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The “vanishing bone disease” or Gorham-Stout disease (GSD) is a very rare

disorder characterized by massive lymphatic and angiomatous proliferation

accompanied by progressive osteolysis, without the deposition of new bone

matrix. Because of its rare and complex clinical features, diagnosis is challenging

and its etiopathogenesis is not completely known; the genetic basis of GSD has

been hypothesized and different mutations have been reported in patients. Our

review aims to describe all these genetic alterations found in GSD patients and

their association with clinical features. The identification of a specific molecular

pathway or genetic alteration in GSD could help in the diagnosis and possibly the

treatment of this rare sporadic disease.
KEYWORDS

Gorham-Stout disease, rare disease, genetic characterization, genetic variants,
molecular pathways
1 Introduction

Gorham-Stout disease (GSD), also known as “vanishing bone disease”, is a very rare

disorder, to date not even 400 cases have been described, and is characterized by lymphatic

and angiomatous proliferation accompanied by progressive osteolysis. Although a slight

predilection for male, the disease does not show a clear sex bias or inheritance pattern and

can occur at any age, with the majority of cases occurring in childhood (1), affecting one or

multiple bones of either the axial or the appendicular skeleton; patients initially display a

patchy osteoporosis condition, which progressively leads to skeletal deformity, shrinkage

and eventual loss of the affected bone (2, 3). Moreover, both the medullary and cortical

regions of affected bones present lymphatic vessels, which are not typically found in normal

bones (4). The main reported symptoms are pain, weakness and impairment of the affected

regions; however, some patients develop more severe complications such as chylothorax

(5), which may cause respiratory distress, as well as vertebrae involvement leading to

neurological deficits or paraplegia, bone infection and subsequent septic shock, and

ultimately death (2).

GSD is frequently undiagnosed or misdiagnosed and is indeed often classified as a

complex lymphatic abnormality (CLA) as some clinical features overlap with CLA diseases,

such as generalized lymphatic anomaly (GLA), Kaposiform lymphangiomatosis (6) and
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channel-type lymphatic malformations (LM) (2). GLA is a rare and

aggressive disease characterized by diffused lymphatic vessel

proliferation with multi-organ involvement (mediastinum, lungs,

bone, spleen, and soft tissues), and it primarily affects children and

adolescents. Its symptoms include pleural and pericardial effusion,

ascites, multiple cystic splenic lesions, gastrointestinal

haemorrhage, multiple bone osteolysis (mostly skull and spine),

lymphedema, and lymphorrhea (7) (Figure 1). GSD, in contrast, is

distinguished by the progressive destruction and erosion of bone,

particularly the cortical bone, often leading to its complete

absorption with the presence of abnormal intraosseous LM, found

also in regions adjacent to osteolytic lesions (Figure 1). Hu et al.

carried out radiographic evaluations of 67 GSD cases, half of which

present the disappearance of portions of bone; the initial stage of

this process manifests as radiolucent foci in the intramedullary or

subcortical regions (8). The femur was the most commonly

involved site (8). In the same year, Lala et al. carried out another

radiological study on a cohort of 51 patients, of which 19 met the

criteria for GSD, and highlighted differences in osteolytic activity

between GLA and GSD patients: GLA generally shows lytic areas

confined to the medullary cavity, whereas GSD displays progressive

osteolysis, with cortical bone loss (9). They also identified the ribs as

the most commonly affected site in both groups, followed by the

cranium, clavicle, and cervical spine in GSD, while the thoracic

spine, humerus, and femur were most frequent in GLA.

Additionally, GSD typically involves fewer bones than GLA (9)

(Figure 1). Further investigation is necessary to fully differentiate

these two lymphatic disorders.
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Therefore, the diagnosis of GSD remains challenging with no

standardized guidelines; it is usually performed by exclusion criteria

to rule out neoplastic processes, infections, as well as metabolic and

endocrine disorders. Radiographs, bone scan and computed

tomography are useful (10), but diagnosis must be confirmed by

histopathological analysis of the bone lesion, which should reveal

extensive bone resorption and angiomatous tissue, as well as

excessive presence of fibrotic tissue without cellular atypia (11,

12). Indeed, the osteolytic process is characterized by the absence of

increased osteoblast activity along the surfaces of the remaining

bone fragments in sections of affected tissues; the disappearing bone

is replaced by fibrovascular tissue rather than newly formed woven

repair bone (2). Moreover, GSD osteoblastic cells exhibit

ultrastructural alterations suggesting that they have either

decreased synthetic activity or are undergoing degeneration (13).

Furthermore, osteocytes within bone tissue close to the lesions have

been reported to present enlarged lacuna, possibly related to

osteocyte mediated-bone resorption activity (2, 12).

Due to its rarity and limited case studies, also the

etiopathogenesis of GSD remains unclear. It has been proposed

that the osteolytic process may result from excessive proliferation of

endothelial and lymphatic vessels, accompanied by increased local

blood flow, changes in pH or altered mechanical forces that affect

bone remodeling (2). The secretion of cytokines and growth factors

such as TNF (Tumor Necrosis Factor)-a, IL (Interleukin)-6 and

VEGF (Vascular Endothelial Growth factor)-A/C has also been

considered, given their stimulatory effect on lymphangiogenesis and

osteoclast activity (7, 14–16), and their inhibitory effect on
FIGURE 1

Differences between GSD and GLA, highlighting symptoms, bone involvement and type of osteolysis.
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osteoblasts, particularly at high concentrations (2, 17–19). Recent

studies have proposed that GSD may involve a primary imbalance

in bone remodeling, characterized by increased osteoclast

differentiation and resorption (20), along with an impairment of

circulating bone cells (21). Moreover, immune dysregulation or

inflammatory conditions could contribute to exacerbate the

syndrome (22).

Depending on the severity of the disease and the extent of organ

involvement, different strategies are used to treat GSD symptoms,

including surgery, radiotherapy and drug treatment, which are only

partially effective and none are curative, but patients experience

relief and improved quality of life after treatment (1). Bone loss with

functional impairment requires surgical procedures which consist

of the resection of localized lesions and the reconstruction or

stabilization of the bone by using bone grafts and/or prostheses

(8, 23, 24); interventions are also carried out to prevent respiratory

insufficiency and reduce or halt the fluid build-up in the pleural

cavity (24). Without surgical intervention, morbidity and mortality

rates are very high (2).

The use of radiotherapy has been described as successful and

beneficial in several case reports, with a 75% overall success rate on

local lesions with doses in the 30–45 Gy range (25–27). It has also

been used to manage chylothorax in a GSD case (28). However,

radiation could provoke serious problems, like secondary

malignancy and growth restriction in children and adolescents

who receive a high dose treatment (29).

Bisphosphonates and interferon alpha 2b are commonly

prescribed. Bisphosphonates have been successfully used for the

treatment of GSD patients for their anti-osteoclastic activity (30,

31). Hammer et al. reported a stabilization of the clinical and

radiological picture in a patient treated with pamidronate every 3

months (31). In 2014, Liu et al. evaluated different bisphosphonate

treatments (either zoledronic acid or pamidronate) with or without

radiotherapy (40 Gy) on GSD patients, all of which stabilized

disease progression as well as inhibited the enlargement of the

osteolytic scope and increased bone mineral density (30). The

authors also reviewed GSD bisphosphonate treatment

investigations in literature, finding that the most commonly used

was zoledronic acid, followed by alendronate, which often led to

disease arrest (30). However, the use of anti-resorption drugs like

bisphosphonates is often associated with side-effects, including

atrial fibrillation, osteonecrosis of the jaw (1) and “frozen bone”,

characterized by over-suppression of bone turnover (32). Interferon

alpha 2b, an immunomodulatory and anti-angiogenic compound,

has been used to stabilize GSD and can also be used in combination

with bisphosphonates or after surgery (33–36). Other

pharmaceuticals administered for clinical relief are the anti-

angiogenic VEGF-neutralizing antibody Bevacizumab (37),

propranolol (38), low molecular weight heparin (39), steroids,

and vitamin D (2).

More recently, the repurposing of oncogenic treatments, such as

Sirolimus or Alectinib, has become more frequent and will be

further described in this review.

Over the past few years, the genetic basis of GSD has been

largely hypothesized in case reports, although no definitive evidence
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has yet been established. The identification of specific germline

mutations or somatic mosaicism in GSD could significantly aid in

the diagnosis and possibly the treatment of this rare condition. This

review aims to summarize all the reports investigating genetic

alterations in GSD patients and explore their potential

contribution to disease development, paving the way for the

discovery of new therapeutic targets.
2 Genetic studies

In 2013, the first work suggesting that GLA and GSD patients

could carry abnormal genomic copy number was presented at the

first International Conference on Generalized Lymphatic Anomaly

and Gorham-Stout Syndrome (11). Although no updates or reports

have been released on that study, other genetic studies have

emerged (Table 1).
2.1 PTEN

In 2012, Hopman et al. described a patient exhibiting absence of

the 8th and 9th ribs on the right side, extensive pleural fluid, as well

as osteolytic lesions in the humerus, femur and tibia. Additionally,

he presented a vascular tumor affecting part of the right axilla and

flank (42). Diagnosed with GSD and PTEN hamartoma tumor

syndrome, the patient underwent genetic analysis which identified

two variants in lymphocyte–derived DNA: a germline heterozygous

mutation c.517C>T (p.Arg173Cys) of the PTEN (Phosphatase And

Tensin Homolog) gene and a polymorphism c.649-26G>T in the

TSC2 (TSC Complex Subunit 2) gene. Moreover, the analysis of

DNA from the affected tissue revealed also the heterozygous variant

c.2180C>T (p.Ala727Val) in the FLT4 (Fms Related Receptor

Tyrosine Kinase 4, also known as VEGFR3) gene (42).

The TSC2 polymorphism was deemed non-pathogenic, while

the PTEN mutation has been already described in patients with

hamartoma (43). PTEN mutations have also been implicated in

atypical endometrial hyperplasia, endometrial carcinoma (44), and

glioblastoma (45, 46), bone metastases (47), multiple myeloma (48,

49), osteosarcoma (50–52), and other bone malignancies (53).

PTEN encodes a dual-specificity phosphatase protein that

negatively regulates the PI3K/Akt/mTOR and MAPK (mitogen-

activated protein kinase) signaling pathways. Stambolic et al.

observed that Pten-deficient murine fibroblasts exhibited

decreased sensitivity to cell death, as well as elevated protein

kinase B or Akt (PKB/Akt) activity and phosphorylation (54),

which promotes survival and oncogenesis (55). As a tumor

suppressor, PTEN reduces intracellular phosphatidylinositol 3,4,5-

trisphosphate levels, thereby inhibiting the PI3K/PKB/Akt axis (53,

54). Somatic changes in the PI3K/AKT/mTOR pathway have been

observed in LM (7, 56). PTEN is further implicated in the regulation

of osteoclast differentiation, survival and migration, as well as

angiogenesis and lymphangiogenesis (57). The involvement of the

phosphoinositide 3-kinase (PI3K) pathway in GSD is also

supported by Rossi et al., who performed a transcriptomic
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TABLE 1 Summary of the genetic variants identified in GSD patients.
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analysis on mature osteoclasts differentiated from peripheral blood

mononuclear cells of GSD patients, revealing an enrichment of this

pathway (20). To define the role of PTEN in bone homeostasis and

bone strength, Lorenz et al. generated a mouse model of Pten

conditional Knock-out (Pten-cKO) in pre-osteoblasts and

investigated osteoprogenitor cells; bone marrow stem cells

isolated from Pten-cKO animals showed enhanced proliferation

and osteogenic differentiation, resulting in increased trabecular

bone volume and mechanical strength (58).

The mammalian target of rapamycin (mTOR) is a downstream

kinase involved in the PI3K/Akt pathway, involved in metabolism,

angiogenesis, cell motility and growth; its dysregulation has been

documented in LM (59). Hence, the use of Sirolimus, an inhibitor of

mTOR, has been tested on multiple vascular anomalies (60, 61) and

on a cohort of 5 patients with GSD (41), demonstrating to be

efficacious and well tolerated in these studies.
2.2 EML::ALK fusion

A recent paper reported a GSD patient with extensive LM in the

lumbar spine and sacrum, with chronic cerebrospinal fluid leak and

severe headaches. The patient underwent various unsuccessful

treatments (62). Genetic testing using an oncology-focused next-

generation sequencing panel on patient’s bone biopsy revealed an

EML4::ALK (echinoderm microtubule-associated protein-like 4-

anaplastic lymphoma kinase) fusion (62).

There are several types of EML4::ALK fusions, all containing the

intracellular tyrosine kinase domain of ALK but differing in the

truncation sites of EML4 (63). In vitro studies using NIH/3T3

mouse fibroblastic cells expressing different EML4::ALK variants

demonstrated that these variants mainly activate the MAPK/ERK

and STAT3 signaling pathways, promoting cell proliferation,

survival, and invasion (63). The MAPK/ERK signaling pathway is

associated with cell proliferation, and the mTOR and STAT3

pathways are associated with cell survival and apoptosis. The

EML4::ALK fusion protein upregulates MAPK signaling and

activates ERK; moreover, increased expression of STAT3

promotes the activation of mTOR thus inhibiting apoptosis of

tumoral cells. Studies indicate that some regions of the EML4

gene induce tumorigenesis, in particular the HELP domain is

necessary for the specific activation of RAS, which promotes the

upregulation of RAS and the phosphorylation of ERK, inducing cell

proliferation (64). These variants have been widely reported in

tumors, particularly as the primary pathogenic driver in non-small

cell lung cancer (65, 66), and have also been identified in a patient

affected with GLA (62).

Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor

that plays a key role during development and is largely not expressed in

most adult tissues; indeed, ALK becomes constitutively active when

fused with EML4, driving oncogenic signaling; these fusion proteins are

validated targets of tyrosine kinase inhibitors such as crizotinib,

alectinib or lorlatinib (67–70). The aforementioned GSD patient was

treated with alectinib, resulting in reduced swelling and pain, as well as

decreased soft tissue edema in the LM (40).
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An in-depth investigation into the influence of the chimeric

mutation in GSD bone phenotype is still necessary, as well as the

analysis of the effects of ALK inhibitors in the progression of the

bone disease.
2.3 GATA2

In a very short case report, Oguz and colleagues investigated the

genomic signature of a pediatric female diagnosed with GSD and

presenting cardiac tamponade, who was successfully treated with

Sirolimus (71). Genetic analysis was performed using a vascular

anomaly panel which includes the NRAS, KRAS, FOXC2, FLT4,

GJC2, VEGFC, PIEZO1 and GATA2 genes and heterozygous

splicing mutation c.379C>A (p.His127Asn) in the GATA2

(Endothelial Transcription Factor GATA2) gene was detected (71).

GATA2 is a key factor in the generation and maintenance of

hematopoietic stem and multipotent progenitor cells, and is involved

in hematopoietic diseases, infections and cancer. Its altered

expression is associated with immunodeficiency (so-called GATA2

deficiency) and acute myeloid leukemia (72). In hematopoietic stem

progenitor cells, GATA2 activates the expression of diverse genes,

including those encoding c-Kit receptor tyrosine kinase, erythroid

and the megakaryocytic differentiation inducer GATA1 (72).

Moreover, it is crucial for lymphatic vessel development (73) as

demonstrated in Gata2 heterozygous deficient mice, which display

delayed lymphatic recanalization after resection (74, 75).

Furthermore, GATA2 modulates the expression of microRNA-126,

regulator of lymphatic vessel development (73).

Tolkachov et al. analyzed the deletion of GATA2 inmesenchymal

stem cells, revealing increased osteogenic differentiation and bone

formation (76). Loss of GATA2 also reduced osteoprotegerin

expression, enhancing osteoclastogenesis. In vivo, this resulted in

enhanced bone formation accompanied by impaired trabecular bone

and mechanical strength, confirming a role of GATA2 in bone

turnover (76).
2.4 KRAS

So far, the most representative genetic study was performed by

Nozawa and colleagues who analyzed a cohort of 6 GSD patients.

Targeted sequencing analysis of cancer-related genes revealed the

somatic KRAS c.182A>G (p.Gln61Arg) variant in frozen affected

tissue of one patient (77). This gain-of-function mutation is well-

documented in various human cancers (78) and congenital

syndromes known as RASopathies (79). The mutation significantly

promotes cell growth through the activation of the MAPK and PI3K/

AKT signaling pathways (80). Indeed, the KRAS gene encodes K-Ras,

a small GTPase that acts as an oncogenic molecular switch, regulating

cell proliferation and survival (78, 81, 82). KRAS mutations in CLA

patients impair GTP hydrolysis, resulting in hyperactive downstream

signaling (78). Cells with oncogenic KRAS variants have an impact on

the production of angiogenic and osteoclastogenic cytokines,

including VEGF (83) and IL-6 (84). In addition, KRAS-mutant
frontiersin.org
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cancer cells modulate the inflammatory response, recruiting and

activating immune cells, promoting pro-tumorigenic properties and

cell evasion from immunosurveillance; moreover, these cells secrete

molecules that promote the recruitment of activated macrophages,

which also promote angiogenesis and osteoclastogenesis,

contributing to the secretion of VEGF, IL-6 and TNF-a (85, 86).

Indeed, Nozawa et al. suggested that macrophages harboring the

variant may contribute to the production of large amounts of

angiogenic and osteoclastogenic molecules (77).

In 2021, Homayun-Sepehr et al. identified another activating

somatic mutation (c.35G>T, p.Gly12Val) of KRAS in the blood and

affected tissue of a GSD patient using a comprehensive cancer panel

containing 408 cancer-related genes (87). The mutation p.G12V was

previously reported in a patient with malignant giant cell tumor of

bone, a rare aggressive sarcoma characterized by the presence of

multinucleated giant cells and poor clinical course (88). To assess the

impact of the hyperactive KRAS variant in the lymphatic system, a

genetically engineered mouse model that conditionally expressed the

hyperactive form of Kras (p.Gly12Asp) in Lymphatic Endothelial Cells

(LEC) was generated. The authors reported growth of lymphatic vessels

in bone, impairment in lymphatic valve formation, and the

development of chylothorax, resembling the vascular features

presented by GSD patients (87). Moreover, a gene ontology analysis

of the modulated genes identified in LEC derived from the hyperactive-

KRAS mouse model showed increased expression of genes involved in

angio/lymphangiogenesis, cell proliferation and migration, and

metallopeptidase activity. The role of KRAS mutations in GSD bone

still needs to be investigated.
2.5 Gasdermin D

More recently, Uehara et al. identified the biallelic missense

variant c.823G>C (p.Asp275His) of the GSDMD (Gasdermin D)

gene in a GSD patient with osteolysis of the distal phalanx of the left

4th, right 2nd, and 3rd digits, without lymphangiomatous

proliferation observed in bone biopsy (89). As the variant is

located at the exon-intron splice junction of exon 7, the authors
Frontiers in Endocrinology 06
hypothesized that the splicing process could be altered, but no

alterations of GSDMD expression were found in a lymphoblastoid

cell line derived from the patient’s PBMC (89).

GSDMD is a key regulator of pyroptosis, a type of programmed

inflammatory cell death triggered by invasive infection and danger

signals. Gasdermins mediate pore formation in the plasma

membrane, leading to the loss of cell membrane integrity and

leakage of cell cytosolic contents, inducing inflammation (90);

GSDMD is transcriptionally regulated by NF-kB and the

interferon regulatory factor 2 (91), and its activity is mediated by

caspases and the NLRP3 inflammasome, already implied in

osteoporosis (92, 93). Upon activation, caspases cleave GSDMD

to generate an N-terminal cleavage product that triggers pyroptosis

and the release of inflammatory cytokines such as IL-1b (94, 95).

Indeed, the connective tissue surrounding the bone of the

aforementioned GSD patient had mild inflammatory cell

infiltration, mainly characterized by macrophages. Moreover,

investigation of GSDMD cleavage in monocytes of the GSD patient

did not reveal the fragments generated with protein activation (89).

GSDMD has already been recognized as a critical player in bone

metabolism by preventing bone loss. Indeed, an up-regulation of

Gsdmd expression was detected during osteoclast differentiation of

the murine macrophage RAW264.7 cell line and mouse bone

marrow cells (89). In the late stage of osteoclast lineage

commitment, Li et al. observed that the cleavage of Gsdmd also

yielded a non-pyroptotic 20-kDa fragment that inhibits excessive

osteoclastic resorption and bone loss by restricting the maturation

and secretion of lysosomes (91). In fact, Gsdmd-deficient

osteoclasts displayed enhanced lysosomal number, size, density

and activity, and increased bone resorption activity in vitro. The

Gsdmd-KO mice displayed an osteoporotic phenotype, with

reduced trabecular bone and number, enhanced eroded surface

and increased levels of serum bone resorption marker CTX-I

(Carboxy-terminal type I collagen) compared to wild-type mice.

Osteoblast parameters were minimally affected, indicating that the

phenotype was not a result of impaired bone formation. In fact,

gene expression analysis further confirmed that the most significant

alterations occurred in osteoclasts rather than osteoblasts (91).
TABLE 2 Pathways involved with the mutations identified in GSD patients and related available treatments.

Gene Pathways involved Available drugs

PTEN Antagonist of the PI3K/Akt/mTOR and MAPK pathways Sirolimus (inhibitor of mTOR)

EML4::ALK Activates the Ras/MAPK/ERK and STAT3/mTOR signaling pathways Alectinib (tyrosine kinase inhibitor)

GATA2 Maintains hematopoietic stem and multipotent progenitor cells n/a

KRAS Activates the MAPK and the PI3K/AKT signaling pathways n/a

GSDMD Mediates pyroptosis and the release of inflammatory cytokines n/a

TNFRSF11A Activates of NF-kB and MAPK8/JNK pathways n/a

TNFRSF10A Mediates apoptosis and the activation of NF-kB n/a

PIK3AP1 Activates the PI3K/Akt/mTOR n/a

ATG101::SLC4A8 n/a n/a

SGCD::DNAH11 n/a n/a
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2.6 Multi-omics analysis

Yebenes Mayordomo et al. recently carried out a multi-omic

analysis of data from whole-genome and RNA sequencing of the

affected tissue and the surrounding normal tissue in a 45-year-old

Gorham-Stout patient (96). A total of 643 mutations were identified

across 233 genes, with a high frequency of insertions and deletions;

among the most frequently mutated genes, TNFRSF10A, a tumor

necrosis factor receptor involved in the mediation of apoptosis and

the activation of NF-kB pathway, was identified (96). It belongs to

the same receptor family as TNFRSF11A, found mutated

(c.1070C > T, p.Thr357Ile) in a patient with GSD presenting

osteolysis of the left scapula and the 7th–9th left ribs (97).

Although the effect of this variant remains to be functionally

characterized, it is well established that TNFRSF11A plays a key

role in osteoclast differentiation and activity, and alterations in this

gene have been associated with osteolytic diseases (98, 99).

Additionally, Yebenes Mayordomo et al. identified a missense

mutation (c.1139A>T) in the PIK3AP1 (Phosphoinositide-3-

Kinase Adaptor Protein 1) gene (96), involved in the PTEN/

PI3K/AKT signaling pathway and known for its role in regulating

inflammation and the innate immune response.

The in-depth analysis discovered the presence of a substantial

number of interchromosomal mutations, in particular chromosome

translocations, suggesting that gene fusion variants could be

frequent in GSD (96). The authors noted a gene variant found in

chromosome 12 consisting of the fusion of ATG101 (Autophagy

Related 101), involved in macroautophagy (100, 101), and SLC4A8

(Solute Carrier family 4 member 8), which could possibly affect the

macrophage signaling pathway (96). Another gene fusion involved

the SGCD (Sarcoglycan Delta) and DNAH11 (Dynein Axonemal

Heavy Chain 11) genes (96); SGCD is associated with muscular

dystrophy (102, 103), which could determine vascular

malformations (104). These fusion variants still need to be

fully described.

A high proportion of genes were either up- or down-regulated

and the expression of gene families like VEGF or NOTCH

drastically increased in GSD affected tissue compared to normal

tissue (96). The expression of PI3K, as well as AKT and mTOR, was

detected to be considerably decreased, while PTEN was increased

(96), suggesting an altered stimulation of endothelial cell growth

and angiogenesis through VEGFA and VEGFB and the VEGFR1-

PI3K-AKT signaling pathway (105, 106).
3 Conclusions

Gorham-Stout disease is still an enigma. To date, only a few

research studies have investigated the genetic alterations in a limited

number of patients, employing heterogeneous methods and

analyzing various types of tissues.

Many studies reported mutations that affect the PI3K/AKT

signaling cascade as well as the MAPK pathway, with several

collateral effects on macrophages, which impact osteoclastogenesis

and bone turnover; moreover, for some of these pathways, drug
Frontiers in Endocrinology 07
treatment is still available (Table 2). A comprehensive analysis of

these molecular mechanisms, combined with detailed phenotyping

of bone involvement in a larger cohort of patients is essential to

achieve a more complete understanding of GSD. Such insights are

crucial to improve diagnosis and identify new therapeutic targets

for this rare and debilitating syndrome.
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