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Type 2 diabetes (T2D) is increasingly recognized as a risk factor for cognitive
impairment, ranging from mild cognitive impairment (MCI) to dementia. The
underlying mechanisms involve a complex interplay of hyperglycemia, insulin
resistance, neuroinflammation, oxidative stress, vascular dysfunction, and
amyloid pathology. Effective management strategies remain an area of active
investigation. This review explores the pathophysiological mechanisms linking
T2D to cognitive dysfunction and evaluates current and emerging therapeutic
strategies to preserve cognitive function in diabetic patients. Chronic
hyperglycemia and insulin resistance impair neuronal function and synaptic
plasticity, while microvascular complications contribute to cerebral
hypoperfusion and white matter lesions. Additionally, metabolic disturbances
exacerbate neurodegenerative processes, further compromising cognitive
health. Effective management strategies for cognitive impairment in T2D
include regular cognitive screening, stringent glycemic control, lifestyle
modifications, comprehensive cardiovascular risk management, patient
education and pharmacological interventions such as metformin, GLP-1
receptor agonists (GLP1RAs), and sodium-glucose cotransporter 2 (SGLT2)
inhibitors, which may offer neuroprotective benefits. In this review, we
conclude that cognitive impairment in T2D results from complex, interrelated
mechanisms requiring early intervention and personalized strategies. While
current therapies focus on metabolic and vascular risk reduction, future
research should prioritize biomarker discovery, mechanism-driven treatments,
and long-term clinical trials to optimize outcomes. A proactive, integrated care
model is essential to mitigate cognitive decline in this high-risk population.
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1 Introduction

A growing body of literature has demonstrated that type 2
diabetes (T2D) is increasingly recognized as a significant risk factor
for cognitive impairment, including mild cognitive impairment
(MCI), dementia, and Alzheimer’s disease (AD), particularly in
domains of memory, executive function, and processing speed (1,
2). All cognitive impairment could lead to reduced treatment
compliance, medication management, and self-care ability in T2D
patients. Cognitive impairment in T2D manifests through a
characteristic pattern of deficits that primarily affect memory,
executive function, and processing speed (3). Patients often
experience gradual declines in episodic memory, struggling to
recall recent events or retain new information, alongside
noticeable difficulties in complex tasks requiring planning,
decision-making, and mental flexibility (4). Executive dysfunction
is particularly prominent, leading to impaired problem-solving
abilities and reduced capacity to multitask (5, 6). Additionally,
slowed information processing results in delayed responses during
cognitive tasks and conversations (7). Many patients also report
increased distractibility and working memory challenges, while
visuospatial difficulties may emerge in later stages (8). These
cognitive changes frequently co-occur with mood disturbances,
such as depression, and often correlate with longer diabetes
duration, poor glycemic control, and the presence of
microvascular complications (9). Hence, early recognition of these
manifestations is critical for timely intervention to preserve
cognitive function in diabetic patients (10).

The growing prevalence of T2D worldwide is expected to
contribute to a significant increase in dementia cases (9).
Cognitive impairment in T2D patients not only diminishes
personal autonomy—increasing reliance on caregivers for daily
activities—but also exacerbates socioeconomic burdens through
lost productivity and higher medical costs associated with
dementia care. Early intervention can preserve functional abilities,
allowing individuals to maintain meaningful social roles,
employment, and community engagement for longer periods.
Furthermore, mitigating cognitive decline reduces caregiver strain,
which disproportionately affects families and healthcare systems in
aging populations. Public health initiatives targeting diabetes-
related cognitive risks could yield substantial societal benefits by
delaying disability onset, reducing long-term care needs, and
promoting healthier aging. Given the rising global prevalence of
T2D, addressing its cognitive consequences is not just a medical
imperative but a societal necessity to foster resilient communities
and sustainable healthcare systems for future generations.

Chronic hyperglycemia, insulin resistance, and microvascular
dysfunction drive pathological processes such as
neuroinflammation, oxidative stress, and amyloid deposition,
which collectively impair synaptic plasticity and cognitive
function (4). While glycemic control remains a cornerstone of
diabetes management, certain antidiabetic agents may offer
additional neuroprotective benefits beyond glucose-lowering
effects (11). Sodium-glucose cotransporter 2 (SGLT2) inhibitors, a
newer class of glucose-lowering drugs, have emerged as promising
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candidates for mitigating diabetes-associated cognitive decline (12,
13). Beyond their renal and cardiovascular benefits, preclinical and
clinical evidence suggests that SGLT2 inhibitors may improve
cognitive outcomes through multifaceted mechanisms, including
enhanced cerebral metabolism, reduced neuroinflammation,
improved endothelial function, and direct neuroprotective effects
(14). This review explores the pathophysiological links between
T2D and cognitive impairment, examines the potential mechanisms
by which early intervention and personalized strategies confer
cognitive benefits, and discusses the clinical implications of these
findings for diabetes management and dementia prevention.

2 Evidence of cognitive impairment
associated with T2D

Cognitive impairment is a well-documented complication of
T2D, affecting memory, executive function, attention, and
processing speed (15). Additionally, the risk of developing
Alzheimer’s disease and other forms of dementia is approximately
twice as high in individuals with T2D (16). Moreover, the rate of
progression from MCI to dementia is 1.5 to 3.0 times higher in
patients with T2D than in those without T2D (17). The Rotterdam
Study and the Framingham Heart Study have demonstrated that
T2D is associated with a 50-100% increased risk of dementia (18,
19). The Health and Retirement Study provided evidence that
individuals with T2D had a 1.66-fold higher likelihood of
cognitive impairment without dementia, as compared to those
with normal cognition, among participants of European ancestry
(20). In the rural China, the prevalence of MCI in older individuals
with T2D was 53.48% (21). A systematic evaluation showed that
incidence of cognitive impairment in elderly patients with T2D in
China was 48%, with a higher incidence in population who were
female, with a lower education level, a low income, no spouse, and
living alone (22). A meta-analysis of T2D cases twelve years ago
reported an increase of 73% in the risk of all types of cognitive
impairment and 56% in the risk of AD in diabetic patients (23).
Biomarkers of AD and AD-related dementias (ADRD) play a
crucial role in the accurate diagnosis of AD and ADRD. In
longitudinal cohort of the Look AHEAD-Continuation study,
which included overweight or obese elderly with T2D, increasing
plasma levels of neurofilament light chain (NfL) and glial fibrillary
acidic protein (GFAP) were found to be associated with impaired
cognitive function, but AB4,/40 or pTau-181 were not associated
with cognitive decline (24).

3 Cause and risk factors linking T2D
to cognitive impairment

The underlying causes and risk factors linking T2D to cognitive
impairment involve a complex interplay of metabolic disturbances,
including chronic hyperglycemia and insulin resistance, which
collectively lead to vascular damage, reduced cerebral blood flow,
and microvascular complications, increasing the risk of stroke and
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white matter lesions (25). Additionally, prolonged high blood sugar
levels promote oxidative stress, neuroinflammation, and the
accumulation of advanced glycation end products (AGEs), which
impair neuronal function and accelerate neurodegeneration. Other
risk factors include obesity, hypertension, and dyslipidemia, which
are common in T2D and further exacerbate cognitive decline (26).
Poor glycemic control, longer diabetes duration, and recurrent
hypoglycemic episodes also contribute to structural brain changes,
such as hippocampal atrophy and cortical thinning. Genetic
predisposition and lifestyle factors like physical inactivity and
poor diet may further amplify the risk, highlighting the complex
interplay between metabolic dysfunction and cognitive
deterioration in T2D. It is as reflected by Figure 1.

3.1 Hyperglycemia

Chronically elevated blood glucose is a key factor linking T2D
to MCI, dementia, and AD (27). Data from the China Health and
Retirement Longitudinal Study (CHARLS) indicate that elevated
long-term mean HbAlc levels are significantly linked to an
increased risk of cognitive impairment (CI), particularly in the

10.3389/fendo.2025.1655768

domains of global cognition and episodic memory (28). Prolonged
exposure to high blood glucose levels induces oxidative stress,
triggers inflammatory responses, and facilitates the formation of
advanced glycation end products (AGEs), which cross-link proteins
and lipids, thereby impairing neuronal function, exacerbating
inflammation, and accelerating neurodegenerative processes (29).
Persistent hyperglycemia also disrupts Blood-Brain Barrier (BBB)
integrity, allowing harmful substances to enter the brain and trigger
neuroinflammation (30). Chronic hyperglycemia in T2D damages
small blood vessels, which reduces cerebral blood flow and leads to
white matter hyperintensities, impairing connectivity between brain
regions (31). Hyperglycemia may alter gene expression related to
synaptic plasticity and neurodegeneration (32).

3.2 Insulin resistance

Insulin crosses the BBB and binds to receptors in neurons,
supporting synaptic plasticity, memory formation, and glucose
metabolism. Insulin resistance is a hallmark of T2D and plays a
central role in cognitive decline (33). Insulin resistance in the brain
reduces glucose uptake and energy deficits, and then neurons

FIGURE 1
Causes and risk factors connecting T2D to cognitive impairment.

“‘c\'easing the rigk of g

Cause and risk factors
linking T2D to cognitive impairment

147) 40

Frontiers in Endocrinology

frontiersin.org


https://doi.org/10.3389/fendo.2025.1655768
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Chen et al.

become energy-deprived due to impaired glucose utilization and
synaptic plasticity (34). Neuronal insulin resistance disrupts long-
term potentiation (LTP) which is critical for learning and memory,
and decreases brain-derived neurotrophic factor (BDNF) resulting
in neurodegeneration (35). Moreover, insulin-degrading enzyme
(IDE) is the key molecular to clear both insulin and amyloid-3 (AB).
Hyperinsulinemia from insulin resistance competes for IDE, which
may contribute to reduce AP clearance leading to increasing
amyloid plaques (36). Insulin resistance also activates glycogen
synthase kinase-33 (GSK-3[), promoting tau phosphorylation
and neurofibrillary tangles (37). Furthermore, loss of insulin
signal in microglia leads to mitochondrial dysfunction, diminishes
the autophagy process, and promotes neuroinflammation. This
cascade of events contributes to the accumulation of pro-
inflammatory cytokines (such as IL-6, TNF-a), impaired AP
clearance, and accelerates the progression of AD (38-40). A case-
control study demonstrated that serum levels of IL-6 and high-
sensitivity C-reactive protein (hs-CRP) were significantly associated
with the risk of mild cognitive impairment (MCI) among Chinese
patients with T2D (41). Additionally, chronic insulin resistance
impairs endothelial function resulting in decreasing cerebral blood
flow and breakdown of the BBB, allowing toxins and inflammatory
molecules into the brain (42).

3.3 Vascular damage

Vascular damage is a critical pathway linking T2D to cognitive
impairment and dementia. Chronic hyperglycemia and insulin
resistance in T2D lead to endothelial dysfunction, BBB
disruption, and micro- and macrovascular damage, impairing
cerebral blood flow and promoting ischemia (43). Small vessel
disease manifests as white matter hyperintensities, microinfarcts,
and microbleeds, disrupting neural connectivity and accelerating
cognitive decline (44). Additionally, diabetes exacerbates cerebral
amyloid angiopathy (CAA) and atherosclerosis, increasing stroke
risk and compounding neurodegeneration (45). Neuroimaging
studies show that individuals with T2D exhibit greater white
matter lesions and brain atrophy, correlating with poorer memory
and executive function (46). Thus, vascular damage serves as a key
mediator between T2D and dementia, highlighting the importance
of early vascular risk factor management in diabetic patients.

3.4 Hypoglycemia

Severe or recurrent hypoglycemic episodes, often a side effect of
diabetes treatment, contributes to cognitive impairment in T2D
through multiple mechanisms (47). Data from the CHARLS cohort
also suggest that excessively low HbAlc levels, as well as greater
fluctuations in HbAlc, are associated with an increased risk of CI
(28). Severe hypoglycemic episodes can lead to acute neuronal
damage by depriving the brain of glucose, its primary energy
source, resulting in synaptic dysfunction, oxidative stress, and
even selective neuronal death, particularly in memory-related
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regions like the hippocampus (48). Recurrent hypoglycemia may
also impair cognitive reserve over time, accelerating
neurodegeneration and increasing dementia risk (49, 50).
Additionally, hypoglycemia-induced inflammation and blood-
brain barrier disruption further exacerbate cognitive decline.
Epidemiological studies show that individuals with T2D who
experience severe hypoglycemia have a higher risk of developing
dementia, suggesting a bidirectional relationship between poor
glycemic control and cognitive dysfunction (51-53). Therefore,
balancing glycemic targets to avoid both hyper- and
hypoglycemia is crucial for preserving brain health in
diabetes management.

3.5 Comorbidities

Comorbidities of T2D significantly contribute to cognitive
impairment through interconnected metabolic, vascular, and
inflammatory pathways. Hypertension, commonly coexisting with
T2D, exacerbates cerebrovascular damage by promoting small
vessel disease, white matter lesions, and microinfarcts, which
impair cognitive function (54, 55). Obesity and dyslipidemia drive
systemic inflammation and insulin resistance, further
compromising brain metabolism and increasing AP deposition
(28, 56-59). Diabetic nephropathy reduces toxin clearance and
promotes uremic encephalopathy, while peripheral neuropathy
may limit physical activity, worsening cerebral blood flow (60).
Sleep apnea, prevalent in T2D, induces chronic intermittent
hypoxia and oxidative stress, accelerating hippocampal atrophy
(61, 62). Depression, another frequent comorbidity, not only
diminishes cognitive reserve but also shares underlying
mechanisms with neurodegeneration, including hypothalamic-
pituitary-adrenal axis dysfunction (63, 64). Several studies have
suggested a causal relationship between depression and an
increased risk of developing T2D, with both major depressive
disorder and depressive symptoms showing a positive association
with T2D. However, the causal relationship between depression and
cognitive disorders in individuals with T2D remains to be further
investigated (65-67). Insulin resistance plays an important role in
the development of depressive symptom and cognitive decline in
individuals with T2D (68). Together, these comorbidities create a
synergistic assault on brain health, amplifying T2D’s direct
neurotoxic effects and substantially elevating dementia risk. This
highlights the importance of comprehensive, multi-system
management in preserving cognitive function in diabetic patients.

3.6 Shared genetic etiology underlying AD
and T2D

Emerging evidence reveals a shared genetic etiology between
AD and T2D, suggesting common biological pathways drive both
conditions (69). Genome-wide association studies (GWAS) have
identified overlapping risk loci, including APOE-g4 (which
influences lipid metabolism and amyloid clearance), CLU
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(involved in synaptic maintenance and glucose homeostasis), and
IDE (insulin-degrading enzyme, which clears both insulin and
amyloid-beta) (70, 71). Bioinformatics analysis of effective
biomarkers in type 2 diabetes with cognitive impairment and
aging indicates that the genes TP53 and IL1B may play a
potential role in influencing the progression of type 2 diabetes
associated with cognitive impairment and aging through the Lipid
and atherosclerosis, MAPK signaling, and fluid shear stress and
atherosclerosis signaling pathways (72). Polygenic risk scores for
T2D correlate with higher AD incidence, while Mendelian
randomization studies support a causal link between insulin
resistance and neurodegeneration (73). Shared mechanisms
include impaired insulin signaling in the brain, mitochondrial
dysfunction, and chronic inflammation, which exacerbate amyloid
and tau pathology. These findings highlight the role of metabolic
dysregulation in AD pathogenesis and suggest that T2D and AD
may represent different manifestations of a broader “metabolic-
cognitive syndrome,” opening avenues for targeted therapies that
address both conditions.

3.7 Gut microbiota and AD in T2D

Microbial balance plays a crucial role in maintaining glucose
homeostasis and safeguarding cognitive function. Growing evidence
has shown that an imbalance in gut microbiota is linked to the
pathogenesis of T2D (74-76). Furthermore, it suggests that gut
microbiota affects cognitive impairment associated with T2D via the
gut-brain axis (77, 78). In the Hong study, it was reported that patients
with diabetic cognitive dysfunction exhibited a reduced abundance of
Bifidobacterium and unnamed bacteria RF39, along with an increased
abundance of Peptidococcus and Leucococcus (79). In the cognitive
impairment db/db diabetic mouse model, fecal microbiota analysis
revealed that species abundance and diversity in db/db mice were
significantly higher compared to those in the control group (80). The
microbiota-gut-brain axis includes neural, immune, endocrine, and
metabolic pathways, but the communication system is not fully
understood. Recent studies suggest that microbiota dysbiosis and
T2D caused by long-term high-fat diet (HFD) increase permeability
of the gut and blood-brain barrier mediated neurodegenerative
disorders (81-83). In addition, diabetic cognitive impairment is
associated with neuroinflammation induced by imbalance of the gut
microbiota (84, 85).

4 Molecular mechanisms underlying
cognitive impairment in T2D

The pathogenesis of cognitive decline in T2D is unclear and the
exact molecular mechanisms are complex and multifactorial.
Emerging research reveals that T2D-induced cognitive
dysfunction involves intricate molecular pathways that disrupt
neuronal homeostasis and synaptic plasticity (86). At the cellular
level, chronic hyperglycemia activates the polyol pathway leading to
advanced glycation end products (AGEs) formation. On the one
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hand, AGEs reduced the levels of O-Linked [3-N-acetylglucosamine
(O-GlcNAc) transferase (OGT), thereby downregulating O-
GlcNAcylation and inducing tau protein hyperphosphorylation,
which is implicated in diabetes-associated cognitive dysfunction
(87). On the other hand, AGEs crosslink with the receptor of AGEs
(RAGE), activating NF-xB and NLRP3 inflammasomes,
perpetuating a vicious cycle of neuroinflammation (88).
Moreover, this process impairs cerebral microvascular integrity
and induces synaptic mitochondrial dysfunction (89, 90).

IDE is an atypical zinc-metalloprotease that plays a key role in
regulating insulin and A levels in the brain and peripheral tissues. It
degrades both insulin and AP. Hyperinsulinemia refers to excess
insulin levels in the blood due to insulin resistance. High insulin levels
and insulin resistance are suggested to be associated with reduction of
IDE (91). The cellular and molecular mechanisms underlying the
relationship between hyperinsulinemia and IDE expression remain
poorly understood. The novel insights into the regulation of IDE
reveal that miR-7, miR-125, miR-490 and miR-199 downregulate
IDE expression at the post-transcriptional level in response to high
insulin levels. In addition, the authors found that IDE contains
multiple potential binding sites for several RNA binding proteins
(RBP) (92, 93). Furthermore, insulin receptor substrate-1 (IRS-1)
proteins become less active due to the development of
hyperinsulinemia, which arises from insulin resistance as a result of
the reduced expression of insulin receptors (IR). The inactive of IRS1
leads to the down-regulation of the phosphoinositide 3-kinase
(PI3K)/protein kinase B (Akt) pathway and the up-regulation of
GSK-3f activity, and promotes tau hyperphosphorylation and AB
accumulation in the brain (37, 94, 95).

The dentate gyrus (DG) of the hippocampus is a crucial brain
region involved in memory encoding. Tang et al. found that
neuronal ferroptosis in the hippocampus contributes to the
initiation and development of learning impairment and memory
processes in T2D mice (96, 97). Recent studies indicate that diabetes
causes hippocampal neuronal damage and loss due to increased
iron concentrations, MDA, and ROS levels, along with decreased
GSH and GPX4. Furthermore, the underlying mechanism of
neuronal ferroptosis is associated with the inhibition of Nrf2 in
the hippocampus induced by T2D (88, 98). In recent years, a
growing research interest in microbiota-gut-brain with T2D has
been demonstrated that the gut microbiota plays an important role
in the development of metabolic disorders. Specially, in the central
nervous system (CNS), suggested by preclinical studies indicate that
the restoration of intestinal microbiota may enhance cognitive
function impaired by diabetes and ameliorate hippocampal
neuron ferroptosis (77, 99).

In the latest study, authors identified that the miR-9-3p cargo in
adipose tissue-derived extracellular vesicle (EVs) obtained from
high-fat diet-fed mice or patients with T2D significantly suppressed
BDNF levels in primary neurons, thereby inducing synaptic damage
associated with obesity-related insulin resistance (33).

The large-scale proteomic analysis conducted as part of the UK
Biobank Pharma Proteomics Project demonstrated that a 51-
protein model exhibited excellent accuracy in predicting the 15-
year risk of dementia among individuals with T2D. Furthermore,
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elevated levels of Rho guanine nucleotide exchange factor 12
(ARHGEF12) was specifically linked to an increased risk of
dementia. Pathway analysis revealed that elevation of IL6-JAK-
STAT3 signaling pathway was involved in the development of
dementia in T2D patients. Additionally, dysregulation of fatty
acid was identified as a specific mechanism associated with the
pathogenesis of AD in the context of T2D (100). These results may
have potential applications in early risk stratification and targeted
interventions, and may indicate possible therapeutic targets.
Overall, these evidences provide these molecular perturbations
collectively drive synaptotoxicity, white matter degeneration, and
accelerated amyloidogenesis, positioning T2D as a potent modifier
of Alzheimer’s pathology (Figure 2). Therapeutic targeting of these
pathways may offer neuroprotection in diabetic cognitive decline.

5 Evidence from intervention of
cognitive impairment in T2D

Cognitive dysfunction is often unrecognized in individuals with
T2D. Cognitive dysfunction in T2D can have significant

10.3389/fendo.2025.1655768

consequences on an individual’s overall health, quality of life, and
disease management. Therefore, there is an urgent need to find
effective therapeutic strategies to improve cognitive function among
patients with T2D (Figure 3).

5.1 Glycemic control and monitoring

A growing body of clinical and experimental evidence
demonstrates that optimal glycemic control may help prevent or
delay cognitive decline in T2D, though the relationship is complex
and influenced by treatment strategies (101-103). Longitudinal
studies show a U-shaped association, where both hyperglycemia
(HbA1c>8%) and recurrent severe hypoglycemia accelerate
cognitive impairment (104, 105). The ACCORD MIND trial
found that intensive glycemic control (HbAlc <6.0%) did not
significantly improve cognition but increased hypoglycemia risk
(106). Meta-analyses suggest HbA ¢ variability (fluctuations) is an
independent predictor of dementia risk, possibly due to oxidative
stress (107). The Look AHEAD trial (focused on weight loss +
glycemic control) showed no significant cognitive benefit, possibly
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due to limited follow-up (108). The DCCT-EDIC study (Type 1
diabetes) found that tight glycemic control initiated early in the
disease course has been associated with better long-term cognitive
outcomes, where early intensive glucose management reduced later
cognitive decline by 30-40% (109). Some RCT's suggest metformin
may reduce dementia risk, while insulin therapy in older adults may
worsen cognition if hypoglycemia occurs (110, 111).

Strong evidence indicates that proactive monitoring and early
intervention in patients with T2D can significantly delay or mitigate
cognitive impairment (112, 113). Longitudinal studies demonstrate
that regular cognitive screening in diabetic populations enables
earlier detection of subtle deficits, allowing for timely interventions
before significant neurodegeneration occurs (114, 115).

The 2025 American Diabetes Association (ADA) clinical
guidelines recommend that cognitive capacity should be monitored
throughout the life span for all diabetic patients (116). The Mini-
Mental State Examination (MMSE) and the Montreal Cognitive
Assessment (MoCA) are the two most widely used assessing tools
for cognitive function, and recommended by the guideline (117).
Nonetheless, the MMSE and MoCA tests exhibit low sensitivity and
specificity in detecting early stages of MCI. In recent years, retinal

Frontiers in Endocrinology

microperimetry has emerged as a valuable tool for monitoring
cognitive function in diabetic patients (118, 119). Continuous
glucose monitoring (CGM) technologies have proven particularly
valuable, as they minimize glycemic variability - an independent risk
factor for cerebral small vessel disease and cognitive dysfunction (120,
121). These findings underscore the importance of incorporating
cognitive assessments into standard diabetes care protocols and
implementing preventive strategies at the earliest detectable stage of
metabolic dysfunction to optimally preserve brain health.

5.2 Lifestyle intervention

A robust body of research demonstrates that structured lifestyle
interventions can significantly mitigate cognitive decline in
individuals with T2D. These interventions primarily target diet,
physical activity, weight management, and cognitive training,
working through metabolic, vascular, and neuroprotective
pathways (122, 123).

Emerging research highlights that targeted dietary interventions
can significantly influence cognitive outcomes in individuals with
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T2D by modulating metabolic, vascular, and neurodegenerative
pathways (124). Adherence to a Mediterranean diet, rich in
polyphenols and omega-3 fatty acids, has been associated with
improved memory and slower hippocampal atrophy, likely due to
its anti-inflammatory and antioxidant properties (125, 126).
Ketogenic diets and intermittent fasting enhance neuronal energy
metabolism through ketone bodies and autophagy, improving
cognitive performance in insulin-resistant individuals (78, 127,
128). Polyphenol-rich foods, such as berries and cocoa, further
protect against neurodegeneration by modulating oxidative stress
and neuroinflammation (129). Clinical trials, including
PREDIMED and COSMOS, underscore the cognitive benefits of
these dietary strategies, particularly in at-risk populations like
APOE-e4 carriers (130, 131). Together, these findings advocate
for personalized, nutrient-dense dietary interventions as a viable
approach to delay or prevent cognitive decline in T2D.

Emerging evidence demonstrates that physical exercise
significantly attenuates cognitive impairment in T2D through
multifaceted physiological mechanisms (132). Both aerobic and
resistance training have been shown to improve memory,
executive function, and processing speed in T2D patients, with
neuroimaging studies revealing increased hippocampal volume and
enhanced cerebral blood flow following regular exercise. Aerobic
activities like brisk walking and cycling elevate brain-derived
neurotrophic factor (BDNF) levels, promoting neurogenesis and
synaptic plasticity, while resistance training reduces systemic
inflammation and improves insulin sensitivity in brain tissue
(133, 134). Combined exercise regimens appear particularly
effective, as demonstrated in clinical trials such as Look AHEAD,
where greater physical activity was associated with slower cognitive
decline over time (108). Exercise also mitigates key pathological
processes in T2D-related cognitive impairment, including reducing
oxidative stress, improving cerebrovascular function, and
decreasing AP accumulation (135, 136). In a Chinese randomized
clinical trial found that Tai Chi Chuan improved global cognitive
function more effectively than fitness walking in older adults with
type 2 diabetes and MCI (137). These neuroprotective effects appear
dose-dependent, with current guidelines reccommending at least 150
minutes of moderate-intensity exercise weekly for optimal cognitive
benefits (138). The findings underscore structured physical activity
as a potent, non-pharmacological intervention to preserve brain
health in diabetic populations.

Growing evidence suggests that cognitive training and social
engagement interventions can help mitigate cognitive impairment
in individuals with T2D by enhancing neural resilience and
compensatory mechanisms (139). Computerized cognitive
training programs targeting memory, attention, and executive
function have demonstrated efficacy in improving processing
speed and working memory in T2D patients, with neuroimaging
studies showing increased functional connectivity in prefrontal and
parietal regions (140, 141). Social engagement, including group
activities and interactive cognitive stimulation, appears to provide
additional benefits by reducing stress-related cortisol exposure
while promoting cognitive reserve through complex social
interactions (142). The Finnish Geriatric Intervention Study
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(FINGER) demonstrated that multidomain interventions
combining cognitive training, social engagement, and lifestyle
modifications significantly reduced dementia risk in at-risk
populations, including those with metabolic disorders (143, 144).
These approaches may be particularly valuable for T2D patients as
they address both the direct neurological consequences of
hyperglycemia and the psychosocial factors that often accompany
chronic disease. While optimal protocols remain under
investigation, current evidence supports incorporating structured
cognitive exercises and social activities into comprehensive care
plans for diabetes-related cognitive protection.

5.3 Pharmacological treatment

Emerging evidence suggests that certain pharmacological
treatments for T2D may also help prevent or mitigate cognitive
impairment, though findings remain nuanced. Metformin, the first-
line antidiabetic medication, has demonstrated neuroprotective
properties in observational studies, with some evidence linking its
use to reduced dementia risk, potentially through AMPK activation
and reduced neuroinflammation (145, 146). A case-control study of
patients with type 2 diabetes (T2D) from the Memory Clinic at
Hebei General Hospital indicates that long-term use of metformin
is associated with reduced rates of cognitive impairment and a
decreased burden of cerebral small vessel disease among patients
with T2D (147). Data analysis from the global AD Neuroimaging
Initiative (ADNI) study indicated that metformin treatment in T2D
patients was associated with a positive effect on cognitive
performance (148).

GLP-1 receptor agonists (GLP-1RAs, e.g., liraglutide,
semaglutide) show promising candidates for dual glycemic and
cognitive management, with preclinical studies demonstrating their
ability to reduce AP accumulation, enhance synaptic plasticity,
BDNF modulation, and improve cerebral blood flow (77, 149,
150). While not currently approved for cognitive outcomes in
T2D, in a post hoc analysis of three cardiovascular outcome trials
(LEADER, SUSTAIN 6, and PIONEER 6), patients with GLP-1RAs
treatment represented a statistically significant 53% lower risk of all-
cause dementia diagnosis compared to patients with placebo (149).
In an exploratory analysis of the REWIND trail, patients with long-
term treatment with the GLP-1RA dulaglutide also demonstrated
reduction of cognitive decline (151). In the ELAD study, patients on
liraglutide maintained greater temporal lobe and total cortical
volume compared to those on placebo, along with better cognitive
function preservation (152). The ongoing evoke and evoke+ are the
first trials investigating the efficacy, safety, and tolerability of oral
semaglutide in early-stage symptomatic AD (153). If both trails are
successful, semaglutide may be considered for future treatment of
AD. Conversely, insulin therapy in elderly patients with T2D
requires careful consideration, as it may increase hypoglycemia-
related cognitive risks.

SGLT?2 inhibitors are medications used to manage T2D by
preventing glucose absorption in renal tubules. They may provide
cerebrovascular protection by reducing oxidative stress and

frontiersin.org


https://doi.org/10.3389/fendo.2025.1655768
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Chen et al.

improving endothelial function, although direct cognitive benefits
remain under investigation (154, 155). The latest evidence
demonstrates that SGLT2 inhibitors may offer cognitive benefits
in patients with T2D through multiple protective mechanisms (12,
154, 156). Clinical observational studies report a 10-30% lower
incidence of dementia among SGLT2 inhibitor users compared to
other antidiabetic medications, with particular benefits seen for
vascular cognitive impairment (157-159). The EMPA-REG
OUTCOME trial’s subanalysis found empagliflozin-treated
patients had slower progression of cognitive decline, potentially
linked to its hemodynamic effects and ketone-mediated
neuroprotection (160). While dedicated cognitive endpoint trials
are ongoing, current evidence positions SGLT2 inhibitors as
promising dual-purpose agents for both glycemic control and
potential cerebrovascular protection in T2D, though their precise
neurocognitive effects require further validation through
randomized controlled trials with comprehensive
cognitive assessments.

SGLT?2 inhibitors may exert cognitive benefits in T2D through
multiple interconnected molecular mechanisms. By inducing mild
ketosis, these agents provide alternative cerebral energy substrates
(B-hydroxybutyrate) that bypass insulin-resistant glucose
metabolism, supporting neuronal function during metabolic stress
(161). Their systemic metabolic effects including activation of
AMPK, enhanced cerebral ketone metabolism, a shift in
microglial activation from the pro-inflammatory phenotype to the
anti-inflammatory phenotype, and reduced oxidative stress,
contribute to the mitigation of neuroinflammation through the
suppression of the NLRP3 inflammasome and AGE-RAGE
signaling pathways (162, 163). At the cellular level, SGLT2
inhibitors may exert neuroprotective effects through increasing
brain-derived neurotrophic factor (BDNF) expression,
ameliorating mitochondrial dysfunction, while inhibiting-
mediated tau phosphorylation (pTau) (164-167). Emerging
evidence also suggests gut microbiome modulation, with
increased production of neuroprotective short-chain fatty acids
(168, 169). Additionally, SGLT2 inhibitors attenuated pTau
accumulation by modulating brain insulin signaling through the
angiotensin-converting enzyme 2/angiotensin (1-7)/mitochondrial
assembly receptor axis in a T2D-AD mouse model (170). These
pleiotropic effects position SGLT2 inhibitors as promising
multitarget therapeutic agents for addressing diabetes-related
cognitive impairment; however, additional clinical validation is
required to confirm their efficacy and safety.

5.4 Management of comorbidities

The bulk of the evidence proves that comprehensive
management of T2D comorbidities significantly improves
cognitive outcomes by addressing multiple interconnected
pathological pathways. Tight glycemic control and concurrent
management of hypertension with ACE inhibitors or ARBs
preserves cerebrovascular integrity, while statin therapy may
mitigate both vascular cognitive impairment and
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neurodegenerative pathology through pleiotropic effects (171-
173). Treatment of obesity with lifestyle interventions or GLP-
1RAs not only improves metabolic parameters but also enhances
neurogenesis and reduces neuroinflammation (174, 175).
Additionally, addressing sleep apnea with CPAP therapy
improves cerebral oxygenation, and antidepressant treatment for
comorbid depression helps restore neurotrophic factor signaling
(176). Multidomain interventions that simultaneously target
glycemic control, vascular risk factors, and lifestyle modifications
- as demonstrated in trials like the FINGER study - show
particularly robust cognitive benefits, suggesting that a holistic
approach to T2D management may be more effective than
isolated therapies for preserving brain health in diabetic
patients (177).

5.5 Remote digital technologies for
interventions

Remote digital technologies, often referred to as “Digital
Health” or “eHealth”, provide scalable, accessible, and cost-
effective solution for addressing cognitive decline in patients with
diabetes (178). These technologies utilize smartphones, tablets,
wearable devices, and web-based platforms to provide cognitive
assessment, training, monitoring, and comprehensive interventions
directly to patients in their home environments (179-184). Remote
digital technology for diabetic cognitive care intervenes at
multiple levels.

To facilitate the early identification of subtle cognitive changes
and to monitor their progression over time without the necessity for
frequent, in-person neuropsychological assessments, Computerized
Cognitive Tests and Digital Biomarkers are employed to evaluate
and track cognitive alterations (185, 186). Computerized Cognitive
Tests are validated, game-like assessments conducted on tablets or
computers that evaluate memory, attention, executive function, and
processing speed (187). These tests often demonstrate greater
sensitivity to change compared to traditional paper-and-pencil
assessments (188). Digital biomarkers assess cognitive states by
utilizing passive data gathered from smartphones and wearable
devices (189). This includes metrics such as keystroke dynamics,
voice analysis, and gait analysis.

To enhance or maintain cognitive function, structured and
repetitive exercises that promote neuroplasticity are utilized. This
includes Brain Training Apps, Serious Games (Gamification), and
Virtual Reality (VR) for cognitive training and rehabilitation
(Cognitive Therapeutics) (190, 191). Brain training apps like
BrainHQ, CogniFit, and Lumosity provide games for specific
cognitive areas that can be prescribed and monitored remotely by
clinicians (192-194). Serious Games (Gamification) enhance
patient engagement, leading to better adherence to
cognitive exercises.

To provide human support, guidance, and accountability, video
conferencing, secure messaging platforms, and remote patient
monitoring (RPM) platforms are integrated into telehealth and
remote coaching care planning (195, 196). Patients can have virtual
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consultations with endocrinologists, neurologists, diabetes
educators, or neuropsychologists via video conferencing. Secure
Messaging Platforms provide asynchronous communication for
patients and clinician (197). Clinicians aggregate data from
CGMs, wearables, and cognitive apps via RPM platforms,
enabling care teams to monitor a patient’s overall health and
intervene proactively.

In summary, Remote digital technologies signify a paradigm
shift in the management of diabetes-associated cognitive decline.
These technologies facilitate a transition from a reactive, clinic-
centric approach to a proactive, continuous, and patient-centered
care model. By integrating cognitive training, glycemic monitoring,
and lifestyle coaching into a unified remote platform, we gain a
powerful means to not only enhance diabetes management but also
safeguard brain health and preserve patients’ quality of life. The
next step involves validating these tools and embedding them
seamlessly into standard clinical practice.

5.6 A multidisciplinary team intervention

Diabetes-associated cognitive decline results from a complex
interplay of metabolic, vascular, inflammatory, and comorbid factors.
Therefore, no single healthcare professional can effectively address all
these domains. A multidisciplinary team (MDT) intervention and
collaborative care model are crucial components in effectively
addressing the issue (198-200). An effective MDT for this population
includes an endocrinologist, a neurologist, a certified diabetes educator,
a registered dietitian nutritionist, a pharmacist, a psychologist, a care
manager, a physical therapist, and a family member, all working within
an integrated system of care. An endocrinologist initiates annual
cognitive screening (using tools like MoCA or Mini-Cog) in high-
risk T2D patients. When abnormal results are identified, a referral to
neurology for formal diagnostic evaluation is initiated, and the rest of
care team is alerted. The MDT then convenes to review the patient’s
case and develops a unified, patient-centered care plan. The nurse care
manager routinely monitors patient outcomes, such as HbAlc levels
and hypoglycemic events, through a shared electronic health record
system and conducts follow-ups to ensure the effectiveness of the care
plan. The social worker and psychologist actively collaborate with
caregivers, offering comprehensive training, essential resources, and
emotional support to enhance their capacity in providing care.

In summary, managing cognitive impairment in T2D
exemplifies the success of collaborative care. An MDT model
effectively addresses the biological, psychological, and social
complexities of the disease, breaking the cycle and enabling
patients to live safer, higher-quality lives. It represents the
standard that healthcare systems should aim for.

6 Conclusion

Cognitive impairment in T2D is driven by multiple interrelated
mechanisms, including chronic hyperglycemia, insulin resistance,

Frontiers in Endocrinology

10

10.3389/fendo.2025.1655768

neuroinflammation, oxidative stress, and vascular dysfunction,
which collectively contribute to neurodegeneration and cognitive
decline. Addressing these impairments requires a comprehensive
management strategy that combines optimal glycemic control
(prioritizing medications with potential neuroprotective benefits,
such as GLP-1RAs and SGLT2 inhibitors), lifestyle modifications
(e.g., aerobic exercise, Mediterranean diet, and cognitive training),
and aggressive management of cardiovascular risk factors
(hypertension, dyslipidemia). Emerging therapies targeting
neuroinflammation, mitochondrial dysfunction, and insulin
signaling in the brain hold promise but require further clinical
validation. Artificial intelligence (AI) will be utilized to personalize
cognitive training programs, predict cognitive decline through
digital biomarkers, and deliver adaptive coaching. Socially
Assistive Robots will provide companionship to older adults with
more advanced impairments and remind them to engage in
cognitive exercises or take their medication. Future research
should focus on identifying early biomarkers, developing
personalized interventions, and conducting long-term trials to
establish evidence-based approaches for preventing and treating
diabetes-related cognitive decline. A proactive, multidisciplinary
approach is essential to mitigate cognitive deterioration and
improve quality of life in T2D patients.
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