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Objective: The burden of cardiovascular diseases (CVD) is significant,
necessitating early prevention, with obesity standing out as a pivotal modifiable
risk factor. We aimed to use three prospective aging cohorts to develop an
obesity-focused prediction model for incident CVD risk with enhanced validation
and explanation.

Methods: We analyzed longitudinal data from the China Health and Retirement
Longitudinal Study (CHARLS) wave 1-4, Health and Retirement Study (HRS) wave
11-14, and English Longitudinal Study of Ageing (ELSA) wave 6-9. All participants
were aged 45 years or older, had no CVD at baseline, and completed follow-up
assessments across three subsequent waves. The main outcome was the
occurrence of CVD (self-reported physician diagnoses of either heart disease
or stroke). The predictors were screened by the Least Absolute Shrinkage and
Selection Operator and Random Survival Forest. A multivariate Cox regression
analysis was applied to develop the prediction model. Model performance was
validated using: (1) concordance index for discrimination, (2) calibration curves
for risk accuracy, and (3) time-dependent Receiver Operating Characteristic
curves for classification. The time-dependent feature importance plot, partial
dependence survival profiles and SHapley Additive exPlanations plot were used
to interpret the model.

Results: The study included 5768 participants from CHARLS, 3151 from HRS and
3016 from ELSA. The CVD incidence rates of CHARLS, HRS and ELSA were 21.2%,
13.2% and 13.5% respectively. Three of the seventeen screened covariates, which
were age, hypertension, systolic blood pressure (SBP), as well as body mass index
(BMI) and body roundness index (BRI), were included in the prediction model.
The model exhibited a valid predictive value and moderate performance, with
obesity showing a pronounced effect. BRI demonstrated stronger associations
with CVD than BMI in both training and validation cohorts.
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Conclusion: Age, hypertension, SBP, BMI, and BRI were significant predictors of
incident CVD in middle-aged and older adults, highlighting the impact of obesity
on CVD risk, and consequently offered a valuable model for public health
strategies to prevent CVD.

cardiovascular diseases, obesity, prediction model, model validation, body

roundness index

1 Introduction

Cardiovascular diseases (CVD) remain the leading cause of
global mortality and a major contributor to disability worldwide (1).
According to the Global Burden of Disease Study reports, the
prevalence of total CVD cases nearly doubled from 1990 to 2019
(1), with CVD accounting for approximately 19.8 million deaths
globally in 2022 (2). Extensive epidemiological studies have
identified primary risk factors for CVDs, including age, sex,
smoking status, alcohol consumption, hypertension, diabetes
mellitus, obesity, and family history (3-6).

Among these risk factors, obesity emerges as a significant
independent and modifiable risk factor for CVD (7-9). A study
based on the Swedish twin population demonstrated that obesity
was associated with CVD regardless of genetic or environmental
predisposition (10). Furthermore, findings from the China
Kadoorie Biobank cohort study indicate that obesity remains a
risk factor for CVD independent of major metabolic factors among
Chinese adults, suggesting that even metabolically healthy obese
individuals exhibit increased risks for major vascular events (11).
Notably, compared to general obesity as measured by Body Mass
Index (BMI), abdominal obesity has been demonstrated to be a
substantially stronger predictor of CVD risk (12). Various indices
reflecting abdominal obesity and visceral fat distribution have been
developed, including the Body Roundness Index (BRI) and A Body
Shape Index (ABSI), which some studies suggest may have superior
predictive capabilities compared to BMI (13, 14).

Following the seminal Framingham Heart Study, CVD risk
assessment researches have evolved continuously, with models
tailored to different countries and ethnic groups, including the
ASCVD score (15), the SCORE2 model (16), and the QRISK3
model (17). Methodological approaches in model construction have
also advanced significantly, progressing from conventional logistic
regression to sophisticated machine learning techniques,
exemplified by the neural network model for heart attack
prediction developed by Maryam’s team (18). Among machine
learning models handling right-censored survival data, Random
Survival Forest (RSF), Survival Gradient Boosting, and Penalized
Cox regression (including LASSO-Cox) represent the most widely
adopted approaches in contemporary research (19).
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Nevertheless, several limitations persist in current predictive
models. Given the disparities in CVD profiles across nations,
variations in behavioral and lifestyle patterns among populations,
and genetic distinctions among ethnic groups, predictive models
developed from single cohorts may not be universally applicable to
diverse populations. Moreover, many algorithmic models,
particularly those employing machine learning techniques,
function as “black box” systems, lacking sufficient interpretability
and making it challenging to fully elucidate their decision-making
processes and outcomes (20, 21).

In the present study, we utilize data from three prospective
aging cohorts: the China Health and Retirement Longitudinal Study
(CHARLS), the Health and Retirement Study (HRS), and the
English Longitudinal Study of Ageing (ELSA). The study aims to
construct a comprehensive prediction model for incident CVD risk
based on obesity indices, while enhancing the transparency and
credibility of the machine learning approach through detailed
model validation and interpretation.

2 Materials and methods
2.1 Study design and population

The CHARLS, HRS, and ELSA were all prospective and
nationally representative cohorts conducted in China, the United
States, and the United Kingdom, respectively. The present study
utilized longitudinal data spanning wave 1 (2011) to wave 4 (2018)
of CHARLS, wave 11 (2012) to wave 14 (2018) of HRS, and wave 6
(2012) to wave 9 (2018) of ELSA.

The inclusion criteria for the present study were: 1) age >45
years at baseline; 2) absence of heart disease and/or stroke at
baseline. Exclusion criteria encompassed: 1) missing baseline data
pertaining to age, CVD status, or essential covariates; 2) missing
values or statistical outliers in anthropometric measurements
(height, weight, waist circumference); 3) presence of memory-
related diseases at baseline; 4) loss to follow-up; 5) non-fasting
status during blood sample collection. The final analytical cohort
comprised 5758 participants from CHARLS, 3151 from HRS, and
3016 from ELSA, all of whom had no CVD at baseline and
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completed follow-up assessments across three subsequent waves.
The systematic participant selection process is detailed in Figure 1.

2.2 Calculation of obesity indices

This investigation incorporated five obesity indices as main
exposure: BMI, BRI, ABSI, Waist-to-Height Ratio (WHtR), and
Conicity Index (CI). These standardized indices were computed
using physical measurements obtained under strictly controlled
conditions, all of which adhered to standardized protocols, with
height recorded in meters, weight in kilograms, and waist
circumference in centimeters. The measurements were conducted
by trained research personnel using calibrated equipment to ensure
precision and reliability. Each anthropometric parameter was
measured twice, with a third measurement performed if the
difference between the first two exceeded predetermined
thresholds, and the mean value was used for subsequent analyses.
The specific calculation formulas are as follows.

_ Weight(kg)

BMI= —"———2
Height(m)?

BRI = 364.2 — 365.5,/1 — < (WC(m)/2m)? )

(0.5 x Height(m))?

a Height(cm)
I = WC(m)

/ Weight(kg)
0.019 Height(m)

10.3389/fendo.2025.1653328

WC

ABSI =
Height!/2 x BMI?/3

2.3 Assessment of CVD events

The primary outcome for this study was incident CVD, which
was systematically ascertained through self-reported physician
diagnoses of either heart disease or stroke across all three cohorts.
Participants were specifically queried about receiving formal
medical diagnoses of heart disease or stroke from qualified
healthcare professionals. Incident cases were defined as
participants who reported a new diagnosis of either condition
during the follow-up period. The survival time was precisely
quantified in months, with distinct calculations for two scenarios:
for participants who developed CVD, the duration was measured
from the baseline interview date to the follow-up interview date
when the CVD event was first reported; for participants who
remained CVD-free, the survival time was calculated from the
baseline interview date through the final follow-up interview date.

2.4 Covariates

Baseline data collection was conducted by certified interviewers
using standardized questionnaires. Socio-demographic variables
encompassed age, sex, education level (less than lower secondary,
upper secondary & vocational training, and tertiary), and marital
status (married or other partnership status). Behavioral
characteristics included physical activity (engaging in light,
moderate or vigorous activities weekly), social activity (yes or no),
smoking and drinking status (ever or never). Medical history

CHARLS established at wavel (2011)

N=17708 N=20554

HRS established at wavell (2012)

ELSA established at wave6 (2012)
N=10601

Exclude 9432 participants with missing data
or outliers on the core characteristics
*  age <45 years or missing .

Exclude 12958 participants with missing
data or outliers on the core characteristics
age < 45 years or missing .

Exclude 3055 participants with missing data
or outliers on the core characteristics
age < 45 years or missing

having memory related diseases at
baseline

missing data or outliers of height, waist
circumference, and BMI

blood test was non-fasting

N=8276

CHARLS baseline in 2011

Exclude 2255 participants with CVD at
baseline or loss to follow-up

N=6021

CHARLS follow-up in 2018

Exclude 253 participants with missing data
on all other covirates

N=5768

CHARLS cohort in this study

FIGURE 1

Selection process of the study population.
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*  no CVD status information at baseline .

no CVD status information at baseline .

having memory related diseases at
baseline

missing data or outliers of height, waist
circumference, and BMI

HRS baseline in 2012

N=7596

Exclude 3561 participants with CVD at
baseline or loss to follow-up

HRS follow-up in 2018

N=4035

Exclude 884 participants with missing data
on all other covirates

HRS cohort in this study

N=3151

03

no CVD status information at baseline
having memory related diseases at
baseline

missing data or outliers of height, waist
circumference, and BMI

N=7546

ELSA baseline in 2012

Exclude 3099 participants with CVD at
baseline or loss to follow-up

N=4447

ELSA follow-up in 2018

Exclude 1431 participants with missing data
on all other covirates

N=3016

ELSA cohort in this study
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documentation included hypertension, diabetes and cancer.
Physical measurements included systolic blood pressure (SBP)
and resting pulse rate. Laboratory assessments included glycated
hemoglobin (HbAIc), high-density lipoprotein cholesterol (HDL-
C), total cholesterol (TC) and C-reactive protein (CRP).

2.5 Statistical analysis

Comprehensive statistical analyses were performed using R
software version 4.3.1. For descriptive statistics, continuous
variables were expressed as median [interquartile range (IQR)],
while categorical variables were expressed as frequency
(percentage). Initial variable screening employed univariate Cox
regression analysis. The analytical framework utilized CHARLS as
the training set, HRS as the testing set, and ELSA as the external
validation set. Variable selection implemented a dual-methodology
approach combining the Least Absolute Shrinkage and Selection
Operator for Cox Proportional Hazards Model (LASSO-Cox) and
RSF algorithms on the training set. LASSO-Cox was performed
using 10-fold cross-validation with the lambda 1-standard error (1-
SE) criterion. RSF was implemented with 1000 trees (ntree = 1000),
a minimum node size of 3 (nodesize = 3), and 5 randomly selected
candidate variables per split (mtry = 5). Final predictor covariates
were determined through the intersection of variables identified at
lambda 1-SE in LASSO regression with the top 30% important
variables identified by the RSF algorithm.

The prediction model was developed using multivariate Cox
regression analysis. Model performance evaluation encompassed
multiple dimensions: discrimination was assessed using the
concordance index (C-index) across training, testing, and
validation datasets; calibration was evaluated through calibration

TABLE 1 Baseline characteristics of participants in three cohorts.

10.3389/fendo.2025.1653328

curve plots comparing predicted versus observed risks; and
classification ability was determined using time-dependent
receiver operating characteristic (ROC) curves with
corresponding areas under the curves (AUC).

In addition, we evaluated the model interpretability using
explainable machine learning methods with the “survex” R
package (22). Time-dependent feature importance as a change in
the loss function after variable value permutations based on the
cumulative/dynamic (C/D) AUC were created for the model. To
explore the complex relationship between variable values and time,
partial dependence survival profiles (PDP) were created for the
model. Time-dependent SHapley Additive exPlanations (SHAP)
values for a single participant were also calculated to explain the
contribution of each feature to the model’s predictions.

3 Results

3.1 Baseline characteristics of the study
population

According to inclusion and exclusion criteria, 5768 participants
from CHARLS (median age: 57 years, female: 54.2%), 3151 from
HRS (median age: 62 years, female: 61.0%) and 3016 from ELSA
(median age: 64 years, female: 54.8%) were included. The specific
socio-demographic, behavioral, and health-related characteristics of
the three cohorts at baseline are presented in Table 1.

A total of 2053 participants (1227 from CHARLS, 417 from
HRS, and 409 from ELSA) developed CVD during follow-up, and
the incidence rates were 21.2%, 13.2% and 13.5% respectively. The
Kaplan-Meier survival curves for incident CVD in three cohorts are
illustrated in Supplementary Figure 1.

Characteristics

Age (years) 57.00 [51.00, 63.00]

CHARLS (N = 5768)

HRS (N = 3151) ELSA (N = 3016)

62.00 [56.00, 72.00] 64.00 [59.00, 70.00]

Sex

Male 2641 (45.8) 1230 (39.0) 1364 (45.2)

Female 3127 (54.2) 1921 (61.0) 1652 (54.8)

Education level

Less than lower secondary 5230 (90.7) 511 (16.2) 666 (22.1)

Upper secondary & vocational training 492 (8.5) 1818 (57.7) 1652 (54.8)

Tertiary 46 (0.8) 822 (26.1) 698 (23.1)

Marital status

Married 4935 (85.6) 1958 (62.1) 2150 (71.3)

Other partnership status 833 (14.4) 1193 (37.9) 866 (28.7)

Physical activity

No 247 (4.3) 68 (2.2) 63 (2.1)
(Continued)
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TABLE 1 Continued

10.3389/fendo.2025.1653328

Characteristics CHARLS (N = 5768) HRS (N = 3151) ELSA (N = 3016)
Physical activity

Light 496 (8.6) 296 (9.4) 166 (5.5)
Moderate 737 (12.8) 1063 (33.7) 1291 (42.8)
Vigorous 1009 (17.5) 1724 (54.7) 1496 (49.6)
Missing 3279 (56.8) - -
Social activity

No 3098 (53.7) 412 (13.1) 1745 (57.9)
Yes 2647 (45.9) 2179 (69.2) 1083 (35.9)
Missing 23 (0.4) 560 (17.8) 188 (6.2)
Smoking

No 3571 (61.9) 1504 (47.7) 1231 (40.8)
Yes 2197 (38.1) 1647 (52.3) 1785 (59.2)
Drinking

No 3502 (60.7) 1209 (38.4) 268 (8.9)
Yes 2266 (39.3) 1942 (61.6) 2748 (91.1)
Hypertension

No 4428 (76.8) 1515 (48.1) 1940 (64.3)
Yes 1340 (23.2) 1636 (51.9) 1076 (35.7)
Diabetes

No 5465 (94.7) 2572 (81.6) 2794 (92.6)
Yes 303 (5.3) 579 (18.4) 222 (7.4)
Cancer

No 5734 (99.4) 2811 (89.2) 2756 (91.4)
Yes 34 (0.6) 340 (10.8) 260 (8.6)

Systolic Blood Pressure (mmHg)

Pulse Rate (bpm)

Glycated Hemoglobin (%)

High-density Lipoprotein Cholesterol (mg/dL)

Total Cholesterol (mg/dL)

125.00 [113.00, 139.50]
71.50 [65.00, 78.00]
5.10 [4.90, 5.40]
49.87 [40.98, 60.31]

191.37 [168.56, 216.11]

125.50 [115.00, 139.00]
69.50 [62.50, 76.75]
5.40 [5.20, 5.70]
85.00 [71.00, 99.00]

304.00 [265.00, 348.50]

130.50 [120.00, 142.00]
65.50 [59.00, 72.00]
5.72 [5.54, 5.99]
61.76 [50.18, 77.20]

220.02 [189.14, 247.04]

C-reactive protein (mg/L)

0.97 [0.53, 2.01]

1.98 [0.91, 4.19]

1.40 [0.70, 2.90]

Body Mass Index

23.11 [20.89, 25.66]

28.95 [25.54, 33.14]

27.30 [24.75, 30.44]

Body Roundness Index
Waist-to-Height Ratio
Conicity Index

A Body Shape Index

4.01 [3.21, 5.04]
0.53 [0.49, 0.58]
1.28 [1.23, 1.34]

0.08 [0.08, 0.09]

545 [4.29, 6.82]
0.60 [0.55, 0.66]
1.32 [1.26, 1.37]

0.08 [0.08, 0.09]

4.72 [3.77, 5.88]
0.57 [0.52, 0.62]
1.29 [1.22, 1.34]

0.08 [0.08, 0.08]

Continuous variables are expressed as median [IQR]; categorical variables are expressed as frequency (percentage).
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Associations of baseline characteristics with risks of incident
CVD are shown in the Supplementary Table 1. The significantly
elevated risks of incident CVD were found in participants with
higher obesity indices in three cohorts.

3.2 Prediction model construction

The features with nonzero coefficients selected by LASSO-Cox
regression included age, hypertension, and SBP. The lambda 1-SE of
these indicators were 0.007, 0.397, and 0.002 respectively
(Figures 2A, B). Apart from social activity, drinking, education
level and cancer, the remaining 13 covariates were selected by the
RSF algorithm. Among these, the covariates deemed most
significant, falling within the top 30% of variable importance,
comprised SBP, hypertension, age, and diabetes. The variable
importance of these indicators was 0.035, 0.031, 0.022 and 0.019
respectively (Figure 2C). The intersection of variables selected by
the two algorithms resulted in the following covariates being
included in the prediction model: age, hypertension, and SBP.
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These selected significant factors were included in the
multivariate Cox regression analysis to construct the prediction
model for incident CVD risk. The coefficients are shown in Table 2.

3.3 Prediction model validation

The C-index of the prediction model was 0.63 in the training
set, 0.663 in the testing set, and 0.621 in the validation set.
Figures 3A-C presents the 1000-sample bootstrapped calibration
plot for the incident CVD prediction model across the training,
testing and validation sets. The calibration plots revealed an
excellent agreement between the predicted and actual risks,
illustrating the model’s good predictive accuracy.

The time-dependent ROC curves to predict incident CVD at
three follow-up waves are plotted in Figure 3. The AUCs at 24, 48,
and 84 months in the training set were 0.69 (95% CI = 0.62-0.77),
0.61 (95% CI = 0.57-0.65), and 0.63 (95% CI = 0.60-0.65)
respectively (Figure 3D). The AUCs at 24, 48, and 72 months in
the testing set were 0.64 (95% CI = 0.58-0.70), 0.66 (95% CI = 0.62-

17 17 17 17 16 16 14 13 12 10 9 8 8 7 56 3 3 3 2 1 1
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Feature selection using the LASSO-Cox regression and RSF model for incident CVD risk. (A, B) Variable selection by the LASSO Cox regression

model. (C) Feature selection using the RSF model.
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TABLE 2 Multivariate cox regression analysis of the predictors for incident CVD risk.

10.3389/fendo.2025.1653328

Variables z Hazard ratio 95% CI P-value
Age 5.800 1.020 1.013-1.027 <0.001*
Hypertension 7.578 1.665 1.459-1.900 <0.001*
Systolic Blood Pressure 2.990 1.004 1.002-1.007 0.003*
Body Mass Index 1.396 1.016 0.994-1.038 0.163
Body Roundness Index 2.689 1.084 1.022-1.150 0.007*
Data presented as the Z, Hazard Ratio and 95%CIL. Statistical significance recognized as P < 0.05 and denoted by *.
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FIGURE 3

Calibration plots and time-dependent ROC curves of the incident CVD risk model. (A—C) Calibration plots comparing predicted and actual survival

probabilities of the incident CVD risk model for training (A), testing (B) and validation set (C). The y-axis represents actual probability of CVD risk, the
x-axis represents the predicted probability of CVD risk, and the grey diagonal line represents the reference line. (D—F) Time-dependent ROC curves
of the model for training (D), testing (E) and validation set (F). The y-axis represents the true positive rate of the prediction, and the x-axis represents
the false positive rate of the prediction.
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0.70), and 0.70 (95% CI = 0.67-0.73) respectively (Figure 3E). The
AUCs at 24, 48, and 72 months in the validation set were 0.66 (95%
CI=0.56-0.75), 0.61 (95% CI = 0.57-0.65), and 0.63 (95% CI = 0.60-
0.66) respectively (Figure 3F). The results indicate a valid predictive
value and moderate model performance.

3.4 Prediction model explanation

Figure 4 presents the model interpretability results within the
training set (CHARLS). In the feature importance analysis based on C/
D AUG, variables that induced a greater increase in the loss function
had a more significant impact on the incidence of CVD. As shown in

10.3389/fendo.2025.1653328

Figure 4A, hypertension remained at a relatively higher position
throughout the entire follow-up period, followed by age, indicating
that these two variables are of greater importance in the CVD onset.

The PDP illustrated the marginal effects of different features on
the model’s predictive outcomes, showing how the outcome would
change if the value of one feature is altered while keeping all other
features constant. According to Figure 4B, the influence of age and
BRI on the incidence of CVD was stronger than that of other
variables, as indicated by the wider distribution bands, which
suggest a larger probability of different CVD outcomes among
participants with varying values.

Figure 4C displayed the time-dependent survival SHAP plot for
a randomly selected participant. Positive SHAP values were

Time-dependent feature importance
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FIGURE 4

Model interpretation in the training set. (A) Time-dependent feature importance of the model, C/D AUC loss after permutation; (B) Time-dependent
partial dependence survival profile of the model; (C) SurvSHAP(t) plot for a single participant.
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indicative of a higher CVD risk. An increase in the values of all five
variables was associated with an increased risk of CVD incidence,
with hypertension and BRI demonstrating the most
pronounced effects.

The model explanation results for the testing set (HRS) and the
validation set (ELSA) were presented in the Supplementary Figure 2
and Supplementary Figure 3.

4 Discussion

In this study, we implemented advanced survival machine
learning algorithms to develop an obesity-focused predictive
model for incident CVD risk in middle-aged and older
populations. The model was constructed using longitudinal data
from three large-scale prospective population-based cohorts:
CHARLS, HRS, and ELSA. Our analyses revealed that age,
hypertension, SBP, BMI and BRI emerged as statistically
significant correlates and robust predictors of CVD incidence.

Consistent with our research hypothesis, obesity demonstrated
substantial predictive significance for CVD occurrence, with this
association maintaining robustness following adjustment for other
potent correlates. Obesity is well-established as an independent risk
factor for CVD, supported by extensive epidemiological evidence.
Meanwhile, obesity can also contribute to the development of CVD
through its associations with traditional and non-traditional CVD
risk factors. The metabolic syndrome, of which central obesity
constitutes an important component, is strongly associated with
CVD development (23). The association between obesity and CVD
may be influenced by potential confounders, such as dietary
conditions (24), physical activity, and early-life factors (25).
Notably, certain individuals with obesity exhibit a metabolically
healthy phenotype, which may be attributed to the protective role of
brown adipose tissue (26). Future research should further elucidate
the underlying mechanisms linking obesity to CVD.

It is proposed that obesity, traditionally defined as an excess of
body fat that causes adverse effects on health, can no longer be
measured solely by BMI (expressed in kg/m?) (27). Extensive
investigation of body composition has led to a growing consensus
that visceral fat poses greater health risks than subcutaneous fat.
Emerging obesity indices such as BRI and WHtR include additional
measurements beyond height and weight, specifically waist
circumference, thereby providing more precise assessments of central
obesity and abdominal fat distribution (28). Our final predictive model
incorporated both BMI and BRI as complementary obesity indicators.
While BRI showed higher coefficient values, reflecting the added
predictive significance of central obesity measures for CVD risk in
middle-aged and older adults, further validation is needed to
determine its generalizability across age and ethnic groups. Although
indices such as ABSI showed significance in univariate regression
analyses, their performance diminished in multivariate models. This
phenomenon may be attributed to their relatively compressed
numerical scale, resulting in reduced overall variability, consequently

Frontiers in Endocrinology

10.3389/fendo.2025.1653328

leading to their associations being attenuated by stronger predictors in
multivariate regression analyses.

Age also serves as a significant predictor for the CVD incidence,
demonstrating a positive correlation between advanced age and
elevated CVD risk. The Coronary Artery Risk Development in
Young Adults Study illustrated the life course of cardiovascular
health. Beginning in middle age (about 45 years), populations face
moderate risk, with 20%-40% exhibiting subclinical disease
manifestations. In the older cohort (265 years), risk elevation
becomes pronounced, with 60%-80% demonstrating subclinical
disease and approximately 15% experiencing cardiovascular
events (29). Research indicated that the overall prevalence rate of
stroke among individuals aged 60 years and older reaches 7.6%.
Age-stratified analyses revealed that the risk of stroke for those aged
75-84 years is 2.4 times higher than the 60-74 age group, with
individuals aged 85 years and above demonstrating a threefold
increased risk (30).

Hypertension has been consistently identified as a primary risk
factor and predictor for CVD in numerous studies. The
Framingham Heart Study initially demonstrated through
longitudinal cohort data that hypertension is a major risk factor
for CVD (31). A study based on the Kailuan cohort in China also
indicated the significant association between hypertension and
CVD events. Following adjustment for other established CVD
risk factors, the hazard ratio was 1.67 (95% CI: 1.28-2.17) for
total CVD events in the hypertension group (32). Findings from
the Atherosclerosis Risk in Communities study showed that
standing SBP >140 mmHg was significantly associated with
elevated CVD risk (33). In the present study, both self-reported
hypertension history and measured SBP emerged as significant
predictors of incident CVD. We contend that the concurrent
inclusion of these two variables holds particular clinical relevance
and methodological validity, as individuals with documented
hypertension may exhibit either well-controlled blood pressure
through medical interventions or suboptimal pressure control.

The model developed in this study demonstrated a moderate
level of predictive ability and performance. In studies investigating
the impact of obesity on CVD risk, previous research has utilized
the Net Reclassification Index to evaluate the changes in predictive
ability of a model after incorporating obesity (34). Similarly,
another study has added central obesity, represented by waist
circumference and waist-to-hip ratio, to the traditional
Framingham model and found that central obesity makes a
significant and independent contribution to cardiovascular
outcomes (35). Our study employed a predictive modelling
framework to examine the determinants of CVD incidence, and
subsequently applied interpretable machine learning techniques to
elucidate the influence of these predictors on the outcome, as well as
to delineate their temporal variations.

Furthermore, this study identified cumulative incidence rates of
CVD across three large population-based cohorts, which were
21.2% in China, 13.2% in the US, and 13.5% in the UK. These
disparities may be partially explained by racial and ethnic variations
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(36) or genomic diversity (37). However, these differences more
likely reflect disparities in socioeconomic development and lifestyle
changes. The harmonized follow-up period (2011/2012-2018)
coincided with China’s rapid economic expansion and elevated
living standards, potentially contributing to increased CVD risk
factor prevalence, including obesity and chronic diseases,
thereby elevating CVD incidence. Beyond this, systemic
differences in healthcare delivery may contribute to the observed
incidence disparities. Compared with the US and UK, China faces
challenges in primary care service capacity and the implementation
of tiered diagnosis systems (38, 39), which may affect CVD
prevention and early detection. Moreover, while international
diagnostic guidelines are widely adopted, their implementation
consistency may vary across clinical settings, which may lead to
underdiagnosis or misclassification.

Several limitations warrant careful consideration in interpreting
our findings. Firstly, as an analysis utilizing questionnaire data from
cohort studies, this study was inevitably affected by missing data
and potential recall bias, particularly concerning self-reported CVD
diagnosis and medical history. Secondly, the restricted coverage of
the databases allowed for the inclusion of only 17 covariates in our
analysis, potentially omitting important predictors such as genetic
factors, family history, detailed dietary patterns, environmental
exposures, and comprehensive socioeconomic indicators.
Methodologically, our study may have been affected by survival
bias in the older population, and we were unable to account for
time-varying covariates during the follow-up period. The dynamic
nature of obesity indices over time could not be fully captured, and
residual confounding may persist despite statistical adjustment. The
model-specific limitations include potential challenges in capturing
non-linear relationships between predictors and outcomes, and
limited validation of prediction performance in specific
subgroups. The follow-up period (2011/2012-2018) may be
insufficient for capturing long-term CVD outcomes, and temporal
changes in healthcare systems and treatment patterns could not be
accounted for. Future research should address these limitations
through the incorporation of additional relevant predictors, more
sophisticated handling of missing data, extended follow-up periods,
integration of time-varying covariates, validation in more diverse
populations, implementation of more advanced statistical methods
for handling complex relationships, and evaluate the model’s
clinical net benefit at different risk thresholds and time horizons.

5 Conclusions

This study demonstrates that age, hypertension, SBP, BMI, and
BRI constitute meaningful predictors for incident CVD among
middle-aged and older adults across Chinese, American, and
British populations. Our findings provide new evidence
supporting the longitudinal associations between these factors and
CVD risk, particularly emphasizing the role of obesity. The findings
also provide a theoretical basis for the potential application value of
BRI in CVD risk prediction.
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