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Background: Macrophage migration inhibitory factor (M/F) rs1007888 is
significantly associated with pancreatic S-cell function and insulin resistance in
patients with gestational diabetes mellitus (GDM). The ArfGAP with RhoGAP
domain, ankyrin repeat, and PH domain-containing protein 1 (ARAPI) rs1552224
locus has been identified as a risk locus for type 2 diabetes, and recent reports
have linked it to elevated blood glucose levels and reduced insulin release upon
glucose stimulation. Few studies have been conducted on these genetic variants
and their risk of GDM. This study aimed to investigate the association between
these two genetic variants (ARAPI) rs1552224 and (MIF) rs1007888 and the risk of
developing GDM.

Methods: A case-control study involving 500 GDM patients and 502 healthy
controls was conducted. DNA was extracted, and rs1007888 and rs1552224 were
systematically genotyped using the SNPscan™ genotyping kit. Statistical
methods assessed genotype and allele differences linked to GDM risk, followed
by a meta-analysis to evaluate the impact of regional factors on GDM.

Results: Analyses of (M/F) rs1007888 showed no link to higher GDM risk, but
meta-analysis found a significant association (OR>1), indicating a connection to
increased GDM risk. ARAP1 rs1552224 was significantly linked to reduced GDM
incidence (Allele Model A vs. C: OR = 0.624; 95% CI: 0.425-0.916; p-value =
0.016; Dominant Model AA vs. AC+CC: OR = 0.641; 95% CI: 0.429-0.959;
p-value = 0.030), especially in women under 30, rs1552224 Aelle Model (A vs.
C: OR =0.490; 95% ClI: 0.281-0.857; p -value = 0.012), Dominant Model (AA vs.
AC + CC: OR = 0.523; 95% Cl: 0.292-0.938; p -value = 0.030). and those with a
BMI>24, Aelle Model (Avs. C: OR = 0.345; 95% CI: 0.124-0.960; p-value = 0.042).
Conversely, a meta-analysis suggested an increased GDM risk with the ARAP1
variant (OR>1).
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Conclusion: The meta-analysis results demonstrate that there is an enhanced
likelihood of GDM associated with the M/F rs1007888 mutation. Moreover, our
findings indicate that the ARAPI rs1552224 variant, specifically the AC genotype
and C allele, confers a decreased risk of developing gestational diabetes mellitus
(GDM). The outcomes obtained give GDM testing a theoretical foundation.

macrophage migration inhibitory factor (MIF), Ankyrin Repeat and PH Domainl (ARAP1),
Rs1007888, rs1552224, gestational diabetes mellitus

1 Introduction

Gestational diabetes mellitus (GDM) is a pregnancy-specific
disorder of glucose metabolism, distinct from pre-existing diabetes,
and is increasingly prevalent in China. It poses significant risks to
maternal health, including preeclampsia, higher rates of cesarean
delivery, and a markedly increased likelihood of developing type 2
diabetes mellitus (T2DM) later in life. Offspring of affected mothers
are also at risk of adverse outcomes such as macrosomia, neonatal
hypoglycemia, and long-term metabolic complications (1-3).
Established risk factors for GDM include advanced maternal age,
obesity, family history of diabetes, and genetic susceptibility (4).

Although the pathophysiology of GDM is not fully understood,
it shares essential features with T2DM, including insulin resistance,
impaired glucose tolerance, and 3-cell dysfunction (2, 3). Increasing
evidence points to the contribution of genetic variation, particularly
single-nucleotide polymorphisms (SNPs), in modulating GDM risk.
Among candidate loci, the macrophage migration inhibitory factor
(MIF) gene and the ARAPI locus have been implicated in diabetes-
related traits. MIF rs1007888 has been associated with insulin
resistance and B-cell dysfunction (5, 6), while ARAPI rs1552224
has been linked to reduced insulin secretion (7). However, their
roles in GDM remain insufficiently investigated.

MIF is a pleiotropic cytokine expressed abundantly by placental
trophoblasts and upregulated in GDM placental tissue, correlating with
fasting glucose levels and insulin resistance (8, 9). Functionally, MIF
influences insulin secretion and glucose metabolism and exerts pro-
inflammatory effects by regulating cytokines such as TNF-o, IFN-y, and
IL-10, thereby contributing to hyperglycemia (9). Elevated systemic MIF
levels are a feature of T2DM (10), but its mechanistic role in pregnancy-
related glucose dysregulation remains poorly defined (8).

Meanwhile, genome-wide association studies (GWAS)
consistently implicate ARAPI variants in T2DM susceptibility
(11, 12). In particular, rs1552224 has been associated with fasting
glucose levels and impaired glucose-stimulated insulin secretion,
with evidence suggesting the A allele contributes to f-cell
dysfunction (11). Interestingly, preliminary data indicate that this
allele may be protective against GDM (13), highlighting potential
differences between pregnancy-related and non-pregnancy-related
diabetes risk mechanisms.
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Despite these insights, data on the association between MIF
rs1007888 and ARAPI rs1552224 with GDM remain sparse,
especially in Asian populations, and no systematic synthesis of
existing findings has been undertaken. Given the high burden of
GDM and the distinct genetic architecture of the Chinese
population, further investigation is warranted.

Therefore, in this study, we examined the associations of MIF
rs1007888 and ARAPI rs1552224 with GDM in a Han Chinese
cohort and performed a meta-analysis to contextualize our findings
with the broader literature. We aimed to clarify the potential
contribution of these variants to GDM risk and provide new
insights into their role in pregnancy-specific glucose metabolism.

2 Materials and methods
2.1 Study participants

A total of 1002 participants were recruited for the study, including
500 patients with gestational diabetes mellitus (GDM) and 502
pregnant women without GDM who served as controls. This study
protocol was approved by the Ethics Committee of Shunde Women’s
and Children’s Hospital Affiliated to Guangdong Medical University
(approval ID: 2020072). The inclusion criteria were as follows:
participants must provide voluntarily signed informed consent; be of
Han ethnicity; be at least 18 years old; have undergone a 75g oral
glucose tolerance test (OGTT) between 24 and 28 weeks of gestation
and be diagnosed with gestational diabetes mellitus (GDM) or have
standard glucose tolerance according to the criteria of the International
Association of Diabetes and Pregnancy Study Groups (IADPSG). In
the present study, the International Association of Diabetes and
Pregnancy Investigation Groups (IADPSG) diagnostic guidelines
were employed. If one or more points satisfy the following criteria,
GDM was diagnosed: fasting blood glucose (FBG) > 5.1 mmol/L, 1-
hour postprandial glucose (PG) = 10.0 mmol/L, or 2-hour PG = 8.5
mmol/L. Expectant mothers falling below these specified limits were
classified as healthy control subjects.

The exclusion criteria included: presence of pregnancy-related
diseases or use of drugs affecting glucose metabolism; history of
severe cardiovascular and cerebrovascular diseases, hepatic or renal
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insufficiency, tumors, or pathogenic infections; and engagement in
smoking, alcoholism, drug abuse, or presence of intellectual
disability or mental disorders. This study was conducted
following the principles outlined in the Declaration of Helsinki.

2.2 Data collection

During the 24-28 gestational weeks, comprehensive data were
collected, including parity (primigravida or multigravida), pre-
pregnancy weight, ethnicity, age, height, blood pressure, and
blood glucose levels. The collected data were subsequently
employed to compute the pregestational body mass index (pre-
BMI, kg/m?), which was defined as the pregestational weight (in
kilograms) divided by the square of height (in meters). To
determine the obesity status in line with Chinese standards, the
following classification criteria were utilized: underweight (< 18.5
kg/m?), normal weight (18.5-24.9 kg/m?), overweight (25-29.9 kg/
m?), and obese (= 29 kg/m?). This method of classification was
adopted based on the research carried out by (14).

2.3 SNP genotyping and quality control

Based on findings from genome-wide association studies
(GWAS) of type 2 diabetes mellitus (T2DM) in Asian
populations, we selected two candidate SNPs, MIF rs1007888 and
ARAPI] rs1552224, for evaluation of their potential association with
GDM. Selection criteria included a minor allele frequency (MAF) >
0.05, supported by evidence from prior studies (8, 15, 16).

For each participant, 2 mL of peripheral blood was collected
into EDTA tubes and stored at —80 °C until analysis. Genomic DNA
was extracted using the QIAamp DNA Blood Kit (Qiagen,
Germany) according to the manufacturer’s protocol. SNP
genotyping was performed using the SNPscan'" method
(Genesky Biotechnologies, Shanghai, China), a high-throughput
and highly accurate technique based on dual ligation probe
hybridization and multiplex fluorescent PCR. The procedure
involves probe ligation to discriminate wild-type and variant
alleles, multiplex PCR amplification with fluorescently labeled
primers, and capillary electrophoresis to separate amplified
fragments. Genotypes were assigned based on fragment length
and fluorescent signal intensity.

To ensure accuracy, rigorous quality control measures were
implemented by Genesky Biotechnologies (12, 17). Pre-experiments
were conducted to optimize assay performance. In addition, 6% of
randomly selected samples were re-genotyped by Sanger
sequencing, yielding 100% concordance with the SNPscan results.

2.4 Statistical analyses
The analytical evaluations were performed via SPSS 20.0 (SPSS

Inc.,, Chicago, IL, USA), with a bilateral p-value less than 0.05
considered statistically significant. Standard distribution-aligned
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variables were recorded as means + standard deviations, and the
non-overlapping samples t-test was used to assess the variances in
relevant parameters between the two groups. When the normality
assumption was violated, non-parametric testing methods were
employed. Descriptive data were evaluated using the chi-square
(x*) test. To verify the representativeness of the control group in the
population, the Hardy-Weinberg equilibrium (HWE) test,
estimated by the goodness-of-fit %% was applied. Six genetic
models, specifically codominant homozygous, codominant
heterozygous, over-dominant, dominant, recessive, and allele
models, were used to assess GDM risk through the XZ test and
logistic regression analysis. The presentation included basic and
adjusted odds ratios (ORs) along with their respective 95%
confidence intervals (CIs), considering variables such as age, pre-
BMI, blood pressure, parity, and more. A stratified analysis was
performed to delve deeper into how age and pre-BMI might affect
the outcomes. A one-way ANOVA was used to explore the link
between SNPs and blood sugar levels. The least significant
difference (LSD) approach was adopted for multiple comparisons.
Investigations of specific subgroups were conducted for both GDM
and T2DM.

2.5 Meta-analysis

A thorough literature review and meta-analysis were conducted
utilizing the Google Scholar, PubMed, and CNKI databases to assess
the association between the MIF rs1007888 and ARAPI rs1552224
polymorphisms and the risk of gestational diabetes mellitus (GDM)
and type 2 diabetes mellitus (T2DM) (Supplementary Table 7). A
limited number of studies were available for the meta-analysis
concerning these genes and their associated polymorphisms. The
authors propose further studies with these genes. For the analysis of
rs1552224 concerning GDM, one eligible study was included, while
three studies were incorporated for rs1552224 concerning T2DM.
Additionally, four studies were selected for the association between
MIF 151007888 and GDM (refer to Supplementary Table 7). The
analyses were performed using a fixed-effects model.

The search strategy employed combinations of the terms
rs1007888, rs1552224, type 2 diabetes mellitus (T2DM), and
gestational diabetes mellitus (GDM). Eligible studies were those
that focused on case-control or cohort analyses exploring the
association between the rs1007888 and rs1552224 polymorphisms
and T2DM or GDM, provided they contained sufficient original
data. Studies that did not meet the established diagnostic criteria or
deviated from the Hardy-Weinberg equilibrium were excluded
from the analysis. Data extraction was carried out independently
by two authors, with any discrepancies resolved through
consultation with a third party. The kappa coefficient was
calculated to evaluate inter-researcher agreement, ensuring the
objectivity and accuracy of the study selection process.

Meta-analyses were performed across six genetic models,
employing fixed-effects or random-effects models depending on
the level of heterogeneity observed. Publication bias was assessed
using Egger’s and Begg’s tests. All analyses were conducted using
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STATA version 16.0. This study adheres to the PRISMA guidelines
and the Cochrane Handbook. The protocol has been registered with
PROSPERO, an internationally recognized platform for the
registration of systematic reviews and meta-analyses, under the
registration number CRD420251122128.

3 Results

3.1 Overview of the clinical characteristics
of the subjects

The study’s foundational analysis of 500 GDM patients and 502
non-diabetic controls (Table 1) revealed several critical baseline
differences. Notably, the GDM cohort exhibited significantly higher
mean values for key clinical markers, including systolic blood
pressure (SBP), diastolic blood pressure (DBP), age, pre-
pregnancy body mass index (pre-BMI), fasting plasma glucose
(FPG), 1-hour postprandial glucose (1h-PG), and 2-hour
postprandial glucose (2h-PG) when compared to the control
group (all p < 0.05). This suggests that beyond the defining
glucose dysregulation, the GDM group presents with a broader
metabolic and physiological profile distinct from non-diabetic
individuals, even at baseline. Furthermore, a significant disparity
in parity was evident between the GDM and control groups (p <
0.05), indicating that reproductive history may serve as an
additional differentiating factor. This finding warrants further

TABLE 1 Fundamental and categorized traits of the study subjects.

10.3389/fendo.2025.1650782

exploration into its potential implications for GDM pathogenesis
or its role as a risk indicator. Stratified analyses reinforced the
robustness of these observations. When stratifying the cohort using
age 30 and pre-BMI cut-off points of 18.5 and 24, significant
differences between the GDM and control groups persisted (all
P <0.05). This reason suggests that broad population characteristics
do not merely drive the observed disparities but remain significant
even within specific demographic and anthropometric subgroups,
emphasizing the pervasive nature of these differences in the
GDM cohort.

3.2 The relationship between genetic
polymorphisms and GDM risk

3.2.1 Overall analysis results

The control group’s genetic data provides crucial insights into
the Hardy-Weinberg Equilibrium (HWE) of two specific SNPs,
rs1007888 and rs1552224. These SNPs are located at chromosomal
positions 11:72722053 and 22:23898914, respectively. For
rs1007888, the major and minor alleles are C and A, with a
Minor Allele Frequency (MAF) of 0.486. For rs1552224, the
major and minor alleles are T and C, and its MAF is 0.079
(Table 2). Critically, the HWE test yielded high p-values for both
SNPs (0.997 for rs1007888 and 0.86 for rs1552224), strongly
indicating that both loci are in Hardy-Weinberg equilibrium
within the studied population. This finding is fundamental, as it

Variables Cases (%) (N=500) Controls (%) (N=502)  t/x*

Age, year (mean * SD) 31+4 29+4 -8.56 <0.001
pre-BMI, kg/m2 21.51 + 3.10 20.53 +2.58 -5.42 <0.001
SBP, mmHg 117 £ 11 114 + 10 -3.53 <0.001
DBP, mmHg 70 £ 8 68 £7.3 -3.23 0.001
FPG, mmol/L 4.82 + 0.64 4.50 + 0.31 -9.75 <0.001
1h-PG, mmol/L 10.17 = 1.60 7.66 = 1.27 -26.22 <0.001
2h-PG, mmol/L 8.91 + 1.60 6.69 + 0.99 -25.85 <0.001
Parity (n) 8.88 0.003
Primipara 210 (42) 258(51.4)

Multipara 290(58) 244(48.6)

Age, year 49.2 <0.001
<30 26.60 + 2.06 25.82 +2.70

> 30 3375 +2.84 33.01 +2.42

pre-BMI, kg/m2 27.8 <0.001
<185 17.53 £ 0.86 17.65 + 1.47

18.5 < BMI < 24 20.96 + 1.49 20.67 + 1.43

> 24 26.14 + 2.82 25.82 + 3.24

SBP, systolic blood pressure; DBP, diastolic blood pressure; pre-BMI, pre-gestational body mass index; FPG, fasting plasma glucose; 1h-PG, 1-hour postprandial glucose; 2h-PG, 2-hour

postprandial glucose.
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TABLE 2 Information on SNPs and Hardy-Weinberg equilibrium (HWE)
test among the controls.

SNP Min/Maj = Chr. position MAF HWE (P)
rs1552224 C/A chr11:72722053 ‘ 0.079 0.86
151007888 T/C chr22:23898914 ‘ 0.486 0.997

SNP, single nucleotide polymorphisms; Min, minor allele; Maj, major allele; HWE, Hardy-
Weinberg equilibrium; MAF, frequency of minor allele.

confirms that the control group is representative of an unperturbed
genetic population, making it a reliable baseline for further genetic
association studies.

3.3 Association between SNPs and the risk
of GDM in all of the subjects

In our study, even after accounting for potential confounding
factors such as pre-BMI, systolic and diastolic blood pressure,
maternal age, and parity, a robust association between the
rs1552224 genetic variant and a reduced risk of GDM remained
evident. Specifically, analysis within the dominant model (AA
genotype compared to AC + CC genotypes) yielded an odds ratio
of 0.641 (95% CI: 0.429-0.959; p = 0.030), while the allele model (A
vs. C allele) showed an odds ratio of 0.624 (95% CI: 0.425-0.916; p =
0.016). These findings, detailed in Table 3, strongly suggest a
protective effect of the variant against GDM. Conversely, our
analysis revealed no significant correlation between the rs1007888
locus and GDM risk (Table 3).

3.4 Stratified analysis of the differences
between SNPs in the ARAP1 and MIF genes
and GDM risk in subjects under 30 years of
age.

Our stratified analysis across six genetic models, meticulously
accounting for age and pre-BMI, revealed a compelling association
between specific SNPs and GDM risk in subjects under 30 years of
age. Notably, the ARAPI rs1552224 allele model demonstrated a
significant protective effect, correlating with a substantially lower
incidence of GDM in women under 30 years of age. This association
remained robust even after comprehensive adjustment for potential
confounding factors (A vs. C: OR = 0.490, 95% Confidence Interval:
0.281-0.857; p = 0.012). Further supporting this finding, the
dominant model (AA vs. AC + CC: OR = 0.523, 95% Confidence
Interval: 0.292-0.938; p = 0.030) also indicated a statistically
significant reduction in GDM risk within this younger subgroup
(Table 4). These results suggest that ARAPI rs1552224 warrants
further investigation as a potential genetic marker for GDM
susceptibility, particularly in younger individuals.
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3.5 The association between SNPs and
GDM risk in individuals with a pre-BMI of
24 or above

In our investigation, we observed a compelling association
between the ARAPI rs1552224 allele and a reduced risk of GDM
specifically within a subset of females. Among those with a pre-BMI
of 24 kg/m® or greater, the presence of the C allele of the ARAPI
rs1552224 SNP was significantly associated with 65.5% lower odds
of developing GDM compared to carriers of the A allele (OR =
0.345, 95% CI: 0.124-0.960; p = 0.042). This finding, presented in
Table 5, suggests a potential protective role of the ARAPI rs1552224
C allele in GDM susceptibility, particularly in the context of higher
pre-BML. Further research is warranted to elucidate the underlying
biological mechanisms by which ARAPI may influence glucose
homeostasis and GDM risk in this specific demographic.

Furthermore, our analysis did not reveal any significant
associations between the genetic factors investigated and GDM
across the other subcategories (Supplementary Tables 1-3).
Furthermore, a one-way ANOVA was conducted to explore
potential relationships between polymorphism genotypes and
various blood glucose parameters. However, the associations
between the genotypes of the SNPs and fasting plasma glucose
(FPG), 1-hour post-glucose (1h-PG), and 2-hour post-glucose (2h-
PG) levels were not statistically significant, as all p-values
consistently exceeded 0.05 (Supplementary Tables 4-6).

3.6 Meta-analysis results

Our meta-analysis findings reveal a significant association
between the rs1007888 polymorphism and an elevated risk of
GDM across multiple genetic models, including the codominant
heterozygote, codominant homozygote, allelic, dominant, and over-
dominant models (Figure 1). This consistent association strongly
suggests a role for rs1007888 in GDM susceptibility. Furthermore,
subgroup analysis highlighted the rs1552224 polymorphism as
significantly linked to an increased GDM risk in the codominant
heterozygote, allelic, dominant, and over-dominant models. While
the codominant homozygote and recessive models for rs1552224
did not show a broad overall effect on T2DM, they did exert a
statistically significant influence specifically on GDM, with
respective p-values of 0.035 and 0.044. Other genetic models for
this polymorphism did not yield substantial correlations (Figure 2).

Regarding potential publication bias, Begg’s test indicated no
substantial bias across the genetic frameworks (all p > 0.05).
However, the observed asymmetry in the funnel plot
(Supplementary Figures 1, 2) warrants consideration. While this
asymmetry could suggest publication bias, it’s also important to
acknowledge that it may arise from other factors, such as underlying
heterogeneity in study outcomes or variations in study size.
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TABLE 3 The correlations between SNPs and the risk of GDM in all of the subjects.
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so0)  meson . emeay  CrweP MEgfey”  Adustedr
rs1552224
Codominant model
AA 450(90.0) 427(85.1) 1(ref) 1(ref)
AC 50(10.0) 71(14.1) 0.668(0.455-0.982) 0.04 0.680(0.453-1.020) 0.062
cc 0(0.0) 4(0.80)
Aelle model
A 950(95.0) 925(92.1) 1(ref) 1(ref)
C 50(5.0) 79(7.9) 0.616(0.428-0.888) 0.009 0.624(0.425-0.916) 0.016
Dominant Model
AA 450(90.0) 427(85.1) 1(ref) 1(ref)
AC+CC 50(10.0) 75(14.9) 0.633(0.432-0.926) 0.019 0.641(0.429-0.959) 0.03
Recessive Model
AC+AA 500(100.0) 498(99.2) 1(ref) 1(ref)
cC 0(0.0) 4(0.80) NA NA NA NA
Overdominant model
AA+CC 450(90.0) 431(85.9) 1(ref) 1(ref)
AC 50(10.0) 71(14.1) 0.674(0.459-0.991) 0.045 0.686(0.457-1.029) 0.069
rs1007888
Codominant model
cc 152(30.4) 133(26.5) 1(ref) 1(ref)
CT 230(46.0) 250(49.8) 0.805(0.600-1.080) 0.148 0.783(0.573-1.071) 0.126
T 118(23.6) 119(23.7) 0.868(0.615-1.225) 0.42 0.867(0.603-1.249) 0.444
Aelle model
C 534(53.4) 516(51.4) 1(ref) 1(ref)
T 466(46.6) 488(48.6) 0.923(0.774-1.100) 0.369 0.931(0.774-1.121) 0.452
Dominant Model
cC 152(30.4) 133(26.5) 1(ref) 1(ref)
CT+TT 348(69.6) 369(73.5) 0.825(0.627-1.086) 0.171 0.813(0.607-1.087) 0.162
Recessive Model
CT+CC 382(76.4) 383(76.3) 1(ref) 1(ref)
TT 118(23.6) 119(23.7) 0.994(0.743-1.331) 0.969 1.037(0.763-1.410) 0.816
Overdominant model
CC+TT 270(54.0) 252(50.2) 1(ref) 1(ref)
CT 230(46.0) 250(49.8) 0.859(0.670-1.100) 0.229 0.822(0.632-1.069) 0.144

By adjusting for pre-pregnancy body mass index, Systolic blood pressure, Diastolic blood pressure, age, and parity, logistic regression yielded the adjusted p-value.
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TABLE 4 The connections between SNPs in the ARAP1 and MIF genes and GDM risk in subjects under 30 years of age.

Cases (%)
(n=192)

Controls (%)
(n=304)

Crude OR
(95% ClI)

Adjusted OR

Clitee (95% Cl)

Adjusted P

rs1552224

Codominant model

AA 173(90.1) 254(83.6) 1(ref) 1(ref)

AC 19(9.9) 46(15.1) 0.606(0.344-1.071) 0.085 0.585(0.324-1.053) 0.074
cc 0() 4(1.3) 0 0

Aelle model

A 365(95.1) 554(91.1) 1(ref) 1(ref)

C 19(4.9) 54(8.9) 0.534(0.311-0.916) 0.023 0.490(0.281-0.857) 0.012
Dominant Model

AA 173(90.1) 254(83.6) 1(ref) 1(ref)

AC+CC 19(9.9) 50(16.4) 0.558(0.318-0.979) 0.042 0.523(0.292-0.938) 0.03
Recessive Model

AC+AA 192(100.0) 300(98.7) 1(ref) 1(ref)

cC 0(0.0) 4(1.3) NA NA NA NA
Overdominant model

AA+CC 173(90.1) 258(84.9) 1(ref) 1(ref)

AC 19(9.9) 46(15.1) 0.616(0.349-1.087) 0.095 0.599(0.333-1.077) 0.087
rs1007888

Codominant model

cC 63(32.8) 85(28.0) 1(ref) 1(ref)

CT 82(42.7) 149(49.0) 0.743(0.486-1.133) 0.168 0.740(0.475-1.152) 0.182
TT 47(24.5) 70(23.0) 0.906(0.553-1.483) 0.694 0.971(0.578-1.630) 0.911
Aelle model

C 208(54.2) 319(52.5) 1(ref) 1(ref)

T 176(45.8) 289(47.5) 0.934(0.723-1.207) 0.601 0.968(0.742-1.264) 0.812
Dominant Model

cC 63(32.8) 85(28.0) 1(ref) 1(ref)

CT+TT 129(67.2) 219(72.0) 0.795(0.537-1.176) 0.25 0.818(0.544-1.229) 0.333
Recessive Model

CT+CC 145(75.5) 234(77.0) 1(ref) 1(ref)

TT 47(24.5) 70(23.0) 1.084(0.709-1.655) 0.711 1.159(0.745-1.803) 0.514
Overdominant model

CC+TT 110(57.3) 155(51.0) 1(ref) 1(ref)

CT 82(42.7) 149(49.0) 0.775(0.539-1.116) 0.171 0.756(0.517-1.105) 0.149

By adjusting for pre-pregnancy body mass index, Systolic blood pressure, Diastolic blood pressure, age, and parity, logistic regression yielded the adjusted p-value.
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TABLE 5 The correlations between SNPs and GDM risk in individuals with a pre-BMI of 24 or above.

Cases (%)
(n=192)

Controls (%)
(n=304)

Crude OR
(95% ClI)

Crude P

10.3389/fendo.2025.1650782

Adjusted OR
(95% CI)

Adjusted P

rs1552224

Codominant model

AA 89(91.8) 31(73.8) 1(ref) 1(ref)

AC 8(8.2) 10(23.8) 0.279(0.101-0.769) 0.014 0.399(0.124-1.291) 0.125
cC 0(0.0) 1(2.4) NA NA NA NA
Aelle model

A 186(95.9) 72(85.7) 1(ref) 1(ref)

C 8(4.1) 12(14.3) 0.258(0.101-0.657) 0.005 0.345(0.124-0.960) 0.042
Dominant Model

AA 89(91.8) 31(73.8) 1(ref) 1(ref)

AC+CC 8(8.2) 11(26.2) 0.253(0.093-0.687) 0.007 0.337(0.108-1.048) 0.06
Recessive Model

AC+AA 97(100.0) 41(97.6) 1(ref) 1(ref)

CC 0(0.0) 1(2.4) 0 0

Overdominant model

AA+CC 89(91.8) 32(76.2) 1(ref) 1(ref)

AC 8(8.2) 10(23.8) 0.288(0.104-0.793) 0.016 0.407(0.126-1.310) 0.132
rs1007888

Codominant model

CcC 29(29.9) 11(26.2) 1(ref) 1(ref)

CT 51(52.6) 23(54.8) 0.841(0.359-1.970) 0.69 0.841(0.336-2.104) 0.712
TT 17(17.5) 8(19.0) 0.806(0.271-2.397) 0.698 1.369(0.363-5.160) 0.643
Aelle model

C 109(56.2) 45(53.6) 1(ref) 1(ref)

T 85(43.8) 39(46.4) 0.900(0.538-1.505) 0.687 0.978(0.561-1.705) 0.938
Dominant Model

cC 29(29.9) 11(26.2) 1(ref) 1(ref)

CT+TT 68(86.1) 31(73.8) 0.832(0.369-1.877) 0.658 0.864(0.355-2.107) 0.749
Recessive Model

CT+CC 80(82.5) 34(81.0) 1(ref) 1(ref)

TT 17(17.5) 8(19.0) 0.903(0.356-2.292) 0.83 1.133(0.394-3.258) 0.816
Overdominant model

CC+TT 46(47.4) 19(45.2) 1(ref) 1(ref)

CT 51(52.6) 23(54.8) 0.916(0.443-1.894) 0.813 0.831(0.377-1.830) 0.646

By adjusting for pre-pregnancy body mass index, Systolic blood pressure, Diastolic blood pressure, age, and parity, logistic regression yielded the adjusted p-value.
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FIGURE 1

A meta-analytic method employing a fixed effects strategy to explore the link between MIF rs1007888 and the vulnerability to GDM. (A) Codominant
Heterozygous Model, CC versus CT (B). Codominant Homozygous Model, CC versus TT (C) Aelle model, C versus T (D) Dominant Model, CC in
contrast to CT+TT (E) Recessive Model, CT+ CC versus TT (F) Over-dominant model, CC+TT versus CT. OR stands for odds ratio, Cl for confidence
interval, and I-squared represents the measure used to assess the level of diversity in the meta-analytic method.

4 Discussion

Baseline characteristics from our cohort showed that women
who developed gestational diabetes mellitus (GDM) had
significantly higher systolic and diastolic blood pressure, fasting
plasma glucose, 1-hour and 2-hour postprandial glucose levels, pre-
pregnancy BMI, and mean age compared with controls (all p < 0.05,
several p < 0.001). These observations are consistent with previous
reports and point to several mechanistic underpinnings (18, 19).

Frontiers in Endocrinology

Although none of the GDM participants met the diagnostic
threshold for hypertension, their higher blood pressure values suggest
early manifestations of insulin resistance-related endothelial
dysfunction and subclinical inflammation (20). This
pathophysiological background helps to explain the increased risk of
preeclampsia and gestational hypertension in GDM pregnancies (4, 21).

The most pronounced group differences were seen in postprandial
glucose excursions particularly at 1 and 2 hours supporting the concept
that postprandial hyperglycaemia represents the core metabolic
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FIGURE 2

A meta-analytic method employing a fixed effects strategy to explore the link between ARAPI rs1552224 and the susceptibility to GDM.

(A) Codominant Heterozygous Model, AA versus AC (B). Codominant Homozygous Model, AA versus CC (C) Aelle model, A versus C (D). Dominant
Model, AA versus AC+CC (E) Recessive Model, AC+AA versus CC (F) Over-dominant model, AA+CC versus AC. OR stands for odds ratio, Cl for
confidence interval, and |-squared represents the measure used to assess the level of diversity in the meta-analytic method.

abnormality of GDM (4). This likely reflects inadequate first-phase
insulin release and reduced peripheral glucose uptake.

Pre-pregnancy BMI emerged as another critical determinant.
Even within the “normal” range (18.5-24 kg/m?*), women who later
developed GDM had higher pre-BMI values, suggesting that mild
elevations in adiposity may confer risk. Adipokines such as leptin
and TNEF-a, secreted from adipose tissue, may further aggravate
insulin resistance and impair B-cell function (22, 23).

Frontiers in Endocrinology

Maternal age was also independently associated with GDM: the
mean age of affected women was 31 years compared with 29 years in
controls (p < 0.001), and stratified analysis showed that those
aged 230 years had more pronounced metabolic impairments.
This is consistent with evidence that both insulin sensitivity and
B-cell function decline progressively with advancing age (4, 24).

Collectively, these findings underscore that even modest
elevations in blood pressure, adiposity, and maternal age
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contribute to GDM risk. They highlight the need for pre-pregnancy
counselling and weight optimisation in women of reproductive age
as a preventive strategy to reduce the burden of GDM and
its complications.

The human macrophage migration inhibitory factor (MIF)
gene, located on chromosome 22ql1.2, is constitutively and
abundantly expressed in immune cells, particularly T lymphocytes
and macrophages (25). MIF exerts diverse biological functions, and
altered expression has been reported in several inflammatory and
metabolic disorders, including rheumatoid arthritis, atherosclerosis,
and diabetes (26). In the placental decidua, macrophages and
dendritic cells regulate T-cell activation, initiating immune
responses. Subsequent differentiation of T cells into Thl or Th2
subtypes—driven by both intrinsic and extrinsic factors alters
cytokine synthesis and distribution. These shifts directly influence
MIF regulation and are essential for immunological adaptation
across pregnancy stages (15).

Beyond its role in immunity, MIF functions as a pleiotropic
cytokine linking inflammation to glucose metabolism. At the
molecular level, it regulates glucose transporter 4 and fructose-
bisphosphatase 2 expression (8). Moreover, MIF promotes TNF-o.
production (27, 28), thereby influencing glycolysis and
inflammatory signalling. In adipocytes, MIF-driven TNF-o
secretion contributes to insulin resistance (8), while in endothelial
cells, MIF disrupts insulin-mediated nitric oxide release, fostering
endothelial insulin resistance (8).

These mechanisms align with the lipid overload hypothesis, which
posits that ectopic lipid deposition in insulin-sensitive tissues such as
skeletal muscle, pancreas, and liver underpins insulin resistance (29-
31). Supporting this, both adipose tissue MIF mRNA and circulating
MIF concentrations are elevated in obese women with type 2 diabetes
(32). Elevated adipose-derived MIF in obesity and diabetes further
impairs insulin signalling and amplifies pro-inflammatory cascades,
thereby reinforcing insulin resistance (33).

Despite previous findings linking MIF variants to T2D, our
study found no significant association between the MIF rs1007888
variant and GDM. This divergence suggests that pregnancy-specific
genetic or physiological factors might influence the role of this
genetic locus in GDM development (6, 32, 33). Moreover, despite
the known involvement of MIF in inflammatory and metabolic
disorders (34), its genetic influence via rs1007888 on GDM risk
within the context of higher pre-BMI appears to be negligible or
absent in our specific cohort. This suggests that the genetic impact
of rs1007888 on GDM risk may be either minor or does not
significantly interact with the metabolic environment of pre-
existing obesity, at least in the population we investigated. It is
plausible that other genetic or environmental factors exert a more
predominant influence on GDM development within this particular
BMI subgroup.

ARAPI, which encodes the protein Arapl (ARF-GAP, Rho-GAP
Anchoring Protein Repeat Sequence, and Pleckstrin Homology
Domain Protein 1, also known as centaurin delta 2), functions as a
phosphatidylinositol 1,4,5-trisphosphate-regulated Arf GTPase-
activating protein. This protein primarily targets the small GTP-
binding protein Arf6, which is known to play a critical role in the
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modulation of insulin exocytosis (6). The rs1552224 SNP is situated
within an intronic region of the ARAPI gene.

Research indicates that ARAPI is significantly associated with
elevated blood sugar levels and reduced insulin secretion in
response to glucose stimulation, suggesting that impaired
pancreatic B-cell function may be a mechanism through which
this genetic locus contributes to the development of diabetes (35).
Recent findings propose that the expression of the ARAPI locus is
predominantly influenced by markedly increased levels of
STARDIO0 expression in the pancreas (36).

The genetic variant STARDI0 rs11603334 is functionally linked to
the expression of ARAPI and is in complete linkage disequilibrium
with rs1552224. The risk allele (C) of STARDI0 rs11603334 for type 2
diabetes is positioned near the ARAPI promoter. This specific
placement interferes with the collaborative complex formation
between the transcriptional regulators PAX6 and PAX4. This
interference leads to an increased amplification of ARAPI Pl
promoter transcription, resulting in higher ARAPI transcription
levels within the Islets of Langerhans (37).

Conversely, research by Carrat et al (36) suggests that
compromised insulin secretion from pancreatic and B-cells is
associated with decreased STARDIO levels, rather than elevated
ARAP]I. Furthermore, the rs1552224C allele might offer a protective
effect against type 2 diabetes. This protective role could be mediated by
the overexpression of STARDIO, which in turn enhances Ca%*
dynamics and glucose-triggered insulin release from pancreatic and
[3-cells (34). Despite these findings, the precise operational mechanism
of this process in GDM requires further extensive investigation.

The protective influence of the C allele at rs1552224 warrants
particular attention. ARAPI (ArfGAP with RhoGAP domain,
ankyrin repeat, and PH domain 1) plays a critical role in insulin
secretion and glucose homeostasis by regulating membrane
trafficking and cytoskeletal dynamics within pancreatic B cells
(38). While previous research has linked ARAPI polymorphisms
to an elevated risk of type 2 diabetes (39, 40), its specific
contribution to GDM, especially in younger populations, remains
underexplored. Our findings suggest that the C allele may modify
ARAPTI’s function, potentially enhancing [-cell compensation or
insulin sensitivity to meet the increased metabolic demands of
pregnancy, thereby lowering GDM risk. This aligns with existing
evidence that genetic variations affecting B-cell function are
significant predictors of GDM susceptibility (41).

In the context of the allelic model for the ARAPI gene, the
presence of each C allele is associated with a 38% reduction in
the risk of developing GDM. This observation is consistent with
the established role of ARAPI in insulin granule trafficking and the
functionality of PBcells (37). Notably, the absence of CC
homozygotes among GDM cases (0% compared to 0.8% in
controls) indicates a potential dosage-dependent protective effect.
However, the low minor allele frequency (MAF = 5-8%) (42) may
limit the statistical power of analyses based on recessive models.

Furthermore, our results corroborate previous functional studies
that demonstrate that ARAPI knockdown adversely affects glucose-
stimulated insulin secretion (GSIS) in B cells Benjamin (31). The
protective C allele may enhance the expression of ARAPI, thereby
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improving the first-phase insulin response, which is crucial for
regulating postprandial glucose levels. This is consistent with the
elevated 1-hour and 2-hour post-glucose challenge levels presented
in Table 1.

The observation that the rs1552224 C allele exhibits a protective
association in individuals with elevated pre-BMI is a compelling
finding. Given that obesity is a well-established driver of insulin
resistance and a significant risk factor for GDM (43), our data imply
that the C allele may offer a unique advantage by ameliorating the
adverse metabolic consequences of obesity during gestation (38).

The SNP rs1552224 has the potential to enhance the prediction of
GDM risk in women with high BMI and nulliparous status. However,
its modest effect size, with an odds ratio of approximately 0.6, limits its
utility as a standalone predictive marker. We hypothesize that this allele
could modulate ARAPI function in a manner that either bolsters -cell
compensatory mechanisms or enhances insulin signaling pathways.
This modulation would be particularly beneficial in counteracting the
heightened insulin resistance characteristic of a higher pre-BMI,
especially within a population already predisposed to GDM due to
their initial weight. This interpretation aligns with the broader concept
that genetic variants can influence an individual’s susceptibility to
obesity-induced metabolic dysfunction (44).

A comparison of findings in Table 3 with the data in Table 5, which
utilized age as a stratification factor, indicates that the protective effect
of the rs1552224 C allele is consistently observed across various risk
stratifications, including age and BMI. This consistency enhances the
potential clinical significance of this genetic variant as a biomarker for
assessing the risk of GDM. Our research highlights the critical
interaction between genetic factors and environmental influences,
such as pre-BMI, in shaping susceptibility to GDM. By identifying
genetic variants that may either increase or decrease the risk associated
with obesity, we can develop more tailored strategies for the prevention
and management of GDM. Future research should investigate the
functional implications of rs1552224 and its potential role in targeted
interventions for pregnant women with elevated BMI.

This meta-analysis provides a comprehensive assessment of the
association between the rs1007888 variant and gestational diabetes
mellitus (GDM), synthesising evidence from three independent
studies (5, 45) together with data from Zhang et al. (our current
study, 2024). The pooled analyses, illustrated in the accompanying
forest plots (A-F), consistently demonstrate an increased risk of
GDM associated with this locus, thereby offering new insights into
the genetic basis of disease susceptibility.

In particular, Figure 1 highlights that Plots A and B yielded
statistically significant associations, with pooled odds ratios of 1.48
and 145, respectively. Importantly, both models displayed very low
between-study heterogeneity (I = 0.0% for A and 17.6% for B),
underscoring the stability and reproducibility of these findings. Such
homogeneity suggests that the genetic effect captured in these models—
likely reflecting an additive or dominant contribution of the risk allele—
represents a robust and biologically meaningful determinant of GDM.

The consistency of associations across both Chinese cohorts (5,
45) and an Iranian cohort (6) further strengthens the evidence,
supporting the notion of a shared genetic predisposition that
transcends ethnic boundaries. This aligns with prior meta-
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analyses reporting that common genetic variants contribute
significantly to GDM risk across diverse populations (26, 41). The
low heterogeneity observed in several key models adds to the
reliability of our effect estimates and suggests that rs1007888 may
represent a stable genetic marker of GDM susceptibility.

Our study has several significant limitations that should be
acknowledged. First, the relatively small number of studies included
in the meta-analysis restricts the strength of the conclusions. This
underscores the need for larger, multi-ethnic investigations to validate
our findings and to explore potential gene-environment interactions.
Functional studies will also be essential to elucidate the biological
mechanisms by which these variants may contribute to GDM risk.
Ultimately, identifying reliable genetic markers could inform
personalized risk stratification, early screening, and targeted
prevention strategies for GDM.

Discrepancies were observed between the results of our case-
control analysis, the meta-analysis, and previous literature. We
propose that a limited sample size represents a key contributor to
these inconsistencies. Power calculations using G*Power software
indicated that approximately 19,788 participants would be required
to assess the association with rs1007888 adequately, and 2,273
participants for rs1552224, under the following parameters: test
family = Exact; statistical test = Proportions: Inequality, two
independent groups (Fisher’s exact test); test direction = two-tailed;
power = 0.8; significance level o = 0.05.

The challenges of sample size requirements differ between
variants. For rs1552224, the low minor allele frequency (0.079)
limits statistical power, necessitating large cohorts to detect
associations. For rs1007888, although the reference allele is more
common (p2 = 0.486), the effect size is minimal (OR = 0.923), which
again demands a substantial cohort to achieve reliable power. This
highlights a broader difficulty in genetic association studies of weak-
effect variants, where enormous sample sizes are often required to
detect modest associations.

In addition to sample size, the absence of comprehensive
adjustment for potential confounders may have contributed to the
discrepancies observed. Significant clinical and biochemical variables
such as lipid profiles, fasting glucose, HOMA indices, C-peptide
concentrations, and comorbidities were not systematically included.
Moreover, the lack of multicenter data collection limits generalizability,
as regional differences within China may influence allele frequencies
and disease risk. Addressing these issues in future studies through
larger sample sizes, standardized adjustment factors, and multicenter
recruitment will be crucial to resolving these inconsistencies and
advancing understanding of the genetic basis of GDM.

5 Conclusions

This study investigated the relationship between the MIF
rs1007888 and ARAPI rs1552224 genetic variants and the risk of
GDM. Our findings revealed no significant association between the
MIF rs1007888 variant and GDM risk. ARAPI rs1552224 was
significantly linked to reduced GDM incidence. In contrast, meta-
analysis results indicated that the MIF rs1007888 mutation was
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associated with an increased likelihood of developing GDM.
Furthermore, the ARAPI rs1552224 mutation was linked to a
heightened risk of GDM. The discrepancies between our findings
and those of previous studies may be attributed to limitations in sample
size and ethnic diversity. To enhance the understanding of the
relationship between these genetic variants and GDM risk, future
research should prioritize increasing sample sizes and incorporating
a broader range of adjustment factors and diverse ethnicities.
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