypes—driven by both intrinsic and extrinsic factors alters

cytokine synthesis and distribution. These shifts directly influence

MIF regulation and are essential for immunological adaptation

across pregnancy stages (15).

Beyond its role in immunity, MIF functions as a pleiotropic

cytokine linking inflammation to glucose metabolism. At the

molecular level, it regulates glucose transporter 4 and fructose-

bisphosphatase 2 expression (8). Moreover, MIF promotes TNF-a
production (27, 28), thereby influencing glycolysis and

inflammatory signalling. In adipocytes, MIF-driven TNF-a
secretion contributes to insulin resistance (8), while in endothelial

cells, MIF disrupts insulin-mediated nitric oxide release, fostering

endothelial insulin resistance (8).

These mechanisms align with the lipid overload hypothesis, which

posits that ectopic lipid deposition in insulin-sensitive tissues such as

skeletal muscle, pancreas, and liver underpins insulin resistance (29–

31). Supporting this, both adipose tissue MIF mRNA and circulating

MIF concentrations are elevated in obese women with type 2 diabetes

(32). Elevated adipose-derived MIF in obesity and diabetes further

impairs insulin signalling and amplifies pro-inflammatory cascades,

thereby reinforcing insulin resistance (33).

Despite previous findings linking MIF variants to T2D, our

study found no significant association between the MIF rs1007888

variant and GDM. This divergence suggests that pregnancy-specific

genetic or physiological factors might influence the role of this

genetic locus in GDM development (6, 32, 33). Moreover, despite

the known involvement of MIF in inflammatory and metabolic

disorders (34), its genetic influence via rs1007888 on GDM risk

within the context of higher pre-BMI appears to be negligible or

absent in our specific cohort. This suggests that the genetic impact

of rs1007888 on GDM risk may be either minor or does not

significantly interact with the metabolic environment of pre-

existing obesity, at least in the population we investigated. It is

plausible that other genetic or environmental factors exert a more

predominant influence on GDM development within this particular

BMI subgroup.

ARAP1, which encodes the protein Arap1 (ARF-GAP, Rho-GAP

Anchoring Protein Repeat Sequence, and Pleckstrin Homology

Domain Protein 1, also known as centaurin delta 2), functions as a

phosphatidylinositol 1,4,5-trisphosphate-regulated Arf GTPase-

activating protein. This protein primarily targets the small GTP-

binding protein Arf6, which is known to play a critical role in the
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modulation of insulin exocytosis (6). The rs1552224 SNP is situated

within an intronic region of the ARAP1 gene.

Research indicates that ARAP1 is significantly associated with

elevated blood sugar levels and reduced insulin secretion in

response to glucose stimulation, suggesting that impaired

pancreatic b-cell function may be a mechanism through which

this genetic locus contributes to the development of diabetes (35).

Recent findings propose that the expression of the ARAP1 locus is

predominantly influenced by markedly increased levels of

STARD10 expression in the pancreas (36).

The genetic variant STARD10 rs11603334 is functionally linked to

the expression of ARAP1 and is in complete linkage disequilibrium

with rs1552224. The risk allele (C) of STARD10 rs11603334 for type 2

diabetes is positioned near the ARAP1 promoter. This specific

placement interferes with the collaborative complex formation

between the transcriptional regulators PAX6 and PAX4. This

interference leads to an increased amplification of ARAP1 P1

promoter transcription, resulting in higher ARAP1 transcription

levels within the Islets of Langerhans (37).

Conversely, research by Carrat et al (36) suggests that

compromised insulin secretion from pancreatic and b-cells is

associated with decreased STARD10 levels, rather than elevated

ARAP1. Furthermore, the rs1552224C allele might offer a protective

effect against type 2 diabetes. This protective role could be mediated by

the overexpression of STARD10, which in turn enhances Ca2+

dynamics and glucose-triggered insulin release from pancreatic and

b-cells (34). Despite these findings, the precise operational mechanism

of this process in GDM requires further extensive investigation.

The protective influence of the C allele at rs1552224 warrants

particular attention. ARAP1 (ArfGAP with RhoGAP domain,

ankyrin repeat, and PH domain 1) plays a critical role in insulin

secretion and glucose homeostasis by regulating membrane

trafficking and cytoskeletal dynamics within pancreatic b cells

(38). While previous research has linked ARAP1 polymorphisms

to an elevated risk of type 2 diabetes (39, 40), its specific

contribution to GDM, especially in younger populations, remains

underexplored. Our findings suggest that the C allele may modify

ARAP1’s function, potentially enhancing b-cell compensation or

insulin sensitivity to meet the increased metabolic demands of

pregnancy, thereby lowering GDM risk. This aligns with existing

evidence that genetic variations affecting b-cell function are

significant predictors of GDM susceptibility (41).

In the context of the allelic model for the ARAP1 gene, the

presence of each C allele is associated with a 38% reduction in

the risk of developing GDM. This observation is consistent with

the established role of ARAP1 in insulin granule trafficking and the

functionality of bcells (37). Notably, the absence of CC

homozygotes among GDM cases (0% compared to 0.8% in

controls) indicates a potential dosage-dependent protective effect.

However, the low minor allele frequency (MAF = 5–8%) (42) may

limit the statistical power of analyses based on recessive models.

Furthermore, our results corroborate previous functional studies

that demonstrate that ARAP1 knockdown adversely affects glucose-

stimulated insulin secretion (GSIS) in b cells Benjamin (31). The

protective C allele may enhance the expression of ARAP1, thereby
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improving the first-phase insulin response, which is crucial for

regulating postprandial glucose levels. This is consistent with the

elevated 1-hour and 2-hour post-glucose challenge levels presented

in Table 1.

The observation that the rs1552224 C allele exhibits a protective

association in individuals with elevated pre-BMI is a compelling

finding. Given that obesity is a well-established driver of insulin

resistance and a significant risk factor for GDM (43), our data imply

that the C allele may offer a unique advantage by ameliorating the

adverse metabolic consequences of obesity during gestation (38).

The SNP rs1552224 has the potential to enhance the prediction of

GDM risk in women with high BMI and nulliparous status. However,

its modest effect size, with an odds ratio of approximately 0.6, limits its

utility as a standalone predictive marker.We hypothesize that this allele

could modulate ARAP1 function in a manner that either bolsters b-cell
compensatory mechanisms or enhances insulin signaling pathways.

This modulation would be particularly beneficial in counteracting the

heightened insulin resistance characteristic of a higher pre-BMI,

especially within a population already predisposed to GDM due to

their initial weight. This interpretation aligns with the broader concept

that genetic variants can influence an individual’s susceptibility to

obesity-induced metabolic dysfunction (44).

A comparison offindings in Table 3 with the data in Table 5, which

utilized age as a stratification factor, indicates that the protective effect

of the rs1552224 C allele is consistently observed across various risk

stratifications, including age and BMI. This consistency enhances the

potential clinical significance of this genetic variant as a biomarker for

assessing the risk of GDM. Our research highlights the critical

interaction between genetic factors and environmental influences,

such as pre-BMI, in shaping susceptibility to GDM. By identifying

genetic variants that may either increase or decrease the risk associated

with obesity, we can develop more tailored strategies for the prevention

and management of GDM. Future research should investigate the

functional implications of rs1552224 and its potential role in targeted

interventions for pregnant women with elevated BMI.

This meta-analysis provides a comprehensive assessment of the

association between the rs1007888 variant and gestational diabetes

mellitus (GDM), synthesising evidence from three independent

studies (5, 45) together with data from Zhang et al. (our current

study, 2024). The pooled analyses, illustrated in the accompanying

forest plots (A–F), consistently demonstrate an increased risk of

GDM associated with this locus, thereby offering new insights into

the genetic basis of disease susceptibility.

In particular, Figure 1 highlights that Plots A and B yielded

statistically significant associations, with pooled odds ratios of 1.48

and 1.45, respectively. Importantly, both models displayed very low

between-study heterogeneity (I² = 0.0% for A and 17.6% for B),

underscoring the stability and reproducibility of these findings. Such

homogeneity suggests that the genetic effect captured in these models—

likely reflecting an additive or dominant contribution of the risk allele—

represents a robust and biologically meaningful determinant of GDM.

The consistency of associations across both Chinese cohorts (5,

45) and an Iranian cohort (6) further strengthens the evidence,

supporting the notion of a shared genetic predisposition that

transcends ethnic boundaries. This aligns with prior meta-
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analyses reporting that common genetic variants contribute

significantly to GDM risk across diverse populations (26, 41). The

low heterogeneity observed in several key models adds to the

reliability of our effect estimates and suggests that rs1007888 may

represent a stable genetic marker of GDM susceptibility.

Our study has several significant limitations that should be

acknowledged. First, the relatively small number of studies included

in the meta-analysis restricts the strength of the conclusions. This

underscores the need for larger, multi-ethnic investigations to validate

our findings and to explore potential gene-environment interactions.

Functional studies will also be essential to elucidate the biological

mechanisms by which these variants may contribute to GDM risk.

Ultimately, identifying reliable genetic markers could inform

personalized risk stratification, early screening, and targeted

prevention strategies for GDM.

Discrepancies were observed between the results of our case–

control analysis, the meta-analysis, and previous literature. We

propose that a limited sample size represents a key contributor to

these inconsistencies. Power calculations using G*Power software

indicated that approximately 19,788 participants would be required

to assess the association with rs1007888 adequately, and 2,273

participants for rs1552224, under the following parameters: test

family = Exact; statistical test = Proportions: Inequality, two

independent groups (Fisher’s exact test); test direction = two-tailed;

power = 0.8; significance level a = 0.05.

The challenges of sample size requirements differ between

variants. For rs1552224, the low minor allele frequency (0.079)

limits statistical power, necessitating large cohorts to detect

associations. For rs1007888, although the reference allele is more

common (p2 = 0.486), the effect size is minimal (OR = 0.923), which

again demands a substantial cohort to achieve reliable power. This

highlights a broader difficulty in genetic association studies of weak-

effect variants, where enormous sample sizes are often required to

detect modest associations.

In addition to sample size, the absence of comprehensive

adjustment for potential confounders may have contributed to the

discrepancies observed. Significant clinical and biochemical variables

such as lipid profiles, fasting glucose, HOMA indices, C-peptide

concentrations, and comorbidities were not systematically included.

Moreover, the lack of multicenter data collection limits generalizability,

as regional differences within China may influence allele frequencies

and disease risk. Addressing these issues in future studies through

larger sample sizes, standardized adjustment factors, and multicenter

recruitment will be crucial to resolving these inconsistencies and

advancing understanding of the genetic basis of GDM.
5 Conclusions

This study investigated the relationship between the MIF

rs1007888 and ARAP1 rs1552224 genetic variants and the risk of

GDM. Our findings revealed no significant association between the

MIF rs1007888 variant and GDM risk. ARAP1 rs1552224 was

significantly linked to reduced GDM incidence. In contrast, meta-

analysis results indicated that the MIF rs1007888 mutation was
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associated with an increased likelihood of developing GDM.

Furthermore, the ARAP1 rs1552224 mutation was linked to a

heightened risk of GDM. The discrepancies between our findings

and those of previous studies may be attributed to limitations in sample

size and ethnic diversity. To enhance the understanding of the

relationship between these genetic variants and GDM risk, future

research should prioritize increasing sample sizes and incorporating

a broader range of adjustment factors and diverse ethnicities.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

The studies involving humans were approved by Guangdong

Medical University’s Shunde Women and Children’s Hospital

(Maternity and Child Healthcare Hospital of Shunde Foshan)

gave its approval for the human subjects’ study. The studies were

carried out in compliance with institutional norms and local laws.

To take part in this study, the subjects gave their written informed

consent. The studies were conducted in accordance with the local

legislation and institutional requirements. The participants

provided their written informed consent to participate in this

study. Written informed consent was obtained from the

individual(s) for the publication of any potentially identifiable

images or data included in this article.
Author contributions

YZ: Formal analysis, Data curation, Methodology, Writing –

original draft. YYW: Writing – original draft, Conceptualization.

QZ: Conceptualization, Software, Writing – original draft,

Methodology. WG: Writing – review & editing, Investigation. SH:

Investigation, Software, Writing – review & editing. XD: Writing –

review & editing, Data curation, Formal analysis. JL: Methodology,

Investigation, Writing – review & editing. XL: Investigation,

Writing – review & editing. YW: Supervision, Validation,

Writing – review & editing, Visualization. RG: Supervision,

Funding acquisition, Writing – review & editing, Resources.
Frontiers in Endocrinology 13
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. Supported by the

National Natural Science Foundation of China (81873649);

Doctoral scientific research Initiate funding project of Shunde

Women and Children s Hospital of Guangdong Medical

University (Maternity and Child Healthcare Hospital of Shunde

Foshan) (2020BSQD007); Self-financing science and technology

project of Foshan (2320001006049).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fendo.2025.

1650782/full#supplementary-material
References
1. McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational
diabetes mellitus. Nat Rev Dis Primers. (2019) 5:1–19. doi: 10.1038/s41572-019-0098-8

2. Yan J, Su R, Ao D, Wang Y, Wang H, Yang H. Genetic variants and clinical
relevance associated with gestational diabetes mellitus in Chinese women: a case-
control study. J Maternal-Fetal Neonatal Med. (2018) 31:2115–21. doi: 10.1080/
14767058.2017.1336225
3. Sweeting A, Wong J, Murphy HR, Ross GP. A clinical update on gestational
diabetes mellitus. Endocr Rev. (2022) 43:763–93. doi: 10.1210/endrev/bnac003

4. Gyan WR, Zhang H, Shao T, Yang T, Wei Y, Li M, et al. Association of CDKAL1
gene polymorphisms variations with gestational diabetes mellitus risk in women: A
case-control study and meta-analysis. BMC Endocr Disord. (2025) 25:1–12.
doi: 10.1186/s12902-025-01874-8
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2025.1650782/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2025.1650782/full#supplementary-material
https://doi.org/10.1038/s41572-019-0098-8
https://doi.org/10.1080/14767058.2017.1336225
https://doi.org/10.1080/14767058.2017.1336225
https://doi.org/10.1210/endrev/bnac003
https://doi.org/10.1186/s12902-025-01874-8
https://doi.org/10.3389/fendo.2025.1650782
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2025.1650782
5. Zhan Y, Wang Y, Li C, Liu S, Gao Q. Association between single nucleotide
polymorphism of macrophage migration inhibitory factor-rs1007888 and the
pathogenesis of gestational diabetes mellitus. Chin J Obstet Gynecol. (2013) 48:5.
doi: 10.3760/cam.j.issn.0529-567x.2013.05.002

6. Aslani S, Hossein-Nezhad A, Maghbooli Z, Mirzaei K, Karimi F. Genetic variation
in macrophage migration inhibitory factor associated with gestational diabetes mellitus
and metabolic syndrome. Hormone Metab Res. (2011) 43:557–61. doi: 10.1055/s-0031-
1275706

7. Rutter GA. Cellular and animal models of type 2 diabetes GWAS gene
polymorphisms: What can we learn? Drug Discov Today Dis Models. (2013) 10:e59–
64. doi: 10.1016/j.ddmod.2013.02.002

8. Jing L, Yun P, Fu-Kai B, Ai-Hua L. Correlation between gene polymorphism of
macrophage migration inhibitory factor and disease susceptibility: Recognition, target
and significance. Chin J Tissue Eng Res. (2018) 22:4574–9. doi: 10.3969/j.issn.2095-
4344.0299

9. Zheng L, Li C, Qi W, Qiao B, Zhao H, Zhou Y, et al. Expression of macrophage
migration inhibitory factor gene in placenta tissue and its correlation with gestational
diabetes mellitus. Natl Med J China. (2017) 97:43. doi: 10.3760/cma.j.issn.0376-
2491.2017.43.006

10. Nielsen T, Sparsø T, Grarup N, Jørgensen T, Pisinger C, Witte DR, et al.
Type 2 diabetes risk allele near CENTD2 is associated with decreased glucose-
stimulated insulin release. Diabetologia. (2011) 54:1052–6. doi: 10.1007/s00125-
011-2054-3

11. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al.
Twelve type 2 diabetes susceptibility loci identified through large-scale association
analysis. Nat Genet. (2010) 42:579–89. doi: 10.1038/ng.609

12. Gao L, Xiong YJ, Liang YX, Huang PF, Liu S, Xiao Y, et al. The effects of IL-27
and IL-35 gene variation and expression levels on the susceptibility and clinical
manifestations of pulmonary tuberculosis. Front Immunol. (2024) 15:1267624.
doi: 10.3389/fimmu.2024.1267624

13. Arora GP, Almgren P, Brøns C, Thaman RG, Vaag AA, Groop L, et al.
Association between genetic risk variants and glucose intolerance during pregnancy
in north Indian women. BMC Med Genomics. (2018) 11:1–10. doi: 10.1186/s12920-
018-0380-8

14. Li C, Zhou P, Cai Y, Peng B, Liu Y, Yang T, et al. Associations between
gestational diabetes mellitus and the neurodevelopment of offspring from 1 month to
72 months: Study protocol for a cohort study. BMJ Open. (2020) 10:1–6. doi: 10.1136/
bmjopen-2020-040305
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