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Introduction 

We are currently in an exciting time to advance the field of renal endocrinology. There 
has never been a more favorable time to study the molecular and cellular mechanisms 
underlying renal hormone functions in physiology, pharmacology, and pathophysiology. 
The availability of advanced research tools provides unique opportunities to dissect the 
complex regulatory roles of renal hormones. The kidneys are vital organs in the human 
body; each one is composed of approximately one million functional nephrons. 
Understanding the precise roles and regulation of kidney-derived hormones and 
hormones that exert endocrine effects on the kidneys will help in preventing or delaying 
various renal and systemic diseases, including hypertensive complications. The primary 
functions of the kidneys include filtration of blood, maintenance of fluid, electrolyte and 
acid–base balances, controlling blood pressure, and facilitating erythropoiesis by generating 
erythropoietin. In addition to erythropoietin, kidneys also produce renin and help generate 
functional vitamin D by converting 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D (1, 2). 
We briefly discuss the extrarenal functions of these kidney-derived factors below, with an 
emphasis on the clinical and functional aspects that remain to be elucidated. 
Erythropoietin 

Under normal physiological conditions, erythropoietin synthesis is tightly regulated; 
however, when oxygen levels are low, hypoxia-inducible factor (HIF) promotes the 
expression, synthesis and release of erythropoietin from the kidney (3), which then 
binds to erythropoietin receptors on erythroid progenitor cells to enhance their survival, 
proliferation, and differentiation (4). The molecular feedback mechanism that fine-tunes 
erythropoietin synthesis and subsequent signaling has not yet been clearly defined. 
Recombinant human erythropoietin is commonly used to treat renal anemia in patients 
with chronic kidney disease (CKD), cancer, or those undergoing chemotherapy (5, 6). Of 
therapeutic importance, exogenous erythropoietin and other erythropoiesis-stimulating 
agents have been linked to an increased risk of adverse cardiovascular events, including 
hypertension, stroke, and heart failure. Overcorrection of hemoglobin levels may cause 
hyperviscosity with increased thrombotic risk and endothelial dysfunction (7, 8). 
Additionally, the distribution of erythropoietin receptors in cells outside the 
hematopoietic system has been identified, and their physiological significance remains to 
be determined. For example, the exogenous use of erythropoietin has the potential to exert 
proliferative effects on tumor cells, as the expression of erythropoietin receptors is detected 
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on tumor cells (usually at low levels) (9, 10). Careful monitoring is 
necessary when recombinant erythropoietin is used  in  
tumor patients. 
Renin 

Renin is another important kidney-derived hormone and is 
secreted by juxtaglomerular cells in response to hypotension (11). It 
is an essential component of the renin–angiotensin–aldosterone 
system, which regulates blood pressure, fluid, and electrolyte 
balance. The secretion of renin is tightly controlled by 
baroreceptors, macula densa cells, and sympathetic nerve endings 
(12). Dysregulation of the renin–angiotensin–aldosterone system, 
especially excess renin or angiotensin II activity, has been 
implicated in the development of hypertension, heart failure, and 
CKD (13). Since the (pro)renin receptor binds both renin and 
prorenin independent of angiotensin II, the in vivo physiological 
role of the (pro)renin receptor beyond angiotensin generation is 
unclear. Importantly, renin primarily acts systemically through 
angiotensinogen cleavage in the circulation; however, the 
biological significance of tissue-specific renin–angiotensin systems 
(e.g., the brain, heart, adipose, and immune systems) is not yet 
clearly understood. It has been observed that tissue-specific renin-
angiotensin systems can exert protective effects by activating an 
anti-inflammatory regulatory pathway, which is mediated through 
angiotensin II type 2 receptor (AT2R) signaling (14). Additionally, 
the underlying mechanisms of low-renin-mediated essential 
hypertension need further mechanistic clarification. 
Calcitriol 

Normal kidney structure and function are essential for the 
production of calcitriol (1,25-dihydroxyvitamin D) via renal 1a-
hydroxylase activity. Vitamin D is a pleiotropic hormone that has 
both skeletal and extraskeletal functions. Vitamin D enables the 
intestinal absorption of calcium and phosphate to support 
the mineralization process of the bone and helps maintain 
the homeostatic balance of serum ionized calcium and phosphate. 
Vitamin D is also believed to exert immunomodulatory effects on 
both the innate and adaptive immune systems (15). The replacement 
of exogenous vitamin D is a common clinical practice in patients with 
CKD and skeletal disorders. Traditionally, calcitriol has been used to 
manage secondary hyperparathyroidism in patients with CKD. 
However, concerns about its association with cardiovascular 
calcification, along with the availability of selective vitamin D 
receptor activators (e.g., paricalcitol) and calcimimetic drugs, have 
introduced alternative treatment options. Additionally, the benefits of 
calcitriol for bone health, particularly osteoporosis and fracture 
prevention, are not conclusive, as some randomized trials have 
shown inconsistent effects on fracture risk and bone mineral 
density (BMD) (16–18). For updated information on vitamin D 
testing and dosing, readers are referred to a recent Endocrine Society 
Clinical Practice Guideline (19). 
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In addition to the aforementioned factors, prostaglandins (e.g., 
PGE2), kallikrein, and urodilatin also exert autocrine and paracrine 
effects within the kidney, influencing renal blood flow, sodium 
excretion (natriuresis), and urine formation (diuresis) (Figure 1) 
(20–22). Normally functioning kidneys are also important for the 
endocrine effects of hormones produced elsewhere but act on the 
kidneys. Below, we briefly highlight several key examples, with an 
emphasis on the unresolved clinical and biological challenges. 
Antidiuretic hormone 

ADH (vasopressin) is a hormone synthesized in the 
hypothalamus that is released from the posterior pituitary gland 
and acts on the kidneys (23). When plasma osmolality is increased 
or blood volume is reduced, ADH acts on the collecting ducts of the 
kidneys to increase water reabsorption, concentrates the urine, and 
reduces water loss to restore the fluid balance (24). ADH can induce 
vasoconstriction by interacting with V1 receptors on vascular 
smooth muscles to maintain blood pressure during hypovolemia 
(25). The different subtypes of ADH receptors (V1a, V1b, and V2) 
have distinct tissue distributions and signaling pathways (26, 27). 
The specific roles of the receptor subtypes in various physiological 
and pharmacological processes remain poorly understood and 
require further study to elucidate the delicate functions of the 
receptor subtypes. Furthermore, ADH and oxytocin are 
structurally similar peptide hormones, and their receptors have 
cross-reactivity, indicating that ADH can activate the receptors of 
oxytocin and vice versa (28). This receptor crosstalk further 
complicates  the  interpretation  of  the  behavioral  and  
pharmacological effects of both ADH and oxytocin. Diabetes 
insipidus (too little or resistance to ADH) and syndrome of 
inappropriate antidiuretic hormone secretion (SIADH; too much 
ADH) are the two most commonly encountered clinical conditions 
that are associated with dysregulation of ADH functions (29). In 
SIADH, excessive ADH leads to excessive water retention, causing 
hyponatremia, and in clinical practice, V2 receptor antagonists are 
used to reduce water reabsorption and promote free water excretion 
to correct hyponatremia (30). However, the long-term safety of V2 
receptor antagonists and their efficacy need further evaluation. 
Aldosterone 

Aldosterone is produced by the adrenal gland and exerts its 
functionality by acting on the distal tubules and collecting ducts of 
the kidneys. Aldosterone plays a key role in the regulation of blood 
pressure, electrolyte balance, and fluid homeostasis by promoting 
sodium retention and potassium excretion in the kidneys (31). On 
the distal tubules and collecting ducts, aldosterone binds with 
mineralocorticoid receptors to induce the expression of sodium– 
potassium ATPase and epithelial sodium channels (ENaCs), 
increasing sodium reabsorption, potassium secretion, and water 
retention (32). Collectively, these water and ion redistributions help 
maintain blood volume and blood pressure. Although the renal 
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effects of aldosterone via mineralocorticoid receptors are well 
documented, its effects on the cardiovascular and immune 
systems, as well as neuronal and adipose tissues, need further 
study, as these receptors are also present in nonrenal tissues, 
including heart, brain, and fat tissues (33). In addition to 
aldosterone, cortisol can also activate mineralocorticoid receptors 
in nonrenal tissues and may exert adverse effects on the heart under 
stressful conditions or during aging (34). The clinical use of 
mineralocorticoid receptor antagonists is expanding in conditions 
such as diabetic nephropathy, heart failure, primary aldosteronism, 
and liver cirrhosis with ascites. However, further studies are needed 
to explain why not all patients respond equally to these treatments. 
Additionally, the regulation of CYP11B2, the gene encoding 
aldosterone synthase (an enzyme that is necessary for the 
biosynthesis  of  aldosterone  from  precursors  such  as  
corticosterone), has yet to be clearly defined in certain clinical 
conditions, including primary aldosteronism or stress conditions 
(35, 36). Importantly, angiotensin II and elevated plasma potassium 
levels are major stimulators of aldosterone release, whereas atrial 
natriuretic peptide (ANP) inhibits aldosterone secretion (37). 
Atrial natriuretic peptide 

ANP is another hormone that is secreted by the atrial myocytes 
of the heart and affects the kidneys (distal nephrons). In response to 
hypertension, ANP is released and binds to its receptor-A (NPR-A) 
to induce vasodilation, an increased glomerular filtration rate 
Frontiers in Endocrinology 03 
(GFR), and sodium excretion to control blood pressure, sodium 
balance, and fluid volume (38, 39). Furthermore, ANP can suppress 
the activity of the renin–angiotensin–aldosterone system by 
reducing the secretion of renin and aldosterone and suppressing 
sympathetic nervous system activity (40). Recombinant ANP has 
shown natriuretic, vasodilatory, and neurohormonal-suppressing 
effects in clinical studies in Japan (41); patients with acute 
myocardial infarction who received ANP had a smaller infarct 
size, fewer reperfusion injuries, and better outcomes than controls 
did. The investigators concluded that ANP could be an adjunctive 
therapy for patients with acute myocardial infarction who receive 
percutaneous coronary intervention (41). However, some of the 
follow-up trials failed to demonstrate such protective benefits (42). 
Parathyroid hormone 

PTH plays an essential role in regulating calcium and phosphate 
homeostasis. PTH is secreted by the parathyroid glands in response 
to hypocalcemia, hyperphosphatemia and reduced levels of 
calcitriol (43). PTH acts on distal tubular epithelial cells to 
increase calcium reabsorption and thereby reduce urinary calcium 
loss to increase serum calcium levels. PTH inhibits sodium– 
phosphate cotransporters in proximal tubular epithelial cells to 
increase urinary phosphate excretion to lower serum phosphate 
levels. PTH also increases the activity of 1a-hydroxylase in 
proximal tubular epithelial cells to increase the production of 
calcitriol, which eventually increases the intestinal absorption of 
FIGURE 1 

The factors that are produced in the kidneys, and exert autocrine, paracrine and endocrine effects to regulate various functions ranging from 
controlling blood pressure to facilitating erythropoiesis to musculoskeletal functions. 
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calcium and phosphate (44). In patients with CKD, persistent 
stimulation of PTH leads to secondary hyperparathyroidism. 
Although the Kidney Disease Improvement Global Outcomes 
(KDIGO) working group guidelines recommend maintaining 
certain levels of PTH in CKD patients, in clinical practice, 
maintaining such levels is not always easy (45). Additionally, 
from a biological standpoint, PTH binds to the PTH1 receptor 
(PTH1R) to exert its bioactivities, and what determines whether 
PTH1R signals via cAMP pathway or calcium pathway in different 
tissues is not yet clearly defined (46). 
Calcitonin 

Calcitonin is secreted by thyroid parafollicular (C) cells and acts 
on distal tubules of the kidneys to promote renal calcium excretion 
by reducing calcium reabsorption in the tubules. Additionally, some 
reports have shown that kidney cells express both calcitonin and its 
receptors to perform autocrine and paracrine functions. One of the 
major issues with calcitonin is its exact in vivo role. Importantly, 
calcitonin deficiency in humans (e.g., post-thyroidectomy) often 
results in no major disturbances in calcium homeostasis (47–49). 
Additionally, high serum calcium and gastrin can induce calcitonin 
secretion, but its feedback control is not yet clear. The presence of 
calcitonin receptors in tissues not directly involved in calcium 
regulation, including central nervous system cells and immune 
cells, requires further studies to dissect the biological role of these 
Frontiers in Endocrinology 04
receptor complexes. Furthermore, calcitonin secretion decreases 
with age in both men and postmenopausal women, and whether 
such a decrease is associated with skeletal age-related phenotypes 
needs further clarification. Elevated calcitonin levels are detected in 
the medullary carcinoma of the thyroid gland (50). Clinically, in 
Paget’s disease of the bone, calcitonin is used to suppress 
osteoclastic activities and thereby reduce abnormal bone 
remodeling. The precise role and regulatory effect of calcitonin on 
renal calcium handling in CKD-related mineral and bone disorders 
are not yet well defined. Calcitonin, particularly salmon calcitonin, 
has been used in clinical practice for several conditions related to 
bone metabolism and calcium regulation. However, in recent days, 
its clinical use has been limited by the availability of alternative 
therapies (bisphosphonates or denosumab) with concerns about 
long-term safety (51). 
Fibroblast growth factor 23 

FGF23 is a relatively recently identified factor that is produced 
by bone cells and acts on kidney tubules to regulate renal phosphate 
uptake (Figure 2) (52–54). FGF23 reduces renal phosphate 
reabsorption by suppressing the activities of sodium–phosphate 
cotransporters (NaPi–IIa and NaPi–IIc) in the proximal tubules, 
increasing urinary phosphate excretion and resulting in lower levels 
of serum phosphate. FGF23 also suppresses the production of 
calcitriol (1,25-dihydroxyvitamin D) by suppressing the renal 
FIGURE 2 

The major hormones that exert various effects on the kidneys to regulate fluid and electrolyte homeostasis, mineral ion balance, acid–base 
equilibrium, blood pressure, and erythropoiesis. 
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expression of 1a-hydroxylase (CYP27B1). Phosphate and calcitriol 
stimulate skeletal FGF23 production, which in turn suppresses renal 
1a-hydroxylase expression and phosphate reabsorption, forming a 
feedback loop that finetunes phosphate and vitamin D homeostasis 
(55). FGF23 regulates phosphate and vitamin D homeostasis by 
binding with its cognate FGF receptors (FGFRs) in the kidney, a 
process that also requires aKlotho and heparan sulfate (HS) as 
mandatory coreceptors (56). Importantly, aKlotho is synthesized 
primarily in the kidney. The FGF23-FGFR-aKlotho-HS 
asymmetric signal transduction unit is responsible for the 
endocrine regulation of phosphate and vitamin D homeostasis 
(56). The renal expression of aKlotho is markedly reduced in 
CKD patients, whereas bone-derived FGF23 expression is 
upregulated in these patients (57, 58). The exact role of high 
levels of FGF23 in patients with CKD is an active area of research 
(59). Additionally, long-term effects of phosphate toxicity because 
of FGF23 dysregulation need to be resolved (60–63). Clinical and 
preclinical studies are underway to determine the effects of 
restoring aKlotho and FGF23 balance in patients with CKD and 
other diseases with phosphate dysregulation. The identification 
of FGF23-FGFR-aKlotho interactions provides a structural 
blueprint for drug discovery to reduce FGF23-linked tissue and 
organ damage. 
Conclusion 

With access to a growing array of molecular and cellular 
manipulation techniques, including CRISPR-based gene editing, 
proteomics, genomics, in vitro and in vivo model systems, we are 
now better equipped to study the autocrine, paracrine, and endocrine 
functions of renal hormones, as well as those of hormones that affect 
the kidney. This presents a unique opportunity to expand our 
understanding of the mechanisms by which the kidney regulates 
fluid and electrolyte homeostasis, mineral ion balance, acid–base 
equilibrium, blood pressure, and erythropoiesis. While the challenges 
ahead are substantial, we can expect breakthrough research with 
applied potentials in this rapidly evolving field. 
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