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Background: Diabetic nephropathy is a leading cause of end-stage renal disease

worldwide, characterized by progressive glomerulosclerosis, chronic

inflammation, and extracellular matrix (ECM) accumulation. Despite advances

in clinical management, the underlying molecular mechanisms remain

incompletely understood, and reliable biomarkers for early diagnosis and

targeted therapy are still lacking.

Methods: To identify candidate molecular genes associated with DN, we

conducted an integrative bioinformatics analysis combining transcriptomic

profiling, weighted gene co-expression network analysis, protein–protein

interaction network construction, and machine learning-based feature

selection. The biological relevance of candidate genes was validated using

human renal biopsy specimens and two diabetic mouse models. Gene set

enrichment analysis was performed to uncover associated functional pathways.

Results: Four genes—COL1A2, CD163, FN1, and CCL2—were consistently

upregulated in both human and murine DN samples. These genes are closely

associated with immune activation, ECM remodeling, and chronic inflammation.

GSEA revealed their significant enrichment in pathways such as NOD-like

receptor signaling, ECM–receptor interaction, and T/B cell receptor signaling,

highlighting their potential roles in DN pathogenesis. Experimental validation

confirmed elevated expression of these genes at both mRNA and protein levels.

Conclusion: Our study identifies COL1A2, CD163, FN1, and CCL2 as key

molecular signatures involved in the immunoinflammatory and fibrotic

progression of diabetic nephropathy. These genes hold promise as potential

biomarkers and therapeutic targets, offering novel insights into the molecular

mechanisms and clinical management of DN.
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1 Introduction

Diabetic nephropathy (DN) is one of the most common and

serious microvascular complications of diabetes mellitus and

remains the leading cause of end-stage renal disease (ESRD)

worldwide (1, 2). Histopathologically, DN is characterized by

glomerular basement membrane thickening, mesangial matrix

expansion, tubulointerstitial fibrosis, and persistent proteinuria

(3–5). Clinically, DN progresses from an initial stage of

hyperfiltration and microalbuminuria to overt proteinuria,

declining glomerular filtration rate, and ultimately ESRD, posing

a substantial burden on global healthcare systems. Although

advances in glycemic control and inhibition of the renin–

angiotensin system have improved patient outcomes to some

extent, the incidence and progression of DN remain inadequately

controlled, suggesting that current therapeutic strategies fail to

address the complex underlying molecular mechanisms.

Emerging evidence indicates that DN is not solely driven by

metabolic and hemodynamic abnormalities, but also involves

chronic inflammation, immune cell infiltration, and dysregulated

extracellular matrix (ECM) remodeling (6–9). Despite these

findings, the specific molecular mediators and regulatory

networks orchestrating these pathological processes remain poorly

defined. Moreover, the absence of reliable early diagnostic

biomarkers and effective molecular targets continues to hinder

timely intervention and personalized therapy. While several

bioinformatics-based studies have previously identified hub genes

in DN, our work distinguishes itself by integrating two independent

human renal transcriptomic datasets with rigorous batch-effect

correction, applying a multi-step prioritization pipeline that

combines weighted gene co-expression network analysis

(WGCNA), high-stringency protein–protein interaction (PPI)

network screening, and dual machine-learning algorithms, and

validating the results in both type 1 (streptozotocin-induced) and

type 2 (db/db) diabetic mouse models. In addition, our analysis

specifically focuses on molecular determinants of DN progression

rather than onset, thereby addressing a critical but underexplored

stage of disease development.

In this study, we aimed to systematically identify key regulatory

genes and signaling pathways contributing to the pathogenesis of

DN through integrative bioinformatics approaches and

experimental validation. By combining transcriptomic data

analysis with in vivo tissue-level verification in both human and

murine models, we sought to uncover robust molecular signatures

that may serve as novel diagnostic markers and therapeutic targets

for diabetic nephropathy.
2 Materials and methods

2.1 Data collection and preprocessing

To ensure biological relevance and comparability, only human

renal tissue transcriptomic datasets with clearly annotated diabetic

nephropathy (DN) and healthy control samples, adequate sample
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size (>10 per group), and availability of raw expression data were

included. Rodent datasets were excluded from the discovery phase

to avoid interspecies variability, but animal models were used

exclusively for subsequent experimental validation. Two publicly

available transcriptomic datasets related to diabetic nephropathy

(DN) were obtained from the Gene Expression Omnibus (GEO)

database: GSE96804 and GSE30122 (https://www.ncbi.nlm.nih.gov/

geo/) (10, 11). Both datasets contained renal tissue samples from

patients with DN and healthy controls. Raw expression data were

first normalized using quantile normalization to ensure

comparability of expression distributions, then log2-transformed

to stabilize variance. To enable robust cross-dataset comparisons

and minimize potential platform-specific biases, batch effects were

corrected using the “ComBat” function from the sva package in R.

Differentially expressed genes (DEGs) were identified using the

“limma” package in R, with DEGs defined as genes meeting |log2
fold change| ≥ 1 (i.e., ≥2-fold difference) and Benjamini–Hochberg

FDR–adjusted p < 0.05; these thresholds were applied within each

dataset prior to downstream network analyses (12).
2.2 Weighted gene co-expression network
analysis

To identify gene modules significantly associated with DN,

WGCNA was independently conducted on each dataset using the

“WGCNA” package in R (13). Soft-thresholding powers were

chosen to ensure scale-free topology. Module–trait relationships

were computed to identify modules most strongly correlated with

disease status. Hierarchical clustering and dynamic tree cutting

were applied to detect gene modules, and modules with high

module–trait correlation coefficients were retained for further

analysis. For each gene, module membership (MM) and gene

significance (GS) were calculated to assess intramodular

connectivity and biological relevance to DN.
2.3 Protein–protein interaction network
construction and hub gene selection

PPI networks were constructed based on the overlapping DEGs

using the STRING database (https://string-db.org/) with a

minimum confidence score threshold of 0.9 (14). The resulting

network was visualized using Cytoscape software. Two topological

analysis methods—Degree and Betweenness centrality—were

selected because they represent complementary aspects of

network topology: Degree reflects local connectivity, whereas

Betweenness captures a node’s role as a bridge in global

information flow. Other centrality measures (e.g., Closeness,

BottleNeck, MNC, Radiality, Stress) were not included because in

scale-free biological networks they often correlate strongly with

Degree or Betweenness, potentially introducing redundancy

without improving hub gene discrimination. Both measures were

applied independently without explicit weighting, and the top 20

genes from each algorithm were considered equally important. The
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intersection of these two gene sets was used to define a core set of

hub gene candidates, thereby capturing both highly connected

nodes (Degree) and critical network bridges (Betweenness) while

reducing metric-specific bias. Disconnected nodes were excluded,

and interaction confidence was restricted to experimentally

validated or curated database interactions where available.
2.4 Machine learning-based key gene
selection

To further prioritize hub genes, two machine learning models—

Random Forest (RF) and Support Vector Machine (SVM)—were

implemented using the “randomForest” and “e1071” packages in R,

respectively (15, 16). Genes that consistently ranked among the top

five in both models were selected as key genes for downstream

validation. In RF, the MeanDecreaseGini index was used for feature

importance ranking, while in SVM, recursive feature elimination

with cross-validation was used to ensure model stability and

avoid overfitting.
2.5 Expression validation and diagnostic
evaluation

The expression patterns of the selected key genes were validated

in both GSE96804 and GSE30122 datasets. Receiver operating

characteristic (ROC) curve analysis was performed using the

“pROC” package in R to evaluate the diagnostic potential of each

gene, with the area under the curve (AUC) calculated to assess

performance (17). ROC analysis was performed independently for

each dataset to assess cross-cohort reproducibility. 95% confidence

intervals (CIs) were computed using bootstrapping with

1000 iterations.
2.6 Functional enrichment analysis

To explore the functional roles of the identified genes, Gene Set

Enrichment Analysis (GSEA) was conducted using the GSE96804

dataset (18). KEGG pathway gene sets (c2.cp.kegg.v7.5.1) were

downloaded from the Molecular Signatures Database (MSigDB)

and used as the reference. Pathways with a nominal p-value < 0.05

and false discovery rate (FDR) < 0.25 were considered significantly

enriched. All genes were pre-ranked based on fold change, and

enrichment scores were computed using 1000 permutations.
2.7 Human tissue collection and validation

Human renal biopsy samples from patients with pathologically

confirmed DN and age- and sex-matched healthy controls were

obtained from a local clinical biobank, with appropriate ethical

approvals. A total of 10 specimens were analyzed, including 5 DN

patients and 5 healthy controls. Inclusion criteria for DN samples
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were: (i) histologically confirmed diabetic nephropathy, (ii) clinical

diagnosis of type 2 diabetes mellitus, and (iii) availability of

sufficient renal tissue for both IHC and RNA extraction.

Exclusion criteria included coexisting renal pathologies (e.g., IgA

nephropathy), acute kidney injury, or systemic autoimmune/

inflammatory conditions. Histological confirmation of DN was

performed on renal biopsy sections using hematoxylin and eosin

(H&E), periodic acid–Schiff (PAS), and Masson’s trichrome

staining, and evaluated for characteristic features including

mesangial expansion, glomerulosclerosis, and tubulointerstitial

fibrosis. All slides were independently reviewed by two board-

certified renal pathologists to ensure diagnostic accuracy.

Immunohistochemistry (IHC) and quantitative real-time PCR

(qPCR) were conducted to assess protein and mRNA expression

levels of the key genes. Total RNA was extracted using TRIzol

reagent, reverse-transcribed with oligo(dT) primers, and quantified

using SYBR Green chemistry. IHC staining intensity was scored

semi-quantitatively by two independent pathologists in a blinded

manner. All procedures were performed in compliance with

institutional ethical guidelines.

Species-specific primers were designed for human and mouse

orthologs of COL1A2, CD163, FN1, and CCL2. Primer specificity

was confirmed by melt-curve analysis and gel electrophoresis. The

sequences used are as follows:

Primers for Human Samples:
COL1A2

Forward: 5′-AGGGCCAAGACGAAGACATC-3′.
Reverse: 5′-CTTGCCCCATTCATTTGTCT-3′.
CD163

Forward: 5′-CCAGTCTCAGTGGTCCTGTC-3′.
Reverse: 5′-GGTAGTCTGCTGGTGATGGA-3′.
FN1

Forward: 5′-GGCTCAGTGGGAACATCAAG-3′.
Reverse: 5′-CTGAGGTTGTTGGTGATGCT-3′.
CCL2

Forward: 5′-CCCAATGAGTAGGCTGGAGA-3′.
Reverse: 5′-TCTGGACCCATTCCTTCTTG-3′.
Primers for Mouse Samples:

Col1a2

Forward: 5′-TGGAGAGAGCATGACCGATG-3′.
Reverse: 5′-CTGTTGCAGTGGTAGGTGATG-3′.
Cd163

Forward: 5′-AGCTGGGATGACTTCCCTAC-3′.
Reverse: 5′-GAGACAGGTCCTTGGTTGGT-3′.
Fn1

Forward: 5′-ATGTGGACCCCTCCTGATAGT-3′.
Reverse: 5′-TTGTAGGTGAATCGCAGGTCA-3′.
Ccl2 (Mcp-1)

Forward: 5′-AGGTCCCTGTCATGCTTCTG-3′.
Reverse: 5′-TCTGGACCCATTCCTTCTTG-3′.
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2.8 Animal models and experimental
validation

Two diabetic mouse models were utilized for in vivo validation:

streptozotocin (STZ)-induced diabetic mice and db/db genetically

diabetic mice. The STZ model was chosen to represent early-stage

DN pathology, while the db/db model was selected to reflect

advanced-stage DN, enabling assessment of gene expression

changes across disease progression. The STZ model recapitulates

key features of type 1 diabetes mellitus through selective pancreatic

b-cell destruction, whereas db/db mice serve as a spontaneous

model of type 2 diabetes characterized by obesity, insulin

resistance, and progressive nephropathy. The inclusion of both

models enables assessment of gene expression across distinct

diabetic pathophysiologies, thereby enhancing the translational

relevance of the findings. Following confirmation of DN

phenotypes, renal tissues were harvested. IHC and qPCR were

used to quantify gene expression at both the protein and

transcript levels. STZ was administered via intraperitoneal

injection at 50 mg/kg for five consecutive days. db/db mice were

monitored until 12 weeks of age. Blood glucose levels and urinary

albumin excretion were measured to confirm DN phenotype. All

animal experiments were approved by the Institutional Animal
Frontiers in Endocrinology 04
Care and Use Committee and conducted according to established

animal welfare guidelines.
3 Results

3.1 Identification of DN–associated gene
modules and candidate genes

The overall workflow of our integrative analysis is summarized

in Figure 1, outlining the major analytical and experimental steps

performed in this study.

To identify genes associated with diabetic nephropathy (DN),

differential expression analysis was conducted on the GSE96804

and GSE30122 datasets. A substantial number of differentially

expressed genes (DEGs) were identified in both datasets using the

thresholds of |log2 fold change| > 1 and adjusted p-value < 0.05, as

illustrated by the volcano plots (Figure 2A).

Subsequently, weighted gene co-expression network analysis

(WGCNA) was applied to each dataset to identify gene modules

correlated with DN status. Based on scale-free topology criteria,

soft-thresholding powers of 9 (GSE96804) and 16 (GSE30122) were

selected to ensure robust network construction (Figure 2B).
FIGURE 1

Summary of the bioinformatics and experimental workflow for identifying and validating key genes in DN.
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Module–trait relationship analysis revealed that the darkgrey

module in GSE96804 (correlation = 0.83, p = 6.5e-17) and the

saddlebrown module in GSE30122 (correlation = 0.69, p = 4.8e-11)

were most strongly associated with DN (Figure 2C), suggesting their

biological relevance in disease pathogenesis. Further analysis

showed a strong positive correlation between module

membership (MM) and gene significance (GS) within these

modules (r = 0.90), indicating that genes with high intramodular

connectivity are also those most relevant to DN (Figure 2D).

To refine the pool of candidate genes, we intersected the DEGs

with genes from the disease-associated modules, identifying 112

overlapping genes (Figure 2E). These genes represent high-

confidence candidates that may play key roles in DN pathophysiology.
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3.2 Identification of hub and key genes
through PPI network and machine learning
algorithms

To further elucidate the molecular mechanisms underlying DN,

protein–protein interaction (PPI) analysis was conducted on the

112 overlapping genes using the STRING database. The resulting

interaction network showed extensive connectivity, indicating

functional interdependence among these genes (Figure 3A).

Topological analysis using Cytoscape software applied two

centrality metrics—Degree and Betweenness—to rank gene

importance. The top 20 genes identified by each metric are shown

in Figures 3B and 3C. A Venn diagram revealed 11 overlapping hub
FIGURE 2

Identification of diabetic nephropathy–associated gene modules. (A) Volcano plots of DEGs in GSE96804 and GSE30122 datasets. (B) Scale-free
topology analysis for selecting soft-thresholding powers in WGCNA. (C) Module–trait relationships indicating the darkgrey module in GSE96804 and
the saddlebrown module in GSE30122 as most significantly correlated with diabetic nephropathy. (D) Correlation between MM and GS within key
modules. (E) Venn diagram identifying 112 overlapping genes from DEGs and key co-expression modules across datasets.
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genes, suggesting these as potential network regulators in DN-

related networks (Figure 3D).

To prioritize the most biologically and clinically relevant

targets, two machine learning models—Random Forest (RF) and

Support Vector Machine (SVM)—were used. RF analysis identified

COL1A2, CD163, FN1, CSF1R, and CCL2 as the top five genes

based on MeanDecreaseGini (Figure 3E), while SVM ranked

CD163, COL1A2, CCL2, FN1, and COL5A2 as top candidates

(Figure 3F). Intersection of these two models revealed four

common genes—COL1A2, CD163, FN1, and CCL2—which were

designated as key molecular signatures (Figure 3G).

These four genes are proposed to play central roles in DN

pathogenesis, particularly in immune regulation and extracellular

matrix (ECM) remodeling, and may serve as potential biomarkers

or therapeutic targets.
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3.3 Expression validation and diagnostic
evaluation of key genes

To validate the biological significance of COL1A2, CD163, FN1,

and CCL2, their expression levels were analyzed in both the GSE96804

and GSE30122 datasets. As shown in Figures 4A, B, all four genes were

significantly upregulated in DN samples compared to healthy controls

(p < 0.05), indicating consistent dysregulation in diseased renal tissues.

Receiver operating characteristic (ROC) curve analysis was

further performed to assess their diagnostic performance. All four

genes demonstrated moderate to high area under the curve (AUC)

values in both datasets (Figures 4C, D), suggesting reliable

discriminatory power for DN. These findings confirm that these

genes may serve as robust transcriptomic biomarkers for early DN

detection and clinical stratification.
FIGURE 3

Identification of hub and key genes through PPI network and machine learning. (A) PPI network of 112 overlapping genes constructed via STRING.
(B, C) Top 20 hub genes ranked by Degree and Betweenness centrality metrics using Cytoscape. (D) Venn diagram identifying 11 overlapping hub
genes shared by both centrality measures. (E, F) Top 5 key genes identified by RF and SVM algorithms. (G) Venn diagram identifying 4 common key
genes (COL1A2, CD163, FN1, and CCL2) shared by RF and SVM.
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3.4 Functional enrichment analysis of key
genes

To explore the functional roles of the identified genes, gene set

enrichment analysis (GSEA) was conducted using the GSE96804

dataset. The results revealed that COL1A2, CD163, FN1, and CCL2

were significantly enriched in several immune- and inflammation-

related pathways (Figures 5A–D). Among the most consistently

enriched pathways was the NOD-like receptor signaling pathway,

implicating innate immune activation in DN. Additionally,

pathways such as ECM–receptor interaction, T cell receptor

signaling, B cell receptor signaling, and the p53 signaling pathway

were enriched for COL1A2, FN1, and CD163, suggesting

involvement in ECM remodeling, immune cell activation, and

cellular stress responses.
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Notably, CCL2 was uniquely enriched in glycosphingolipid

biosynthesis and type I diabetes mellitus pathways, indicating its

potential role in bridging metabolic and inflammatory processes.

Collectively, these enrichment results support the idea that the key

genes contribute to DN progression through coordinated regulation

of immune, inflammatory, and ECM-related mechanisms.
3.5 Validation of key gene expression in
human diabetic nephropathy tissues

To confirm the clinical relevance of the identified genes,

immunohistochemical (IHC) staining was performed on renal

tissues from DN patients and matched healthy controls. As

shown in Figure 6A, all four genes exhibited markedly elevated
FIGURE 4

Expression validation and diagnostic performance of key genes in public datasets. (A, B) Expression levels of COL1A2, CD163, FN1, and CCL2 in
GSE96804 and GSE30122, showing significant upregulation in diabetic nephropathy samples. (C, D) ROC curves showing the diagnostic accuracy of
each gene in both datasets. **Statistical significance is indicated as follows: *p < 0.05, ***p < 0.001.
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protein expression in DN samples, primarily localized in glomerular

and tubular compartments. Semiquantitative analysis revealed

statistically significant differences in staining intensity between

DN and control tissues (Figures 6B–E, p < 0.05).

Quantitative real-time PCR (qPCR) was also conducted on the

same tissue samples. As shown in Figures 6F–I, mRNA levels of

COL1A2, CD163, FN1, and CCL2 were significantly upregulated in

DN tissues compared to controls (p < 0.05). These findings confirm

disease-specific overexpression of the key genes at both transcript

and protein levels, reinforcing their relevance as clinical biomarkers.
3.6 In vivo validation in diabetic
nephropathy mouse models

To further validate gene expression in vivo, two diabetic mouse

models were employed: STZ-induced diabetic mice and genetically

diabetic db/db mice.
Frontiers in Endocrinology 08
In the STZ-induced model, IHC analysis revealed significant

upregulation of COL1A2, CD163, FN1, and CCL2 in diabetic

kidneys compared to controls, with expression predominantly in

glomerular and tubulointerstitial regions (Figure 7A). Quantitative

analysis confirmed this upregulation at the protein level

(Figures 7B–E, p < 0.05). Corresponding qPCR results also

showed significantly increased mRNA levels of all four genes

(Figures 7F–I, p < 0.05).

In the db/db model, a spontaneous model of type 2 diabetes,

similar expression patterns were observed. IHC showed increased

expression of the four genes in db/db kidneys relative to wild-type

controls (Figure 8A), with quantification again showing significant

differences (Figures 8B–E, p < 0.05). qPCR analysis confirmed their

transcriptional overexpression in db/db mice (Figures 8F–I, p < 0.05).

These consistent findings across both models demonstrate that

COL1A2, CD163, FN1, and CCL2 are reproducibly upregulated in

DN, supporting their mechanistic roles in diabetic renal injury

across different pathological contexts.
FIGURE 5

Functional enrichment analysis of key genes. (A–D) GSEA of COL1A2, CD163, FN1, and CCL2 based on GSE96804. Enriched pathways involve
immune responses, ECM remodeling, and metabolic processes relevant to diabetic nephropathy.
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4 Discussion

DN is a chronic microvascular complication and remains a

leading cause of ESRD, character ized by progressive

glomerulosclerosis, persistent inflammation, and ECM

accumulation (19). In this study, we identified four robust DN-

associated genes—COL1A2, CD163, FN1, and CCL2—through a

comprehensive strategy integrating transcriptomic analysis,

network-based screening, machine learning algorithms, and

experimental validation. These genes were consistently

upregulated in both human kidney tissues and diabetic mouse

models and demonstrated strong discriminatory power in

independent public datasets, supporting their potential utility as

reliable molecular biomarkers and therapeutic targets for DN.
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Notably, their functional annotation and pathway enrichment

profiles suggest that these genes collectively may drive key

pathogenic processes in DN, including extracellular matrix

remodeling and fibrosis (COL1A2, FN1), immune cell

recruitment and chronic inflammation (CCL2, CD163), oxidative

stress–induced injury, and metabolic reprogramming of renal

parenchymal cells under hyperglycemic stress.

COL1A2 encodes the a2 chain of type I collagen, a major

structural component of the ECM (20). Excessive type I collagen

deposition is a hallmark of renal fibrosis, a central pathological

feature of DN (21). Prior studies have shown that COL1A2

expression is upregulated in fibrotic kidneys and is regulated by

TGF-b1 signaling (22). Its overexpression in our study suggests a

pivotal role in mesangial matrix expansion and tubulointerstitial
FIGURE 6

Expression validation of key genes in human diabetic nephropathy tissues. (A) IHC staining of COL1A2, CD163, FN1, and CCL2 in kidney tissues from
diabetic nephropathy patients and controls. (B–E) Quantitative analysis of IHC staining intensity. (F–I) mRNA expression levels of the four genes
assessed by qPCR in the same human samples. **Statistical significance is indicated as follows: *p < 0.05, ***p < 0.001, ****p < 0.0001.
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fibrosis, potentially reflecting maladaptive tissue remodeling

responses in diabetic kidneys.

CD163 is a scavenger receptor primarily expressed on M2-

polarized macrophages, which are typically associated with anti-

inflammatory and tissue-repair functions (23). Elevated CD163

levels have been observed in several chronic kidney diseases,

including glomerulonephritis and proteinuric nephropathies (24).

In the context of DN, increased infiltration of CD163+ macrophages

may represent a compensatory anti-inflammatory mechanism or

may paradoxically contribute to low-grade chronic inflammation

and progressive fibrosis. Its consistent upregulation across models

and human samples may serve as a marker of immune

dysregulation in diabetic kidneys. Notably, CD163 is a classical

marker of alternatively activated (M2) macrophages, which have
Frontiers in Endocrinology 10
been shown to mediate anti-inflammatory responses and tissue

repair in diabetic nephropathy. However, persistent activation of

M2 macrophages may paradoxically contribute to chronic

inflammation and fibrosis in late-stage disease. This duality is

consistent with previously described anti-inflammatory

mechanisms in DN that ultimately fail to resolve inflammation,

shifting toward a profibrotic immune microenvironment.

Additionally, enrichment of the p53 pathway—particularly

associated with COL1A2 and CD163—may reflect a maladaptive

stress response involving apoptosis and immune modulation,

further linking our findings to known immune-regulatory axes

in DN.

FN1, encoding fibronectin, is a key ECM glycoprotein involved

in cell adhesion, tissue remodeling, and fibrogenesis (25).
FIGURE 7

Expression validation of key genes in STZ-induced diabetic nephropathy mouse model. (A) IHC showing elevated expression of COL1A2, CD163,
FN1, and CCL2 in renal tissues of STZ-treated mice. (B–E) Statistical quantification of IHC results. (F–I) qPCR results showing significant
transcriptional upregulation of the four genes. **Statistical significance is indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001.
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Accumulation of fibronectin in glomerular and interstitial regions is

well documented in DN, where it contributes to glomerular

basement membrane thickening and vascular occlusion (26). Our

findings further support FN1 as a core contributor to ECM

remodeling in DN pathology.

CCL2 (also known as MCP - 1) is a chemokine that plays a critical

role in monocyte andmacrophage recruitment to sites of inflammation

(27). Its elevated expression in DN has been linked to proteinuria and

glomerular damage (28). Given its chemotactic role in immune cell

trafficking, CCL2 upregulation may contribute directly to immune

infiltration and sustained renal inflammation in DN.

To further address the immunological relevance of these genes,

we note that COL1A2 and FN1 can modulate immune activation

through ECM–integrin signaling, influencing leukocyte adhesion
Frontiers in Endocrinology 11
and migration. CD163 is functionally involved in the clearance of

inflammatory hemoglobin–haptoglobin complexes and reflects

macrophage-mediated immune remodeling. CCL2 is a well-

characterized chemokine essential for monocyte recruitment and

has been extensively implicated in diabetic renal immune injury.

To gain insight into the broader biological roles of these genes,

we performed GSEA. All four genes were significantly enriched in

the NOD-like receptor signaling pathway, which is implicated in

renal inflammation through activation of the NLRP3

inflammasome, resulting in IL - 1b production and podocyte

injury (29). This supports the critical contribution of innate

immunity to DN progression.

Interestingly, enrichment of the T cell receptor and B cell

receptor signaling pathways indicates a potential role of adaptive
FIGURE 8

Expression validation of key genes in db/db diabetic nephropathy mouse model. (A) IHC staining indicating increased expression of COL1A2, CD163,
FN1, and CCL2 in db/db mouse kidneys compared to controls. (B–E) Statistical quantification of IHC results. (F–I) qPCR results showing significant
transcriptional upregulation of the four genes. **Statistical significance is indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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immunity, which has often been underappreciated in DN

pathogenesis. Accumulating evidence suggests that T and B

lymphocytes infiltrate diabetic kidneys and promote injury via

cytokine production and antigen presentation (30, 31). The

enrichment of these pathways further supports the immunological

significance of the identified genes in modulating both innate and

adaptive immune responses in DN.

Additionally, the ECM–receptor interaction pathway was

significantly enriched, highlighting interactions between ECM

components and integrins that regulate fibrosis and cellular

adhesion (32). This finding aligns with the fibrotic phenotype of

DN and supports the involvement of FN1 and COL1A2 in matrix-

driven kidney damage. Enrichment of the p53 signaling pathway for

COL1A2 and CD163 further suggests roles in apoptosis and cellular

senescence under hyperglycemic stress (33), processes known to

contribute to tubular injury and DN progression.

Importantly, among the four identified DN-associated genes,

CCL2 and FN1 represent pharmacologically tractable targets with

direct translational potential. CCL2 is a key chemokine in monocyte

recruitment, and inhibitors of the CCL2–CCR2 axis (e.g., bindarit,

CCX872) have demonstrated renoprotective effects in diabetic

kidney disease by reducing macrophage infiltration and

inflammation. FN1 can be indirectly targeted through inhibition

of fibronectin–integrin signaling, such as with a5b1 integrin

antagonists, which have shown anti-fibrotic activity in

experimental nephropathy. Although COL1A2 and CD163

currently lack direct approved inhibitors, COL1A2 can be

modulated via upstream TGF-b/SMAD blockade—a validated

anti-fibrotic strategy—while CD163 may serve as a candidate for

macrophage-targeted drug delivery systems. These insights not only

underscore the therapeutic relevance of our findings but also

strengthen their translational value in DN management.

Despite the strength of our integrative approach and validation

across species, several limitations must be acknowledged. First, the

transcriptomic data utilized were derived from bulk tissue, which

precludes resolution of cell-type-specific expression patterns. The use

of single-cell RNA sequencing or spatial transcriptomics in future studies

would help localize gene expression more precisely. Second, although

expression levels were validated across datasets and through mRNA/

protein analyses, direct functional validation was not performed.

Specifically, functional perturbation experiments—such as gene

knockdown, overexpression, or pharmacologic inhibition—were not

conducted, limiting our ability to confirm the causal involvement of

these genes inDNpathogenesis. Third, the absence of clinical correlation

analyses—such as associations with estimated glomerular filtration rate

(eGFR), proteinuria, or disease stage—limits the direct translational

applicability of these markers. Finally, as with most transcriptomics-

based integrative analyses, our approach cannot definitively distinguish

true disease-driving genes from reactive or bystander transcripts. While

our use of multiple independent selection layers increases robustness,

functional studies such as gene perturbation assays are essential to

validate causality and therapeutic relevance.
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In conclusion, our study identifies COL1A2, CD163, FN1, and

CCL2 as key molecular players involved in fibrosis, immune

activation, and inflammatory signaling in diabetic nephropathy.

By linking these molecular alterations to well-established

pathological hallmarks—fibrotic ECM deposition, sustained

immune activation, oxidative stress responses, and dysregulated

metabolic pathways—our findings provide a plausible mechanistic

framework for their contribution to DN progression. Their

consistent dysregulation, enrichment in biologically relevant

pathways, and validation in both human and animal models

highlight their potential as clinically relevant biomarkers and

therapeutic targets. Future investigations focusing on mechanistic

validation, cellular localization, and clinical stratification will be

essentia l to translate these findings into meaningful

clinical applications.
5 Conclusions

In this study, we identified COL1A2, CD163, FN1, and CCL2 as

key genes strongly associated with the progression of DN. These

genes are implicated in fundamental pathological processes,

including extracellular matrix deposition, immune cell infiltration,

and chronic inflammation. Their consistent overexpression across

multiple human datasets and diabetic mouse models, combined

with enrichment in biologically relevant signaling pathways,

underscores their potential as robust biomarkers and promising

therapeutic targets. These findings provide valuable insights into the

molecular mechanisms underlying DN and offer a foundation for

the development of early diagnostic tools and targeted interventions

in diabetic kidney disease.
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