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Prediction of malignancy
risk in Bethesda III nodules:
development and validation
of multiple machine
learning models
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and Qingqing He2*

1Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong, China,
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Force, Jinan, China, 3Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,
4Department of Pathology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
Objective: To develop and validate a machine learning (ML)-based prediction

model of Bethesda III nodules and create a nomogram based on the best model.

Methods: We collected data on patients with Bethesda III nodules who were

admitted between January 2020 and June 2024, including 276 Bethesda III

nodules from 7371 patients who underwent ultrasound-guided fine needle

aspiration (US-FNA). Clinical, ultrasonographic, cytological, laboratory, and

molecular data were collected and randomly split into training and validation

cohorts at a ratio of 7: 3. Six feature selection methods and ML algorithms—

Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Extreme

Gradient Boosting (XGB), Support Vector Machine (SVM), and K-Nearest

Neighbors (KNN)—were evaluated. A nomogram was then created based on

the best-performing model.

Results: The study cohort included 276 Bethesda III nodules with a final

malignancy rate of 65.2% (180/276). LR exhibited the highest area under the

receiver operating characteristic (ROC) curve (AUC: 0.823) in cross-validation of

the validation set. Additionally, the calibration curves and Decision Curve Analysis

(DCA) results were also favorable. Themodel included BRAF, composition, shape,

orientation, and the thyroid imaging reporting and data system (TI-RADS). The

nomogram exhibited robust discrimination (AUC: 0.846 in the validation set),

calibration, and clinical applicability across the two datasets after 500 bootstraps.

Conclusion: Among the six ML algorithms, the LR algorithm demonstrated the

best performance. A nomogram was developed to predict the malignancy risk in

Bethesda III nodules. This nomogram may serve as a valuable tool to reduce

diagnostic uncertainty and provide personalized risk stratification for patients.
KEYWORDS

thyroid nodules, risk of malignancy, atypia of undetermined significance, machine
learning, prediction model
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2025.1655828/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1655828/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1655828/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1655828/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1655828/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1655828&domain=pdf&date_stamp=2025-08-29
mailto:heqingqing@yeah.net
mailto:weardzp@126.com
https://doi.org/10.3389/fendo.2025.1655828
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1655828
https://www.frontiersin.org/journals/endocrinology


Li et al. 10.3389/fendo.2025.1655828
1 Introduction

Thyroid nodules affect approximately 25% of the general

population, making them a prevalent clinical condition. The

widespread use of high-resolution ultrasound has significantly

increased the detection rate of thyroid nodules, with 65% of

individuals identified with nodules during ultrasound

examinations (1, 2). Although most of these nodules are benign,

it remains critical to accurately distinguish malignant lesions to

avoid overtreatment and ensure timely intervention. The Bethesda

System for Reporting Thyroid Cytopathology (TBSRTC)

categorizes fine needle aspiration results into six classifications: (I)

non-diagnostic; (II) benign; (III) atypia of undetermined

significance (AUS); (IV) follicular neoplasm; (V) suspicious for

malignancy; and (VI) malignant. Bethesda III nodules present

consistent diagnostic challenges among these categories (3). The

frequency of Bethesda III nodules diagnoses varies significantly

across laboratories, ranging from 8.6% to 25.3%. While the

Bethesda system estimates the malignancy risk for Bethesda III

nodules to range from 13% to 30%, clinical data suggest that the

actual malignancy rate may be higher, between 23.5% and 40% (4–

7). The complexity and uncertainty of Bethesda III nodules

underscore the urgent need for comprehensive studies to identify

preoperative predictors for these nodules.

Preoperative prediction of the benign or malignant nature of

Bethesda III nodules necessitates a comprehensive evaluation that

incorporates ultrasound features, molecular testing, thyroid

function assessments, and demographic factors such as age and

gender. While these factors provide some predictive value for the

malignancy of Bethesda III nodules, they each have inherent

limitations. For example, the BRAF gene is a highly specific

biomarker for papillary thyroid carcinoma (PTC), with a

malignancy risk of 98.9% to 100%. However, its mutation rate is

only 35% to 77% (8–10), and malignancy is particularly difficult to

exclude in follicular subtype Bethesda III nodules when assessed in

isolation (11). Molecular testing using a 12-gene panel can improve

the diagnostic accuracy of Bethesda III nodules by detecting key

mutations such as BRAF, TERT promoter, NRAS/HRAS/KRAS,

PIK3CA, AKT1, RET fusions, NTRK fusions, and PAX8-PPARg.
Bethesda III nodules with negative genetic mutations from this

panel exhibit a 6% malignancy risk, with less than a 1% risk of

cancer spreading beyond the thyroid (12, 13). However, the high

cost of the 12-gene panel limits its broader application in China.

Thus, a combined approach integrating demographic, imaging, and

molecular data may enhance diagnostic accuracy. To our

knowledge, there are still few studies specifically addressing the

prediction of malignancy risk in Bethesda III nodules (14–16).

Machine learning is the scientific study of algorithms and

statistical models that enable computers to perform specific tasks

without explicit programming, offering notable advantages in the

field of thyroid surgery (17). Emerging evidence suggests

multimodal GPTs may improve diagnostic accuracy through

integrated data analysis (18–20). Radiomics has recently

demonstrated effectiveness in automating thyroid nodule

classification and risk stratification (16). Compared to traditional
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logistic regression models, ML excels in handling complex clinical

data, facilitating the development of predictive tools that, in specific

cases, outperform conventional statistical models (21). Although AI

research in thyroidology continues to advance, there is limited

exploration focused on the most clinically challenging Bethesda III

nodules. Recent studies have nevertheless achieved promising

results in predicting malignancy for these nodules using machine

learning. Cao et al. (14) developed a nomogram with 0.80 AUC by

comparing machine learning methods to logistic regression,

whereas Zhong et al. (16) reported 0.823 AUC but with narrower

applicability. Our study employs machine learning algorithms to

integrate multidimensional data, including ultrasound features,

clinical parameters, and molecular biomarkers, to develop a

personalized malignancy risk prediction model for Bethesda III

nodules. Through systematic comparison of advanced algorithms

with LR, we aim to develop a visual decision support tool that

reduces diagnostic uncertainty, prevents unnecessary surgeries, and

provides personalized risk stratification for patients.
2 Materials and methods

2.1 Study cohort

This retrospective observational study was approved by the

960th Hospital of the PLA Joint Logistics Support Force Research

Ethics Committee (No. 2024-171). Research participants were

performed in accordance with the Declaration of Helsinki, and

each patient provided written informed consent. All eligible patients

were informed about the use of their data for study and had the

option to decline to participate (22).

This study included patients with thyroid nodules diagnosed as

Bethesda III nodules based on initial FNA between January 2020

and June 2024. Final diagnoses were confirmed through repeat

biopsies, 12-gene testing, or surgery (23). Inclusion criteria

included: (1) thyroid nodules classified as Bethesda III on FNA

cytology; (2) preoperative ultrasound, molecular testing, and

thyroid function tests; (3) patients underwent thyroidectomy; (4)

at least one repeat FNA on the same Bethesda III nodule within one

year; (5) 12-gene panel testing. Exclusion criteria included: (1) other

thyroid cancer types, such as follicular carcinoma or medullary

thyroid carcinoma; (2) patients lacking laboratory, imaging, or

pathological data; (3) uncertain repeat FNA results; (4) any

mutations detected in the 12-gene test; (5) patients without at

least six months of follow-up after repeat FNA or 12-gene testing.

Patients were randomly assigned to a training set and a validation

set in a 7:3 ratio. The training set was used to develop models with

various machine learning algorithms, and the validation set was

used to evaluate model performance.
2.2 Clinical features and data collection

Data for the variables assessed in this study were collected from

patients’ hospitalization electronic medical records (EMRs),
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including basic patient information, thyroid imaging reporting and

data system, cytological assessments, molecular testing following

US-FNA, laboratory indicators (within one month before surgery)

and postoperative pathological data. Basic patient information

included age and sex. Ultrasound features of thyroid nodules

were analyzed using TI-RADS terminology, including size,

composition, echogenicity, margin, shape, echogenic foci, halo,

orientation, location, color Doppler flow imaging (CDFI) pattern,

echotexture, posterior features, cervical lymph nodes and solitary

nodule (24). The largest transverse, anteroposterior, and vertical

diameters of all nodules were recorded, with the largest of these

three measurements used to assess nodule size. Additional features

of the nodule were recorded according to C-TIRADS. C-TIRADS

classified the nodules by assigning points for composition,

echogenicity, shape, margin, and echogenic foci to determine the

TIRADS level. Cervical lymph nodes were considered abnormal if

they exhibited any of the following features: (a) loss of central hilar

echo, (b) cystic change, (c) calcification, (d) cortical

hyperechogenicity, (e) increased and irregular vascularity, or (f)

cervical lymphadenopathy. Two radiologists reviewed and

documented all sonographic characteristics of the thyroid

nodules. Disagreements were resolved through discussion or

consultation with a third radiologist. In cytological assessments

and molecular testing, cytologists examined the cells and cellular

structures according to the second edition of the Bethesda System

for Reporting Thyroid Cytopathology (3). Bethesda III cases were

reviewed and categorized into the following subtypes: (1) AUS-

nuclear atypia: Includes focal nuclear atypia or mild but extensive

nuclear atypia; (2) AUS-other: Includes architectural atypia (often

sparsely cellular samples predominantly composed of

microfollicles) and Hurthle cell atypia (oncocytic features). Two

molecular tests were available at our institution: BRAF and a twelve-

gene molecular panel. Patients underwent twelve-gene panel

testing, which included BRAF, RAS (NRAS, HRAS, KRAS),

PIK3CA, AKT1, RET, CCDC6-RET, NCOA4-RET, TP53, ETV6-

NTRK3, TPM3-NTRK1, TERT, and PAX8-PPARG promoters.

Laboratory indicators obtained included thyroid stimulating

hormone (TSH), free thyroxine (FT4), free triiodothyronine

(FT3), thyroglobulin antibody (TgAb), thyroid peroxidase

antibody (TPOAb), and thyroglobulin (Tg) levels. All predictive

factors were derived from objective data and image archiving in

the EMRs.
2.3 Assessment of study outcomes

The definitive diagnosis of malignant tumors was confirmed

through histopathological analysis of surgically excised tissue or

repeated fine-needle aspiration biopsies with malignant results

(Bethesda categories V or VI). In contrast, benign nodules were

diagnosed based on one of the following criteria: (1)

histopathological confirmation from surgically excised specimens,

(2) absence of mutations in a 12-gene panel, or (3) at least one

benign FNA result (Bethesda II) from repeated biopsies, with no

subsequent malignant findings. All patients who did not undergo
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surgical intervention were followed up with ultrasonography for at

least six months to assess any suspicious changes in the nodules.

Histopathological results were independently reviewed by two

experienced pathologists, and any discrepancies were resolved

through consultation with a third pathologist.
2.4 Sample size calculation

We calculated the required sample size using the events per

variable (EPV) metric, a widely recognized method in statistical

analysis (25–27). We also followed the 4-step procedure proposed

by Riley et al. (28) to calculate the required sample size (29).

According to guidelines, the malignancy rate of Bethesda III

nodules typically ranges from 13% to 30% based on follow-up of

surgically resected nodules (3). Since we intended to include

patients who had not undergone surgery, the expected proportion

of the endpoint event was estimated at 0.15. The calculation process,

formulas, and results are shown in Supplementary Table S2.
2.5 Data preprocessing

Statistical analyses were conducted using SPSS 25.0 software

and R (version 4.4.2; R Foundation, Vienna, Austria), with a

significance level set at p < 0.05. The “mice” package in R was

used to assess the missing data mechanism, and the VIM package

was used for data visualization. Multiple imputation was used to

handle missing data, with 10 imputations performed based on the

established MAR mechanism, as recommended by standard

guidelines. The Multiple Imputation by Chained Equations

(MICE) method was used for imputation, implemented through

the “mice” package in R. The imputation model with the lowest

Bayesian Information Criterion (BIC) was chosen for data

optimization. Continuous variables were imputed using predictive

mean matching, categorical variables using logistic regression, and

multinomial variables using multinomial logistic regression. All

relevant covariates, including predictors, outcome variables, and

other variables not included in the predictive model, were

incorporated into the imputation model to capture the

relationships among the variables.
2.6 Selection of variables

Supplementary Figure S1 presents the complete study flowchart.

Before constructing the predictive model, six feature selection

methods were applied to mitigate the high correlation between

predictor variables and improve both the predictive accuracy and

interpretability of the model. These methods were chosen based on

their proven effectiveness in handling high-dimensional data and

identifying the most relevant predictor variables in predictive

modeling. In clinical prediction models, the combined use of

multiple variable selection methods can compensate for the

limitations of individual approaches, thereby enhancing the stability
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of variable selection and the predictive performance of the model

(30, 31). The feature selection methods used include:
Fron
1. Stepwise Regression (SR): This method uses a stepwise

selection mechanism to dynamically adjust explanatory

variables in the model based on hypothesis testing results,

effectively extracting core influencing factors while

alleviating collinearity issues. We implemented three

variations of stepwise regression: forward selection (FS),

backward selection (BS), and bidirectional elimination (BE).

2. Least Absolute Shrinkage and Selection Operator (LASSO):

This method performs variable selection and regularization

by adding an L1 penalty to the regression coefficients. It is

particularly effective for high-dimensional data, especially

when dealing with small sample sizes and high

multicollinearity between predictor variables (32).

3. Boruta: Built upon the random forest framework, this

algorithm constructs a feature evaluation mechanism by

comparing the dynamic importance between original

variables and shadow variables, using two-tailed statistical

validation to achieve precise separation of feature signals

and ensuring the retention of all relevant features.

4. Random Forest-Recursive Feature Elimination (RF-RFE):

This method uses an iterative elimination strategy to

optimize feature subsets, ensuring their relevance to the

classifier and thereby improving model performance.
We summarized 29 candidate predictors selected through

various filtering methods and took their intersection. Finally, we

consulted with clinical experts and combined them with clinical

reality to determine the final predictors for constructing Bethesda

III nodules malignancy prediction model.
2.7 Model development and performance
comparison

Six machine learning models were used to predict the malignancy

of Bethesda III nodules: LR (glm stats package), DT (rpart package), RF

(randomForest package), XGB (xgboost package), SVM (e1071

package), and KNN (kknn package). The selected clinical features

were fed into the six models using various machine learning

algorithms. To evaluate the models’ performance on unseen data,

five-fold cross-validation was applied to obtain the parameters.

Performance metrics from the confusion matrix were used to assess

model efficacy in both the training and validation cohorts, including

the Receiver Operating Characteristic curve, sensitivity (SEN),

specificity (SPE), positive predictive value (PPV), negative predictive

value (NPV), accuracy (ACC), F1 score, and Brier score. A calibration

curve was used to compare predicted probabilities with actual

outcomes. Decision Curve Analysis was used to evaluate the net

benefit of the models at various thresholds. Additionally, the DeLong

test was used to determine whether significant differences existed in the
tiers in Endocrinology 04
AUC values of the models. Based on the evaluation of these metrics in

both the training and testing sets, the optimal model was selected.
2.8 Model explanation

LR was selected as the optimal model based on its performance.

The model’s performance was demonstrated using 500 bootstrap

samples, including the ROC curve, calibration curve, and DCA

results. To assess model interpretability and evaluation, we

calculated the AUC to evaluate the model’s discriminative ability

and examined its calibration using the Hosmer-Lemeshow (HL)

test. DCA was used to evaluate the net benefit at different

thresholds, providing a comprehensive assessment of the model’s

effectiveness in real-world medical decision-making scenarios.

Bootstrapping, a statistical method, was applied to estimate model

accuracy by repeatedly sampling with replacement from the original

dataset. The model was trained on these new datasets and evaluated

using out-of-bag data. This process was repeated several times to

obtain a distribution of performance metrics, yielding a robust

estimate of model reliability and variance. The nomogram score is

the sum of the scores assigned to each risk factor, where higher

scores indicate a greater risk of Bethesda III nodules malignancy.

This graphical tool simplifies the estimation of individual risk or

probability based on the variables predicted by the model.
2.9 Statistical analysis

All analyses were conducted in R. For continuous variables, the

Shapiro-Wilk test was used to assess their normality. This test was

selected because it generally performs better than other tests, such as

the Kolmogorov-Smirnov test, particularly with small sample sizes.

Variables following a normal distribution were described using the

mean ± standard deviation, while non-normally distributed variables

were described using the median and interquartile range, providing

more robust measures of central tendency and variability in the

presence of outliers. Frequency and percentage were reported for

categorical variables. To assess collinearity between variables, the

variance inflation factor (VIF) was calculated. A VIF value below 5

and tolerance greater than 0.1 typically indicate no significant

collinearity between variables. This metric helps ensure that our

regression models are not unduly affected by multicollinearity, which

can distort the estimated relationships between predictors and

outcomes. Fisher’s exact test was used for categorical variables with

low expected frequencies to ensure accurate significance testing. This

test provides a precise method for determining the likelihood of

observing a given set of frequencies in categorical variables,

particularly useful with small sample sizes. Several R packages were

used for specific analyses: comparegroups for baseline description,

glmnet for LASSO regression, forestmodel for forest plots, pROC,

ggROC, and fbroc for discriminative analysis, PRROC for PR curves,

rms for calibration using val.prob and calibrate functions,
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ResourceSelection for the Hosmer-Lemeshow test, dcurves for DCA,

and rms for nomogram construction.
3 Result

3.1 Study cohort and baseline information

Between January 2020 and June 2024, 7,371 patients underwent

ultrasound-guided fine needle aspiration, while 2,761 patients

underwent thyroidectomy. Among the thyroid nodules assessed

by US-FNA, 10.2% (754/7,398) were diagnosed with Bethesda III

nodules. Of these Bethesda III nodules, 31.6% (238/754) underwent

surgical resection, 7.3% (55/754) underwent repeat biopsies, and

6.9% (52/754) were subjected to 12-gene panel testing. Notably,

36.4% (20/55) of the Bethesda III nodules that underwent repeat

biopsies had indeterminate results. A total of 69 patients were

excluded due to incomplete records (16), other pathologically

confirmed thyroid cancer types (2), uncertain repeat biopsy

outcomes (20), mutations found by 12-gene panel testing (1), or

insufficient follow-up for at least six months after repeat biopsy or

12-gene panel testing (30). Consequently, the current study

included 271 patients: 213 females and 58 males, with a total of

276 Bethesda III nodules. Approximately 65.2% (180/276) of the

nodules were malignant, while 34.8% (96/276) were benign. BRAF

mutations were detected in 41% (113/276) of the cases. In our

dataset, only 36 cases (13.04%) were classified as AUS and 25

(9.06%) as FLUS. Neither AUS nor FLUS showed statistical

significance in the univariate analysis. The median age of patients

was 51 years (IQR 41.00–57.25), and the median nodule size was

5.2 mm (IQR 4.00–7.70). In the current dataset, five variables were

missing, all related to thyroid function tests, resulting in 232

missing values, or approximately 2.8% of the total data points.

These missing values were distributed among multiple variables, as

detailed in Supplementary Table S1 and Supplementary Figure S2.

The cohort was randomly divided into a training set (n = 193) and a

validation set (n = 83). As shown in Table 1, no significant

differences were observed in the baseline characteristics between

the two groups (P > 0.05).
3.2 Selection of clinical characteristics

The predictor variables selected by the six methods are

presented in Table 2. Detailed parameters for all methods (SR-FS,

SR-BS, SR-BE, LASSO, Boruta and RF-RFE) can be found in

Supplementary Table S4 and Supplementary Figures S3-S5. A

total of 10, 6, 6, 5, 8, and 10 predictors were identified using the

six selection methods. As shown in Supplementary Table S4,

variables such as TSH, FT4, and Echotexture did not show a

significant association with malignancy in the initial univariate

screening and were therefore not carried forward into the final

model building stage. Figure 1 illustrates the intersection of

predictors selected by the six methods. Predictors with more than

six intersections were selected as final predictors, including BRAF,
Frontiers in Endocrinology 05
composition, shape, orientation, and TI-RADS. Ultimately, five

predictors were included in the development of the model.
3.3 Performances of different models

In our comparative analysis, we evaluated five machine learning

models against the LR model. Although complex models such as RF

achieved better training set performance, the LR model exhibited

the most robust and clinically meaningful results in the validation

set, as evidenced by Table 3 and Figure 2. The six models were

developed using six distinct machine learning algorithms. The

estimated odds ratios for the logistic regression model are

presented in Supplementary Table S5 and visualized in a forest

plot (Supplementary Figure S6). We further illustrate visualizations

for the other models, including the relative importance of potential

features and heatmaps of confusion matrices for the decision tree,

random forest, extreme gradient boosting, support vector machine,

and k-nearest neighbors models derived from the training cohort.

However, due to the nature of the KNN model, the ranking of

feature importance is not applicable in this case.

The RF model demonstrated the highest area under the ROC

curve (AUC, 0.923; 95% CI: 0.887–0.959) in the training set

(Figure 2A), whereas the LR model achieved the highest AUC

(0.823; 95% CI: 0.732–0.915) in the validation set (Figure 2B). The

AUC values for the remaining models in the validation set were as

follows: (1) DT: 0.758, 95% CI: 0.657–0.859; (2) RF: 0.792, 95% CI:

0.694–0.890; (3) XGB: 0.817, 95% CI: 0.722–0.912; (4) SVM: 0.822,

95% CI: 0.730–0.913; (5) KNN: 0.771, 95% CI: 0.668–0.873

(Figure 2B). Based on the DeLong test (Supplementary Tables S7,

S8), no significant difference in AUC was observed in the validation

cohort. This may be due to the limited sample size or the similar

performance of the models.

The DT model showed the best consistency between observed

and predicted results in both the training and validation sets

(Figure 2C). In contrast, the LR, SVM, KNN, and XGB models

exhibited similarly good consistency between observed and

predicted results in the validation set (Figure 2D). The

consistency between observed and predicted results in the RF

model was less stable in the validation set (Figure 2D).

In the training set, all models demonstrated similar DCA results

(Figure 2E), whereas the LR, SVM, and XGB models achieved the

best DCA outcomes in the validation set (Figure 2F). In the

validation set, using alternative models resulted in a greater net

benefit compared to no treatment or full treatment strategies when

the threshold probability was <80%.

The RF model exhibited the highest precision and specificity in

the training set, whereas the LR model achieved the highest recall

and F1 score, as well as the second lowest Brier score. In the

validation set, the LR model achieved the highest recall and F1

score, whereas the SVM model demonstrated the highest precision.

Detailed information can be found in Table 3. Model performance

in the validation set served as the primary criterion for identifying

the optimal model. Although the LR model exhibited moderate

specificity (0.55), its superior AUC (0.823), recall (sensitivity, 0.85),
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TABLE 1 Baseline characteristics of all patients between the training and validation cohorts.

Characteristics Total N=276 Training N=193 Testing N=83 P value

Gender (%) 0.271

Male 60 (21.74) 38 (19.69) 22 (26.51)

Female 216 (78.26) 155 (80.31) 61 (73.49)

Age (median [IQR]) 51.00[41.00;57.25] 51.00[41.00;58.00] 50.00 [36.00;56.50] 0.245

Nuclear atypia (%) 0.195

Present 36 (13.04) 29 (15.03) 7 (8.43)

Absent 240 (86.96) 164 (84.97) 76 (91.57)

Architectural atypia (%) 0.356

Present 25 (9.06) 20 (10.36) 5 (6.02)

Absent 251 (90.94) 173 (89.64) 78 (93.98)

BRAFV600E (%) 1.000

Positive 113 (40.94) 79 (40.93) 34 (40.96)

Negative 163 (59.06) 114 (59.07) 49 (59.04)

Diameter (median [IQR]) 5.20 [4.00;7.70] 5.30 [4.00;8.10] 5.00 [4.00;7.00] 0.513

Solid composition (%) 0.188

Yes 236 (85.51) 161 (83.42) 75 (90.36)

No 40 (14.49) 32 (16.58) 8 (9.64)

Nodule position 1(%) 0.227

Left lobe 134 (48.55) 98 (50.78) 36(43.37)

Right lobe 133 (48.19) 88 (45.60) 45 (54.22)

Isthmus 9 (3.26) 7 (3.63) 2 (2.41)

Marked Hypoechoic(%) 0.687

Yes 21 (7.61) 16 (8.29) 5 (6.02)

No 255 (92.39) 177 (91.71) 78 (93.98)

Unclear boundary (%) 1.000

Yes 227 (82.25) 159 (82.38) 68 (81.93)

No 49 (17.75) 34 (17.62) 15 (18.07)

Irregular shape (%) 0.532

Yes 58 (21.01) 43 (22.28) 15 (18.07)

No 218 (78.99) 150 (77.72) 68 (81.93)

Microcalcification (%) 1.000

Yes 44 (15.94) 31 (16.06) 13 (15.66)

No 232 (84.06) 162 (83.94) 70 (84.34)

Calcification (%) 0.643

No calcification 159 (57.61) 112 (58.03) 47 (56.63)

Microcalcification 69 (25.00) 50 (25.91) 19 (22.89)

Macrocalcification 48 (17.39) 31 (16.06) 17 (20.48)

(Continued)
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TABLE 1 Continued

Characteristics Total N=276 Training N=193 Testing N=83 P value

Halo (%) 0.384

Present 32 (11.59) 25 (12.95) 7 (8.43)

Absent 244 (88.41) 168 (87.05) 76 (91.57)

Orientation (%) 0.853

Taller-than-wide 129 (46.74) 89 (46.11) 40 (48.19)

Wider-than-tall 147 (53.26) 104 (53.89) 43 (51.81)

Upper region (%) 0.733

Yes 58 (21.01) 39 (20.21) 19 (22.89)

No 218 (78.99) 154 (79.79) 64 (77.11)

Nodule Position 2(%) 0.835

Upper region 58 (21.01) 39 (20.21) 19 (22.89)

Middle region 135 (48.91) 93 (48.19) 42 (50.60)

Lower region 73 (26.45) 53 (27.46) 20 (24.10)

Isthmus 10 (3.62) 8 (4.15) 2 (2.41)

CDFI pattern (%) 0.988

Present 65 (23.55) 46 (23.83) 19 (22.89)

Absent 211 (76.45) 147 (76.17) 64 (77.11)

Echotexture (%) 0.168

Homogeneous 98 (35.51) 63 (32.64) 35 (42.17)

Heterogeneous 178 (64.49) 130 (67.36) 48 (57.83)

Posterior features (%) 0.546

Present 65 (23.55) 43 (22.28) 22 (26.51)

Absent 211 (76.45) 150 (77.72) 61 (73.49)

Shadowing Posterior
features (%)

1.000

Yes 75 (27.17) 52 (26.94) 23 (27.71)

No 201 (72.83) 141 (73.06) 60 (72.29)

Suspicious LN (%) 0.269

Yes 100 (36.23) 68 (35.23) 32 (38.55)

No 176 (63.77) 125 (64.77) 50 (61.45)

TI-RADS (%) 0.425

3 53(19.20) 39 (20.21) 14(16.87)

4a 102(36.96) 64(33.16) 38(45.78)

4b 78(28.26) 57(29.53) 21(25.30)

4c 29(10.51) 22(11.40) 7(8.43)

5 14(5.07) 11 (5.70) 3 (3.61)

Solitary nodule (%) 0.395

Yes 112 (40.58) 82 (42.49) 30 (36.14)

No 164 (59.42) 111 (57.51) 53 (63.86)

TSH (median [IQR]) 1.76 [1.08;2.58] 1.77 [1.03;2.58] 1.74 [1.11;2.55] 0.745

(Continued)
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and F1 score (0.81) justified its selection as the optimal model. For

malignancy risk assessment, minimizing false negatives through

high recall remains clinically critical.

In summary, while the RF model may exhibit potential

overfitting, the LR model demonstrates not only strong

interpretability but also achieves the highest AUC in the

validation set. Taking into account model performance,

complexity, generalization capability, and practicality, the LR

model was ultimately chosen. The forest plot illustrates variables

with P-values greater than 0.05 (composition), and due to its clinical

significance in daily medical practice, this variable was retained in

the logistic regression model for interpretation of its effect size.
3.4 Nomogram construction and
application

The nomogram was constructed by incorporating five variables

—BRAF, composition, shape, orientation, and TI-RADS—into the

predictive model (Figure 3). Following 500 bootstrap iterations, the

LR model demonstrated an AUC of 0.871 (95% CI: 0.817–0.926) in

the training set and 0.846 (95% CI: 0.762–0.930) in the validation

set (Figures 4A, B). After 500 bootstrap iterations for calibration,
Frontiers in Endocrinology 08
the calibration curve closely aligned with the ideal diagonal. The

average absolute errors (MAEs) for the two datasets were 0.013 and

0.031, respectively, indicating that the predicted probabilities closely

aligned with the actual outcomes across different samples

(Figures 4C, D). The Hosmer-Lemeshow test confirmed good

consistency between the predicted and observed results (P =

0.414). DCA showed that applying the LR nomogram provided

greater net benefit than no treatment or full treatment strategies

when the threshold probability ranged from 16% to 96% in the

training set and from 15% to 95% in the validation set (Figures 4E,

F). Using this model, clinicians can more accurately assess the risk

of malignancy in Bethesda III nodules, providing optimized

management and treatment options. The integration of this

predictive model significantly enhances the precision of patient

management. This highlights the importance of leveraging precise,

data-driven decisions in clinical practice. We further assessed the

independence of the variables in the model by calculating the VIF

and found that all VIF values were well below the common

threshold of 5, indicating low multicollinearity and confirming

the model’s stability and reliability. The detailed VIF values are

provided in Supplementary Table S6. Our analysis compared the

ROC curves of the nomogram with those of the five individual

predictors for malignancy risk assessment. The nomogram

exhibited superior diagnostic performance, as illustrated in

Supplementary Figure S14.

Compared to the complex logistic regression formula, the

nomogram is simpler, more intuitive, and clinically practical. To

use the nomogram, a line is drawn from the value of each feature to

the “points” axis, obtaining the corresponding score. After

summing these points, the total score is located on the “total

points” axis. Finally, a line is drawn downward from the total

score to the “probability of malignancy” axis to determine the

corresponding risk. For example, when a patient is BRAF-positive

with an ultrasound indicating a solid nodule, a regular shape, a

vertical-to-horizontal ratio <1, and a TI-RADS score of 4a, their

“BRAF” score is 91, “composition” is 32, “shape” is 0, “orientation”

is 0, and “TI-RADS” is 24. The total score is 147, corresponding to a

malignancy probability of 0.72 (72%). Therefore, the surgeon may

consider this patient at high risk for Bethesda III nodules

malignancy and recommend diagnostic lobectomy (Figure 3A).

To support clinical implementation of this predictive model, we

developed a web-based calculator that enables physicians to input

patient-specific clinical data and immediately obtain malignancy risk
TABLE 1 Continued

Characteristics Total N=276 Training N=193 Testing N=83 P value

Solitary nodule (%) 0.395

FT4(median [IQR]) 13.58 [11.63;16.24] 13.68 [11.70;16.60] 13.40 [11.59;15.64] 0.199

FT3(median [IQR]) 4.49 [4.07;5.01] 4.48 [4.10;5.01] 4.50 [4.02;5.00] 0.882

TgAb (median [IQR]) 7.61 [1.15;19.88] 10.80 [1.22;20.50] 3.28 [1.00;18.45] 0.130

TPOAb (median [IQR]) 7.08 [1.00;14.98] 9.00 [1.04;15.50] 2.13 [1.00;12.70] 0.173
CDFI, Color Doppler Flow Imaging; LN, Lymph Node; TI-RADS, Thyroid Imaging Reporting and Data System; TSH, Thyroid-Stimulating Hormone; FT4, Free Thyroxine; FT3, Free
Triiodothyronine; TgAb, Thyroglobulin Antibody; TPOAb, Thyroid Peroxidase Antibody.
TABLE 2 Predictor variables of Bethesda III nodules using different
selection methods.

Methods Predictor variables

SR-FS
AUS, BRAF, Size, Composition, Echogenicity, Margin,
Shape, Orientation, TI-RADS, TgAb

SR-BE BRAF, Composition, Shape, Orientation, TI-RADS, TgAb

SR-BS BRAF, Composition, Shape, Orientation, TI-RADS, TgAb

LASSO BRAF, Composition, Shape, Orientation, TI-RADS

Boruta
BRAF, Size, Composition, Margin, Shape, Orientation, TI-
RADS, TgAb

RF-RFE
BRAF, Size, Composition, Shape, Orientation, TI-RADS,
TgAb, TSH, FT4, Echotexture
SR-FS, stepwise regression-forward selection; SR-BS, stepwise regression-backward selection;
SR-BE, stepwise regression-bidirectional elimination; LASSO, least absolute shrinkage and
selection operator; RF-RFE, random forest feature elimination; AUS, Atypia of Undetermined
Significance; TI-RADS, Thyroid Imaging Reporting and Data System; TSH, Thyroid-
Stimulating Hormone; FT4, Free Thyroxine; TgAb, Thyroglobulin Antibody.
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FIGURE 1

Upset plot of interactions between the predictors. (A) BRAF, composition, shape, orientation, TI-RADS. (B) TSH, FT4, Echotexture. (C) AUS, Echogenicity.
(D) Size. (E) Margin. (F) TgAb. SR-FS, stepwise regression-forward selection; SR-BS, stepwise regression-backward selection; SR-BE, stepwise regression-
bidirectional elimination; LASSO, least absolute shrinkage and selection operator; RF-RFE, random forest -recursive feature elimination.
TABLE 3 Predictive performance metrics of different machine learning algorithms of the training set and validation set.

Model LR DT RF XGB SVM KNN

Training set

AUC (95%) 0.89 (0.84-0.93) 0.83 (0.77-0.89) 0.92 (0.89-0.96) 0.90 (0.86-0.95) 0.88 (0.83-0.93) 0.90 (0.86-0.94)

SEN 0.92 0.87 0.78 0.82 0.73 0.79

SPE 0.70 0.71 0.91 0.85 0.85 0.84

PPV 0.85 0.83 0.94 0.91 0.90 0.90

NPV 0.82 0.76 0.69 0.71 0.63 0.68

ACC 0.85 0.83 0.94 0.91 0.90 0.90

F1 score 0.89 0.85 0.85 0.86 0.81 0.84

Brier score 0.13 0.15 0.11 0.12 0.13 0.14

Validation set

AUC (95%) 0.82 (0.73-0.92) 0.76 (0.66-0.86) 0.79 (0.69-0.89) 0.82 (0.72-0.91) 0.82 (0.73-0.91) 0.77 (0.67-0.87)

SEN 0.85 0.82 0.70 0.74 0.63 0.80

SPE 0.55 0.61 0.72 0.72 0.86 0.59

PPV 0.78 0.76 0.83 0.83 0.90 0.78

NPV 0.67 0.69 0.57 0.60 0.56 0.61

ACC 0.78 0.76 0.83 0.83 0.90 0.78

F1 score 0.81 0.79 0.76 0.78 0.74 0.79

Brier score 0.16 0.19 0.21 0.16 0.16 0.23
F
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DT, decision tree; KNN, k-nearest neighbors; LR, logistic regression; RF, random forest; SVM, support vector machine; XGB, XGBoost; AUC, area under curve; SEN, sensitivity; SPE, specificity;
PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy.
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FIGURE 2

Performance comparison of different machine learning models in the training set and validation set. (A) ROC curves in the training set. (B) ROC
curves in the validation set. (C) Calibration curves in the training set. (D) Calibration curves in the validation set. (E) DCA results in the training set.
(F) DCA results in the validation set. (A, B) The dotted lines in the ROC curves represent the reference line. (C, D) The dotted lines in the calibration
curves represent a perfect prediction by an ideal model. (E, F) The “treat all” lines in the DCA results assume that all nodules were malignant,
whereas the “treat none” lines assume that all nodules were benign lesions. Abbreviations: DT, decision tree; AUC, area under curve; KNN, k-nearest
neighbors; LR, logistic regression; RF, random forest; SVM, support vector machine; XGB, XGBoost; ROC, receiver operating characteristic; DCA,
Decision Curve Analysis.
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estimates for Bethesda III nodules, thereby supporting more informed

clinical decisions. The tool streamlines risk assessment while

facilitating personalized patient management through individualized

risk stratification. The calculator is publicly accessible online at

https://13583155338-l.shinyapps.io/PredictionofAUS/ (Figure 3B).
Frontiers in Endocrinology 11
4 Discussion

According to the 2023 TBSRTC, the estimated malignant risk

for Bethesda III nodules ranges from 10% to 30%, but recent studies

report a significantly higher malignancy rate than predicted (5, 7,
FIGURE 3

(A) Nomogram used for predicting the risk of malignancy for Bethesda III nodules. Logistic regression algorithm was used to establish nomogram.
The final score (ie, Total Points) is calculated as the sum of the individual scores of each of the ten variables included in the nomogram. (B) A web-
based calculator for predicting malignancy risk in Bethesda III nodules. Abbreviations: TI-RADS, Thyroid Imaging Reporting and Data System.
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33). More importantly, after being informed of the 10-30%

mal ignancy r i sk and rece iv ing fo l low-up trea tment

recommendations for US-FNA, these cases show higher rates of

inconclusive results (up to 60%) on repeat FNA (34, 35). Although

several studies have addressed this challenge, most focus on specific

factors, with few providing comprehensive clinical, ultrasound,
Frontiers in Endocrinology 12
genetic, and pathological data. Additionally, many studies are

l imited by small sample sizes due to the absence of

comprehensive postoperative pathological data, hindering their

ability to conduct balanced research or only allowing for one-

sided conclusions. Ahn, H. S. et al. (23) included surgical and

repeat biopsy results to analyze nodule characteristics. By
FIGURE 4

Performance of the logistic regression model with 500 bootstraps. (A) ROC curves in the training set. (B) ROC curves in the validation set. (C) Calibration
curves in the training set. (D) Calibration curves in the validation set. (E) DCA results in the training set. (F) DCA results in the validation set. (A, B) The
diagonal lines in the ROC curves represent the reference line; the “Apparent ROC” lines represent the apparent performance of the model, whereas the
“Bootstrap ROC” lines represent the model’s performance after 500 bootstraps. (C, D) The dotted lines in the calibration curves represent a perfect
prediction by an ideal model; the “Apparent” lines denote the apparent performance of the model, whereas the “Bias-corrected” lines reflect the model’s
performance after 500 bootstraps; a closer fit to the dotted lines indicates a better predictive effect. (E, F) The “treat all” lines in the DCA results assume
that all nodules were malignant, whereas the “treat none” lines assume that all nodules were benign lesions; the “Nomo model” lines represent the
performance of the model. For example, if a patient’s threshold probability is 75%, the net benefit is approximately 0.3 in the validation set, meaning that
30 out of 100 patients may benefit from using this model. ROC, receiver operating characteristic; DCA, Decision Curve Analysis.
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combining ultrasound features, nodule size, and cytological

subtypes, they provided more accurate malignancy risk

stratification for Bethesda III nodules. Ahmadi, S. et al. (36)

observed 141 Bethesda III nodules with multigene testing and 12

months of ultrasound follow-up. The study showed a 100% negative

predictive value, demonstrating the feasibility of follow-up using

multigene testing for these nodules. Numerous studies have shown

that multigene testing achieves a negative predictive value close to

100% in follow-up observation of Bethesda III nodules, proving its

feasibility (37, 38). Therefore, we innovatively included Bethesda III

nodules with surgical pathology, repeat biopsy, and multigene

testing. We then compared logistic regression and five ML models

to predict and analyze the malignancy risk of Bethesda III nodules,

ultimately selecting logistic regression as the ideal model for

developing predictive models and nomograms.

Due to the lack of standardized guidelines or consensus for

feature selection in predictive models, it remains unclear how many

features should be included in the model. Relevant risk variables

often exhibit correlations, and multicollinearity can cause issues

such as overfitting and computational complexity. To address this,

we applied six feature selection methods to the study population,

aiming to reduce the high correlation between predictors and

capture the complex relationships with outcome variables.

We selected BRAF, composition, shape, orientation, and TI-

RADS, with BRAF identified as the most significant predictor. The

standalone BRAF V600E test has become a relatively cost-effective

and routine preoperative tool in many tertiary hospitals across

China. In this study, the odds ratio (OR) for BRAF was 17, and the

BRAF V600E mutation rate in patients diagnosed with Bethesda III

nodules and ultimately confirmed to have PTC reached 87.93%

(39). However, BRAF for malignancy detection in the Bethesda III

nodules population has a sensitivity of only 30%-40%. Research by

Paspala, A. et al. (40) found that the detection rate of BRAF

mutations in Bethesda III is lower than in Bethesda V/VI,

suggesting its greater utility for stratification in high-risk

subgroups but also its limitations in Bethesda III nodules. When

BRAF is negative, gene testing cannot predict whether Bethesda III

nodules are benign or malignant, with a negative predictive value of

38.1%-52.6% (39, 41). Therefore, malignancy prediction in

Bethesda III nodules requires a combined approach that

integrates ultrasound characteristics for improved diagnostic

accuracy (42, 43). Composition, shape, and orientation are

independent imaging risk factors for thyroid nodules and should

be incorporated into predictive models for Bethesda III nodules

malignancy. Jin, L. et al. (44) demonstrated that spatial

heterogeneity in malignant nodules, quantified by ultrasound

contrast enhancement, was significantly higher. Ultrasound

findings of nodules with blurred margins, lobulated, or irregular

contours suggest a higher likelihood of malignancy in Bethesda III

nodules (45, 46). Thyroid nodule taller-than-wide (TTW) feature is

a strong predictor of malignancy. Studies have shown that a shape

with TTW yields a diagnostic accuracy of up to 83%, with a

specificity of 73% (47). Additionally, combining composition,

shape, orientation, and other ultrasound features significantly

enhances both sensitivity and specificity in diagnosis (43, 48).
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This study also included a subgroup analysis of Bethesda III

nodules and examined the correlation between thyroid function and

the benign or malignant nature of Bethesda III nodules. The

findings show that the atypical nuclear category significantly

differs from other categories in multiple aspects. First, the risk of

malignancy (ROM) in cases with atypical nuclei is significantly

higher than in cases with architectural atypia. Categorizing

Bethesda III cases into nuclear atypia and architectural atypia

subgroups may improve ROM stratification (49). Second, the

proportion of malignant tumors in Bethesda III nodules increases

with higher TI-RADS classifications, though no such difference is

observed in FLUS (45). Moreover, both nuclear and architectural

atypia subcategories in AUS exhibit high ROM, classifying them

into high-risk groups (50, 51). Therefore, this study categorized

pathological features into nuclear and architectural atypia.

Unfortunately, neither cytological atypia subtype showed

statistical significance in predicting malignancy in our analysis.

This result is likely attributable to the limited sample size in the

subgroups, particularly for nuclear atypia, which resulted in

insufficient statistical power to detect a potential difference. The

2023 TBSRTC revision has streamlined subcategorization into two

classifications: AUS-nuclear and AUS-other. This modification

indirectly demonstrates the limitations of relying solely on

traditional cytological subtypes for predicting malignancy risk, as

subcategorization alone cannot provide sufficient clinical decision-

making support. Future studies will seek to increase the sample size

to investigate the relationship between pathological subtypes and

the malignancy rate of Bethesda III nodules. The study found

significant differences in TgAb levels between benign and

malignant nodules, suggesting its potential role in preoperative

malignancy diagnosis. Retrospective studies in Chinese patients

showed that the TgAb positivity rate was significantly higher in

PTC patients than in those with benign thyroid nodules, suggesting

a potential link to malignant tumor occurrence (52).

In the era of big data, machine learning models for predicting

clinical events have become increasingly important. Clinical EMR

data is relatively objective, accurate, and easily accessible for

clinicians and researchers. Combining EMR data with complex

machine learning algorithms facilitates the development of clinical

prediction models (53). This study demonstrates the capabilities of

various machine learning models in predicting the benign or

malignant nature of Bethesda III nodules and aims to identify the

most suitable algorithm based on the dataset’s characteristics and

the study’s objectives. Different machine learning algorithms have

distinct principles, strengths, and applicable scenarios, but also

limitations and biases. LR are traditional classification algorithms

suited for linear relationships but sensitive to outliers. Decision

trees, based on tree structures, are prone to overfitting and noise

sensitivity. Random forests, using simple averaging or voting

strategies, require significant computational resources and have

poor interpretability. SVM optimize objective functions to find

the optimal hyperplane but incur high computational costs and

require careful parameter tuning. XGB, employing gradient

boosting, requires long training times and extensive

hyperparameter tuning. KNN are computationally intensive and
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struggle with high-dimensional data (54–56). In this study, the LR

model achieved an AUC of 0.823 in the validation set, with superior

sensitivity, recall, and F1 scores compared to more complex models,

demonstrating its practical significance. When the primary goal is

to analyze the relationship between outcomes and risk factors,

especially with small datasets, traditional methods like logistic

regression may be sufficient (57). This finding supports the

argument that machine learning does not always outperform LR

in predictive modelling (58). Additionally, the generalizability of the

models, assessed through five-fold cross-validation, indicates that

they can handle unseen data and reliably perform risk assessments

in new clinical contexts. This comprehensive approach improved

the predictive accuracy of the models and enhanced their reliability

in practical applications.

The LR model outperformed others in discriminative ability,

calibration, and clinical net benefit. The newly developed LR model,

which integrates easily accessible pathological, ultrasound, and

clinical features, performed well, with an AUC of 0.823 in the

validation set. Besides AUC, we evaluated the LR model’s

performance using other metrics, including precision, recall, F1

score, and Brier score. Due to its simple structure, the LR model

excelled, demonstrating outstanding interpretability and high

performance across these key metrics. The LR model’s higher F1

score reflects a reasonable balance between precision and recall,

minimizing both false positives and false negatives, which is critical

for clinical decision-making. The calibration plot showed good

agreement between predicted and actual values. More

importantly, decision curve analysis revealed that the LR model

provides substantial clinical net benefit, supporting clinical

decision-making. In terms of applicability, the LR model is

characterized by its simple structure and high interpretability.

However, the differences in predictive performance across models

were not significant, likely due to the limited sample size of the

validation set. Considering its interpretability, calibration, clinical

utility, and potential for further analysis, the LR model remains the

optimal choice. Additionally, incorporating AUS subtypes and

thyroid function tests into the model may improve its predictive

performance. The model’s low specificity inevitably increases false-

positive rates in clinical settings. While these false positives may

prompt additional diagnostic procedures, they rarely result in

immediate radical interventions. Decision curve analysis confirms

that despite this limitation, the model prevents more unnecessary

procedures than it generates when benchmarked against universal

treatment strategies. In addition, we recommend that future studies

incorporate additional pathological and biochemical clinical data to

potentially improve predictive outcomes.

This study developed a nomogram, which was evaluated

through 500 bootstrap iterations and assessed for predictive

performance using several goodness-of-fit tests, including the

Hosmer–Lemeshow test, AUC-ROC, calibration curve, and DCA.

The Hosmer–Lemeshow test showed good agreement between

predicted and observed values (P = 0.414). The observed AUC

difference (D = 0.025) between the training and validation cohorts

indicates that the sample size is adequate to assess the model’s

general applicability and effectiveness. The calibration curve also
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showed strong consistency between predicted and actual outcomes,

underscoring the model’s reliability. Furthermore, the DCA results

demonstrated that across a wide range of probability thresholds, the

nomogram consistently offered greater clinical benefit than

universal treatment or no treatment. Previous studies have also

developed nomograms to predict the benign or malignant nature of

Bethesda III nodules using systematic risk factors. Yoon, J. H. et al.

(15) reported a nomogram with an AUC of 0.754 but did not

evaluate its applicability using DCA. Öcal, B. et al. (59) reported an

AUC of 0.784 in the validation set, although their dataset included

uncertain nodules from Bethesda III, IV, and V categories. Zhong,

L. et al. (16) described a nomogram with an AUC of 0.823, but its

applicability was more limited, with a threshold probability range of

21% to 70%. Cao, Y. et al.0 (14) reported a nomogram with an AUC

of 0.80, comparing two machine learning methods to traditional

logistic regression. The nomogram developed in this study has an

AUC higher than those reported in the aforementioned studies and

shows broader applicability in DCA. Moreover, these previous

studies employed only logistic regression or a few machine

learning algorithms, without comparing them to a broader range

of machine learning models. As a result, this study is more

innovative and comprehensive. By using this nomogram,

clinicians can accurately predict the benign or malignant nature

of Bethesda III nodules, thus guiding clinical decision-making.

This study has several limitations. First, although robust

internal validation through cross-validation and bootstrap

methods strengthened the methodological rigor, the lack of

external validation with an independent cohort remains a

significant limitation. The single-center, retrospective nature of

our dataset may introduce selection bias, and the small sample

size could lead to overfitting in machine learning models, limiting

the model’s generalizability across clinical practices with varying

demographic characteristics, institutions, and regions. To address

this limitation, future research should prioritize multicenter

collaborations to validate and optimize the model in diverse

settings, ensuring broader clinical applicability. Second, while our

case selection included Bethesda III nodules patients followed up in

outpatient settings without surgery, we did not conduct prospective

follow-up for all patients. We used BRAF mutation analysis as part

of routine preoperative testing, but did not include the 12-gene

panel in the routine screening, which may have caused

discrepancies in molecular analysis results. Patients who

underwent surgery, repeat FNA, or molecular testing likely

represent a higher-risk subset compared to those managed

conservatively. Although the 12-gene test and repeat biopsy have

nearly 100% negative predictive value, biases may still arise due to

the relatively short follow-up period. Furthermore, we acknowledge

that the minimum six-month follow-up period for non-surgical

cases may be insufficient to capture all slow-growing malignancies.

Future studies should prioritize long-term follow-up and include

these additional mutations to enhance the comprehensiveness and

accuracy of the predictive model. Third, our study cohort presented

a malignancy rate of 65.2%, which is substantially higher than the

13-30% rate typically estimated for Bethesda III nodules.

Consequently, our model was trained on a higher-risk population
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than is typically encountered in general clinical practice. Fourth, our

study did not employ an exhaustive hyperparameter tuning process,

such as grid search or random search, for the more complex

machine learning models like Random Forest and XGBoost.

Lastly, inter-observer variability in the interpretation of US and

FNAB results may occur. In conclusion, of the six machine learning

algorithms evaluated, LR demonstrated the best performance in

this study.

Consequently, a logistic regression-based nomogram was

developed to predict the benign or malignant nature of Bethesda

III nodules. Future studies should focus on further prospective

external validation to assess whether follow-up strategies based on

the final predictive model can effectively predict the benign or

malignant nature of Bethesda III nodules.
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