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Objective: To develop and validate a machine learning (ML)-based prediction
model of Bethesda lll nodules and create a nomogram based on the best model.
Methods: We collected data on patients with Bethesda Ill nodules who were
admitted between January 2020 and June 2024, including 276 Bethesda Il
nodules from 7371 patients who underwent ultrasound-guided fine needle
aspiration (US-FNA). Clinical, ultrasonographic, cytological, laboratory, and
molecular data were collected and randomly split into training and validation
cohorts at a ratio of 7: 3. Six feature selection methods and ML algorithms—
Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Extreme
Gradient Boosting (XGB), Support Vector Machine (SVM), and K-Nearest
Neighbors (KNN)—were evaluated. A nomogram was then created based on
the best-performing model.

Results: The study cohort included 276 Bethesda Il nodules with a final
malignancy rate of 65.2% (180/276). LR exhibited the highest area under the
receiver operating characteristic (ROC) curve (AUC: 0.823) in cross-validation of
the validation set. Additionally, the calibration curves and Decision Curve Analysis
(DCA) results were also favorable. The model included BRAF, composition, shape,
orientation, and the thyroid imaging reporting and data system (TI-RADS). The
nomogram exhibited robust discrimination (AUC: 0.846 in the validation set),
calibration, and clinical applicability across the two datasets after 500 bootstraps.
Conclusion: Among the six ML algorithms, the LR algorithm demonstrated the
best performance. A nomogram was developed to predict the malignancy risk in
Bethesda Ill nodules. This nomogram may serve as a valuable tool to reduce
diagnostic uncertainty and provide personalized risk stratification for patients.
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1 Introduction

Thyroid nodules affect approximately 25% of the general
population, making them a prevalent clinical condition. The
widespread use of high-resolution ultrasound has significantly
increased the detection rate of thyroid nodules, with 65% of
individuals identified with nodules during ultrasound
examinations (1, 2). Although most of these nodules are benign,
it remains critical to accurately distinguish malignant lesions to
avoid overtreatment and ensure timely intervention. The Bethesda
System for Reporting Thyroid Cytopathology (TBSRTC)
categorizes fine needle aspiration results into six classifications: (I)
non-diagnostic; (IT) benign; (III) atypia of undetermined
significance (AUS); (IV) follicular neoplasm; (V) suspicious for
malignancy; and (VI) malignant. Bethesda III nodules present
consistent diagnostic challenges among these categories (3). The
frequency of Bethesda III nodules diagnoses varies significantly
across laboratories, ranging from 8.6% to 25.3%. While the
Bethesda system estimates the malignancy risk for Bethesda III
nodules to range from 13% to 30%, clinical data suggest that the
actual malignancy rate may be higher, between 23.5% and 40% (4-
7). The complexity and uncertainty of Bethesda IIT nodules
underscore the urgent need for comprehensive studies to identify
preoperative predictors for these nodules.

Preoperative prediction of the benign or malignant nature of
Bethesda III nodules necessitates a comprehensive evaluation that
incorporates ultrasound features, molecular testing, thyroid
function assessments, and demographic factors such as age and
gender. While these factors provide some predictive value for the
malignancy of Bethesda III nodules, they each have inherent
limitations. For example, the BRAF gene is a highly specific
biomarker for papillary thyroid carcinoma (PTC), with a
malignancy risk of 98.9% to 100%. However, its mutation rate is
only 35% to 77% (8-10), and malignancy is particularly difficult to
exclude in follicular subtype Bethesda III nodules when assessed in
isolation (11). Molecular testing using a 12-gene panel can improve
the diagnostic accuracy of Bethesda III nodules by detecting key
mutations such as BRAF, TERT promoter, NRAS/HRAS/KRAS,
PIK3CA, AKT1, RET fusions, NTRK fusions, and PAX8-PPARY.
Bethesda IIT nodules with negative genetic mutations from this
panel exhibit a 6% malignancy risk, with less than a 1% risk of
cancer spreading beyond the thyroid (12, 13). However, the high
cost of the 12-gene panel limits its broader application in China.
Thus, a combined approach integrating demographic, imaging, and
molecular data may enhance diagnostic accuracy. To our
knowledge, there are still few studies specifically addressing the
prediction of malignancy risk in Bethesda III nodules (14-16).

Machine learning is the scientific study of algorithms and
statistical models that enable computers to perform specific tasks
without explicit programming, offering notable advantages in the
field of thyroid surgery (17). Emerging evidence suggests
multimodal GPTs may improve diagnostic accuracy through
integrated data analysis (18-20). Radiomics has recently
demonstrated effectiveness in automating thyroid nodule
classification and risk stratification (16). Compared to traditional
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logistic regression models, ML excels in handling complex clinical
data, facilitating the development of predictive tools that, in specific
cases, outperform conventional statistical models (21). Although AI
research in thyroidology continues to advance, there is limited
exploration focused on the most clinically challenging Bethesda III
nodules. Recent studies have nevertheless achieved promising
results in predicting malignancy for these nodules using machine
learning. Cao et al. (14) developed a nomogram with 0.80 AUC by
comparing machine learning methods to logistic regression,
whereas Zhong et al. (16) reported 0.823 AUC but with narrower
applicability. Our study employs machine learning algorithms to
integrate multidimensional data, including ultrasound features,
clinical parameters, and molecular biomarkers, to develop a
personalized malignancy risk prediction model for Bethesda III
nodules. Through systematic comparison of advanced algorithms
with LR, we aim to develop a visual decision support tool that
reduces diagnostic uncertainty, prevents unnecessary surgeries, and
provides personalized risk stratification for patients.

2 Materials and methods

2.1 Study cohort

This retrospective observational study was approved by the
960th Hospital of the PLA Joint Logistics Support Force Research
Ethics Committee (No. 2024-171). Research participants were
performed in accordance with the Declaration of Helsinki, and
each patient provided written informed consent. All eligible patients
were informed about the use of their data for study and had the
option to decline to participate (22).

This study included patients with thyroid nodules diagnosed as
Bethesda III nodules based on initial FNA between January 2020
and June 2024. Final diagnoses were confirmed through repeat
biopsies, 12-gene testing, or surgery (23). Inclusion criteria
included: (1) thyroid nodules classified as Bethesda III on FNA
cytology; (2) preoperative ultrasound, molecular testing, and
thyroid function tests; (3) patients underwent thyroidectomy; (4)
at least one repeat FNA on the same Bethesda III nodule within one
year; (5) 12-gene panel testing. Exclusion criteria included: (1) other
thyroid cancer types, such as follicular carcinoma or medullary
thyroid carcinoma; (2) patients lacking laboratory, imaging, or
pathological data; (3) uncertain repeat FNA results; (4) any
mutations detected in the 12-gene test; (5) patients without at
least six months of follow-up after repeat FNA or 12-gene testing.
Patients were randomly assigned to a training set and a validation
set in a 7:3 ratio. The training set was used to develop models with
various machine learning algorithms, and the validation set was
used to evaluate model performance.

2.2 Clinical features and data collection

Data for the variables assessed in this study were collected from
patients’ hospitalization electronic medical records (EMRs),
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including basic patient information, thyroid imaging reporting and
data system, cytological assessments, molecular testing following
US-ENA, laboratory indicators (within one month before surgery)
and postoperative pathological data. Basic patient information
included age and sex. Ultrasound features of thyroid nodules
were analyzed using TI-RADS terminology, including size,
composition, echogenicity, margin, shape, echogenic foci, halo,
orientation, location, color Doppler flow imaging (CDFI) pattern,
echotexture, posterior features, cervical lymph nodes and solitary
nodule (24). The largest transverse, anteroposterior, and vertical
diameters of all nodules were recorded, with the largest of these
three measurements used to assess nodule size. Additional features
of the nodule were recorded according to C-TIRADS. C-TIRADS
classified the nodules by assigning points for composition,
echogenicity, shape, margin, and echogenic foci to determine the
TIRADS level. Cervical lymph nodes were considered abnormal if
they exhibited any of the following features: (a) loss of central hilar
echo, (b) cystic change, (c) calcification, (d) cortical
hyperechogenicity, (e) increased and irregular vascularity, or (f)
cervical lymphadenopathy. Two radiologists reviewed and
documented all sonographic characteristics of the thyroid
nodules. Disagreements were resolved through discussion or
consultation with a third radiologist. In cytological assessments
and molecular testing, cytologists examined the cells and cellular
structures according to the second edition of the Bethesda System
for Reporting Thyroid Cytopathology (3). Bethesda III cases were
reviewed and categorized into the following subtypes: (1) AUS-
nuclear atypia: Includes focal nuclear atypia or mild but extensive
nuclear atypia; (2) AUS-other: Includes architectural atypia (often
sparsely cellular samples predominantly composed of
microfollicles) and Hurthle cell atypia (oncocytic features). Two
molecular tests were available at our institution: BRAF and a twelve-
gene molecular panel. Patients underwent twelve-gene panel
testing, which included BRAF, RAS (NRAS, HRAS, KRAS),
PIK3CA, AKT1, RET, CCDC6-RET, NCOA4-RET, TP53, ETV6-
NTRK3, TPM3-NTRKI1, TERT, and PAX8-PPARG promoters.
Laboratory indicators obtained included thyroid stimulating
hormone (TSH), free thyroxine (FT4), free triiodothyronine
(FT3), thyroglobulin antibody (TgAb), thyroid peroxidase
antibody (TPOAD), and thyroglobulin (Tg) levels. All predictive
factors were derived from objective data and image archiving in
the EMRs.

2.3 Assessment of study outcomes

The definitive diagnosis of malignant tumors was confirmed
through histopathological analysis of surgically excised tissue or
repeated fine-needle aspiration biopsies with malignant results
(Bethesda categories V or VI). In contrast, benign nodules were
diagnosed based on one of the following criteria: (1)
histopathological confirmation from surgically excised specimens,
(2) absence of mutations in a 12-gene panel, or (3) at least one
benign FNA result (Bethesda II) from repeated biopsies, with no
subsequent malignant findings. All patients who did not undergo
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surgical intervention were followed up with ultrasonography for at
least six months to assess any suspicious changes in the nodules.
Histopathological results were independently reviewed by two
experienced pathologists, and any discrepancies were resolved
through consultation with a third pathologist.

2.4 Sample size calculation

We calculated the required sample size using the events per
variable (EPV) metric, a widely recognized method in statistical
analysis (25-27). We also followed the 4-step procedure proposed
by Riley et al. (28) to calculate the required sample size (29).
According to guidelines, the malignancy rate of Bethesda III
nodules typically ranges from 13% to 30% based on follow-up of
surgically resected nodules (3). Since we intended to include
patients who had not undergone surgery, the expected proportion
of the endpoint event was estimated at 0.15. The calculation process,
formulas, and results are shown in Supplementary Table S2.

2.5 Data preprocessing

Statistical analyses were conducted using SPSS 25.0 software
and R (version 4.4.2; R Foundation, Vienna, Austria), with a
significance level set at p < 0.05. The “mice” package in R was
used to assess the missing data mechanism, and the VIM package
was used for data visualization. Multiple imputation was used to
handle missing data, with 10 imputations performed based on the
established MAR mechanism, as recommended by standard
guidelines. The Multiple Imputation by Chained Equations
(MICE) method was used for imputation, implemented through
the “mice” package in R. The imputation model with the lowest
Bayesian Information Criterion (BIC) was chosen for data
optimization. Continuous variables were imputed using predictive
mean matching, categorical variables using logistic regression, and
multinomial variables using multinomial logistic regression. All
relevant covariates, including predictors, outcome variables, and
other variables not included in the predictive model, were
incorporated into the imputation model to capture the
relationships among the variables.

2.6 Selection of variables

Supplementary Figure S1 presents the complete study flowchart.
Before constructing the predictive model, six feature selection
methods were applied to mitigate the high correlation between
predictor variables and improve both the predictive accuracy and
interpretability of the model. These methods were chosen based on
their proven effectiveness in handling high-dimensional data and
identifying the most relevant predictor variables in predictive
modeling. In clinical prediction models, the combined use of
multiple variable selection methods can compensate for the
limitations of individual approaches, thereby enhancing the stability
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of variable selection and the predictive performance of the model
(30, 31). The feature selection methods used include:

1. Stepwise Regression (SR): This method uses a stepwise
selection mechanism to dynamically adjust explanatory
variables in the model based on hypothesis testing results,
effectively extracting core influencing factors while
alleviating collinearity issues. We implemented three
variations of stepwise regression: forward selection (FS),
backward selection (BS), and bidirectional elimination (BE).

2. Least Absolute Shrinkage and Selection Operator (LASSO):
This method performs variable selection and regularization
by adding an L1 penalty to the regression coefficients. It is
particularly effective for high-dimensional data, especially
when dealing with small sample sizes and high
multicollinearity between predictor variables (32).

3. Boruta: Built upon the random forest framework, this
algorithm constructs a feature evaluation mechanism by
comparing the dynamic importance between original
variables and shadow variables, using two-tailed statistical
validation to achieve precise separation of feature signals
and ensuring the retention of all relevant features.

4. Random Forest-Recursive Feature Elimination (RE-RFE):
This method uses an iterative elimination strategy to
optimize feature subsets, ensuring their relevance to the
classifier and thereby improving model performance.

We summarized 29 candidate predictors selected through
various filtering methods and took their intersection. Finally, we
consulted with clinical experts and combined them with clinical
reality to determine the final predictors for constructing Bethesda
III nodules malignancy prediction model.

2.7 Model development and performance
comparison

Six machine learning models were used to predict the malignancy
of Bethesda IIT nodules: LR (glm stats package), DT (rpart package), RF
(randomForest package), XGB (xgboost package), SVM (el071
package), and KNN (kknn package). The selected clinical features
were fed into the six models using various machine learning
algorithms. To evaluate the models’ performance on unseen data,
five-fold cross-validation was applied to obtain the parameters.
Performance metrics from the confusion matrix were used to assess
model efficacy in both the training and validation cohorts, including
the Receiver Operating Characteristic curve, sensitivity (SEN),
specificity (SPE), positive predictive value (PPV), negative predictive
value (NPV), accuracy (ACC), F1 score, and Brier score. A calibration
curve was used to compare predicted probabilities with actual
outcomes. Decision Curve Analysis was used to evaluate the net
benefit of the models at various thresholds. Additionally, the DeLong
test was used to determine whether significant differences existed in the
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AUC values of the models. Based on the evaluation of these metrics in
both the training and testing sets, the optimal model was selected.

2.8 Model explanation

LR was selected as the optimal model based on its performance.
The model’s performance was demonstrated using 500 bootstrap
samples, including the ROC curve, calibration curve, and DCA
results. To assess model interpretability and evaluation, we
calculated the AUC to evaluate the model’s discriminative ability
and examined its calibration using the Hosmer-Lemeshow (HL)
test. DCA was used to evaluate the net benefit at different
thresholds, providing a comprehensive assessment of the model’s
effectiveness in real-world medical decision-making scenarios.
Bootstrapping, a statistical method, was applied to estimate model
accuracy by repeatedly sampling with replacement from the original
dataset. The model was trained on these new datasets and evaluated
using out-of-bag data. This process was repeated several times to
obtain a distribution of performance metrics, yielding a robust
estimate of model reliability and variance. The nomogram score is
the sum of the scores assigned to each risk factor, where higher
scores indicate a greater risk of Bethesda III nodules malignancy.
This graphical tool simplifies the estimation of individual risk or
probability based on the variables predicted by the model.

2.9 Statistical analysis

All analyses were conducted in R. For continuous variables, the
Shapiro-Wilk test was used to assess their normality. This test was
selected because it generally performs better than other tests, such as
the Kolmogorov-Smirnov test, particularly with small sample sizes.
Variables following a normal distribution were described using the
mean * standard deviation, while non-normally distributed variables
were described using the median and interquartile range, providing
more robust measures of central tendency and variability in the
presence of outliers. Frequency and percentage were reported for
categorical variables. To assess collinearity between variables, the
variance inflation factor (VIF) was calculated. A VIF value below 5
and tolerance greater than 0.1 typically indicate no significant
collinearity between variables. This metric helps ensure that our
regression models are not unduly affected by multicollinearity, which
can distort the estimated relationships between predictors and
outcomes. Fisher’s exact test was used for categorical variables with
low expected frequencies to ensure accurate significance testing. This
test provides a precise method for determining the likelihood of
observing a given set of frequencies in categorical variables,
particularly useful with small sample sizes. Several R packages were
used for specific analyses: comparegroups for baseline description,
glmnet for LASSO regression, forestmodel for forest plots, pROC,
ggROC, and fbroc for discriminative analysis, PRROC for PR curves,
rms for calibration using val.prob and calibrate functions,
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ResourceSelection for the Hosmer-Lemeshow test, dcurves for DCA,
and rms for nomogram construction.

3 Result
3.1 Study cohort and baseline information

Between January 2020 and June 2024, 7,371 patients underwent
ultrasound-guided fine needle aspiration, while 2,761 patients
underwent thyroidectomy. Among the thyroid nodules assessed
by US-ENA, 10.2% (754/7,398) were diagnosed with Bethesda III
nodules. Of these Bethesda III nodules, 31.6% (238/754) underwent
surgical resection, 7.3% (55/754) underwent repeat biopsies, and
6.9% (52/754) were subjected to 12-gene panel testing. Notably,
36.4% (20/55) of the Bethesda III nodules that underwent repeat
biopsies had indeterminate results. A total of 69 patients were
excluded due to incomplete records (16), other pathologically
confirmed thyroid cancer types (2), uncertain repeat biopsy
outcomes (20), mutations found by 12-gene panel testing (1), or
insufficient follow-up for at least six months after repeat biopsy or
12-gene panel testing (30). Consequently, the current study
included 271 patients: 213 females and 58 males, with a total of
276 Bethesda III nodules. Approximately 65.2% (180/276) of the
nodules were malignant, while 34.8% (96/276) were benign. BRAF
mutations were detected in 41% (113/276) of the cases. In our
dataset, only 36 cases (13.04%) were classified as AUS and 25
(9.06%) as FLUS. Neither AUS nor FLUS showed statistical
significance in the univariate analysis. The median age of patients
was 51 years (IQR 41.00-57.25), and the median nodule size was
5.2 mm (IQR 4.00-7.70). In the current dataset, five variables were
missing, all related to thyroid function tests, resulting in 232
missing values, or approximately 2.8% of the total data points.
These missing values were distributed among multiple variables, as
detailed in Supplementary Table S1 and Supplementary Figure S2.
The cohort was randomly divided into a training set (n = 193) and a
validation set (n = 83). As shown in Table 1, no significant
differences were observed in the baseline characteristics between
the two groups (P > 0.05).

3.2 Selection of clinical characteristics

The predictor variables selected by the six methods are
presented in Table 2. Detailed parameters for all methods (SR-FS,
SR-BS, SR-BE, LASSO, Boruta and RF-RFE) can be found in
Supplementary Table S4 and Supplementary Figures S3-S5. A
total of 10, 6, 6, 5, 8, and 10 predictors were identified using the
six selection methods. As shown in Supplementary Table S4,
variables such as TSH, FT4, and Echotexture did not show a
significant association with malignancy in the initial univariate
screening and were therefore not carried forward into the final
model building stage. Figure 1 illustrates the intersection of
predictors selected by the six methods. Predictors with more than
six intersections were selected as final predictors, including BRAF,
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composition, shape, orientation, and TI-RADS. Ultimately, five
predictors were included in the development of the model.

3.3 Performances of different models

In our comparative analysis, we evaluated five machine learning
models against the LR model. Although complex models such as RF
achieved better training set performance, the LR model exhibited
the most robust and clinically meaningful results in the validation
set, as evidenced by Table 3 and Figure 2. The six models were
developed using six distinct machine learning algorithms. The
estimated odds ratios for the logistic regression model are
presented in Supplementary Table S5 and visualized in a forest
plot (Supplementary Figure S6). We further illustrate visualizations
for the other models, including the relative importance of potential
features and heatmaps of confusion matrices for the decision tree,
random forest, extreme gradient boosting, support vector machine,
and k-nearest neighbors models derived from the training cohort.
However, due to the nature of the KNN model, the ranking of
feature importance is not applicable in this case.

The RF model demonstrated the highest area under the ROC
curve (AUC, 0.923; 95% CI: 0.887-0.959) in the training set
(Figure 2A), whereas the LR model achieved the highest AUC
(0.823; 95% CI: 0.732-0.915) in the validation set (Figure 2B). The
AUC values for the remaining models in the validation set were as
follows: (1) DT: 0.758, 95% CI: 0.657-0.859; (2) RF: 0.792, 95% CI:
0.694-0.890; (3) XGB: 0.817, 95% CI: 0.722-0.912; (4) SVM: 0.822,
95% CI: 0.730-0.913; (5) KNN: 0.771, 95% CI: 0.668-0.873
(Figure 2B). Based on the DeLong test (Supplementary Tables S7,
S$8), no significant difference in AUC was observed in the validation
cohort. This may be due to the limited sample size or the similar
performance of the models.

The DT model showed the best consistency between observed
and predicted results in both the training and validation sets
(Figure 2C). In contrast, the LR, SVM, KNN, and XGB models
exhibited similarly good consistency between observed and
predicted results in the validation set (Figure 2D). The
consistency between observed and predicted results in the RF
model was less stable in the validation set (Figure 2D).

In the training set, all models demonstrated similar DCA results
(Figure 2E), whereas the LR, SVM, and XGB models achieved the
best DCA outcomes in the validation set (Figure 2F). In the
validation set, using alternative models resulted in a greater net
benefit compared to no treatment or full treatment strategies when
the threshold probability was <80%.

The RF model exhibited the highest precision and specificity in
the training set, whereas the LR model achieved the highest recall
and F1 score, as well as the second lowest Brier score. In the
validation set, the LR model achieved the highest recall and F1
score, whereas the SVM model demonstrated the highest precision.
Detailed information can be found in Table 3. Model performance
in the validation set served as the primary criterion for identifying
the optimal model. Although the LR model exhibited moderate
specificity (0.55), its superior AUC (0.823), recall (sensitivity, 0.85),
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TABLE 1 Baseline characteristics of all patients between the training and validation cohorts.

Characteristics Total N=276 Training N=193 Testing N=83 P value
Gender (%) 0.271
Male 60 (21.74) 38 (19.69) 22 (26.51)
Female 216 (78.26) 155 (80.31) 61 (73.49)
Age (median [IQR]) 51.00[41.00;57.25] 51.00[41.00;58.00] 50.00 [36.00;56.50] 0.245
Nuclear atypia (%) ‘ 0.195
Present 36 (13.04) 29 (15.03) 7 (8.43)
Absent 240 (86.96) 164 (84.97) 76 (91.57)
Architectural atypia (%) ’ 0.356
Present 25 (9.06) 20 (10.36) 5 (6.02)
Absent 251 (90.94) 173 (89.64) 78 (93.98)
BRAFY69%F (%) ‘ 1.000
Positive 113 (40.94) 79 (40.93) 34 (40.96)
Negative 163 (59.06) 114 (59.07) 49 (59.04)
Diameter (median [IQR]) 5.20 [4.007.70] 5.30 [4.00;8.10] 5.00 [4.00;7.00] 0.513
Solid composition (%) ‘ 0.188
Yes 236 (85.51) 161 (83.42) 75 (90.36)
No 40 (14.49) 32 (16.58) 8 (9.64)
Nodule position 1(%) ‘ 0.227
Left lobe 134 (48.55) 98 (50.78) 36(43.37)
Right lobe 133 (48.19) 88 (45.60) 45 (54.22)
Isthmus 9 (3.26) 7 (3.63) 2 (2.41)
Marked Hypoechoic(%) ‘ 0.687
Yes 21 (7.61) 16 (8.29) 5 (6.02)
No 255 (92.39) 177 (91.71) 78 (93.98)
Unclear boundary (%) ‘ 1.000
Yes 227 (82.25) 159 (82.38) 68 (81.93)
No 49 (17.75) 34 (17.62) 15 (18.07)
Irregular shape (%) ‘ 0.532
Yes 58 (21.01) 43 (22.28) 15 (18.07)
No 218 (78.99) 150 (77.72) 68 (81.93)
Microcalcification (%) ‘ 1.000
Yes 44 (15.94) 31 (16.06) 13 (15.66)
No 232 (84.06) 162 (83.94) 70 (84.34)
Calcification (%) ‘ 0.643
No calcification 159 (57.61) 112 (58.03) 47 (56.63)
Microcalcification 69 (25.00) 50 (25.91) 19 (22.89)
Macrocalcification 48 (17.39) 31 (16.06) 17 (20.48)

(Continued)
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TABLE 1 Continued

Characteristics Total N=276 Training N=193 Testing N=83
Halo (%) 0.384
Present 32 (11.59) 25 (12.95) 7 (8.43)
Absent 244 (88.41) 168 (87.05) 76 (91.57)

‘ Orientation (%) ‘ 0.853
Taller-than-wide 129 (46.74) 89 (46.11) 40 (48.19)
Wider-than-tall 147 (53.26) 104 (53.89) 43 (51.81)

‘ Upper region (%) ‘ 0.733
Yes 58 (21.01) 39 (20.21) 19 (22.89)
No 218 (78.99) 154 (79.79) 64 (77.11)

‘ Nodule Position 2(%) ‘ 0.835
Upper region 58 (21.01) 39 (20.21) 19 (22.89)
Middle region 135 (48.91) 93 (48.19) 42 (50.60)
Lower region 73 (26.45) 53 (27.46) 20 (24.10)
Isthmus 10 (3.62) 8 (4.15) 2(2.41)

‘ CDFI pattern (%) ‘ 0.988
Present 65 (23.55) 46 (23.83) 19 (22.89)
Absent 211 (76.45) 147 (76.17) 64 (77.11)

‘ Echotexture (%) ‘ 0.168
Homogeneous 98 (35.51) 63 (32.64) 35 (42.17)
Heterogeneous 178 (64.49) 130 (67.36) 48 (57.83)

‘ Posterior features (%) ‘ 0.546
Present 65 (23.55) 43 (22.28) 22 (26.51)
Absent 211 (76.45) 150 (77.72) 61 (73.49)

?:;ﬂ?g‘l?;)Posterlor 1.000
Yes 75 (27.17) 52 (26.94) 23 (27.71)
No 201 (72.83) 141 (73.06) 60 (72.29)

‘ Suspicious LN (%) ‘ 0.269
Yes 100 (36.23) 68 (35.23) 32 (38.55)
No 176 (63.77) 125 (64.77) 50 (61.45)

‘ TI-RADS (%) ‘ 0.425
3 53(19.20) 39 (20.21) 14(16.87)
4a 102(36.96) 64(33.16) 38(45.78)
4b 78(28.26) 57(29.53) 21(25.30)
4c 29(10.51) 22(11.40) 7(8.43)
5 14(5.07) 11 (5.70) 3 (3.61)
Solitary nodule (%) 0.395
Yes 112 (40.58) 82 (42.49) 30 (36.14)
No 164 (59.42) 111 (57.51) 53 (63.86)
TSH (median [IQR]) 1.76 [1.08;2.58] 1.77 [1.03;2.58] 1.74 [1.11;2.55] 0.745

(Continued)
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TABLE 1 Continued

Characteristics Total N=276 Training N=193 Testing N=83 P value
Solitary nodule (%) 0.395
FT4(median [IQR]) 13.58 [11.63;16.24] 13.68 [11.70;16.60] 13.40 [11.59;15.64] 0.199
FT3(median [IQR]) 4.49 [4.07;5.01] 4.48 [4.10;5.01] 450 [4.02;5.00] 0.882
TgAb (median [IQR]) 7.61 [1.15;19.88] 10.80 [1.22;20.50] 3.28 [1.00;18.45] 0.130
TPOAD (median [IQR]) 7.08 [1.00;14.98] 9.00 [1.04;15.50] 2.13 [1.00512.70] 0.173

CDFI, Color Doppler Flow Imaging; LN, Lymph Node; TI-RADS, Thyroid Imaging Reporting and Data System; TSH, Thyroid-Stimulating Hormone; FT4, Free Thyroxine; FT3, Free

Triiodothyronine; TgAb, Thyroglobulin Antibody; TPOADb, Thyroid Peroxidase Antibody.

and F1 score (0.81) justified its selection as the optimal model. For
malignancy risk assessment, minimizing false negatives through
high recall remains clinically critical.

In summary, while the RF model may exhibit potential
overfitting, the LR model demonstrates not only strong
interpretability but also achieves the highest AUC in the
validation set. Taking into account model performance,
complexity, generalization capability, and practicality, the LR
model was ultimately chosen. The forest plot illustrates variables
with P-values greater than 0.05 (composition), and due to its clinical
significance in daily medical practice, this variable was retained in
the logistic regression model for interpretation of its effect size.

3.4 Nomogram construction and
application

The nomogram was constructed by incorporating five variables
—BRAF, composition, shape, orientation, and TI-RADS—into the
predictive model (Figure 3). Following 500 bootstrap iterations, the
LR model demonstrated an AUC of 0.871 (95% CI: 0.817-0.926) in
the training set and 0.846 (95% CI: 0.762-0.930) in the validation
set (Figures 4A, B). After 500 bootstrap iterations for calibration,

TABLE 2 Predictor variables of Bethesda Ill nodules using different
selection methods.

Methods Predictor variables

AUS, BRAF, Size, Composition, Echogenicity, Margin,

SR-FS

Shape, Orientation, TI-RADS, TgAb
SR-BE BRAF, Composition, Shape, Orientation, TI-RADS, TgAb
SR-BS BRAF, Composition, Shape, Orientation, TI-RADS, TgAb
LASSO BRAF, Composition, Shape, Orientation, TI-RADS

BRAF, Size, Composition, Margin, Shape, Orientation, TI-
Boruta

RADS, TgAb
RE-RFE BRAF, Size, Composition, Shape, Orientation, TI-RADS,

TgAb, TSH, FT4, Echotexture

SR-FS, stepwise regression-forward selection; SR-BS, stepwise regression-backward selection;
SR-BE, stepwise regression-bidirectional elimination; LASSO, least absolute shrinkage and
selection operator; RE-RFE, random forest feature elimination; AUS, Atypia of Undetermined
Significance; TI-RADS, Thyroid Imaging Reporting and Data System; TSH, Thyroid-
Stimulating Hormone; FT4, Free Thyroxine; TgAb, Thyroglobulin Antibody.
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the calibration curve closely aligned with the ideal diagonal. The
average absolute errors (MAEs) for the two datasets were 0.013 and
0.031, respectively, indicating that the predicted probabilities closely
aligned with the actual outcomes across different samples
(Figures 4C, D). The Hosmer-Lemeshow test confirmed good
consistency between the predicted and observed results (P =
0.414). DCA showed that applying the LR nomogram provided
greater net benefit than no treatment or full treatment strategies
when the threshold probability ranged from 16% to 96% in the
training set and from 15% to 95% in the validation set (Figures 4E,
F). Using this model, clinicians can more accurately assess the risk
of malignancy in Bethesda III nodules, providing optimized
management and treatment options. The integration of this
predictive model significantly enhances the precision of patient
management. This highlights the importance of leveraging precise,
data-driven decisions in clinical practice. We further assessed the
independence of the variables in the model by calculating the VIF
and found that all VIF values were well below the common
threshold of 5, indicating low multicollinearity and confirming
the model’s stability and reliability. The detailed VIF values are
provided in Supplementary Table S6. Our analysis compared the
ROC curves of the nomogram with those of the five individual
predictors for malignancy risk assessment. The nomogram
exhibited superior diagnostic performance, as illustrated in
Supplementary Figure S14.

Compared to the complex logistic regression formula, the
nomogram is simpler, more intuitive, and clinically practical. To
use the nomogram, a line is drawn from the value of each feature to
the “points” axis, obtaining the corresponding score. After
summing these points, the total score is located on the “total
points” axis. Finally, a line is drawn downward from the total
score to the “probability of malignancy” axis to determine the
corresponding risk. For example, when a patient is BRAF-positive
with an ultrasound indicating a solid nodule, a regular shape, a
vertical-to-horizontal ratio <1, and a TI-RADS score of 4a, their
“BRAF” score is 91, “composition” is 32, “shape” is 0, “orientation”
is 0, and “TI-RADS” is 24. The total score is 147, corresponding to a
malignancy probability of 0.72 (72%). Therefore, the surgeon may
consider this patient at high risk for Bethesda III nodules
malignancy and recommend diagnostic lobectomy (Figure 3A).

To support clinical implementation of this predictive model, we
developed a web-based calculator that enables physicians to input
patient-specific clinical data and immediately obtain malignancy risk
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FIGURE 1

Upset plot of interactions between the predictors. (A) BRAF, composition, shape, orientation, TI-RADS. (B) TSH, FT4, Echotexture. (C) AUS, Echogenicity.
(D) Size. (E) Margin. (F) TgAb. SR-FS, stepwise regression-forward selection; SR-BS, stepwise regression-backward selection; SR-BE, stepwise regression-
bidirectional elimination; LASSO, least absolute shrinkage and selection operator; RF-RFE, random forest -recursive feature elimination.

TABLE 3 Predictive performance metrics of different machine learning algorithms of the training set and validation set.

Model LR DT RF XGB KNN
Training set
AUC (95%) 0.89 (0.84-0.93) 0.83 (0.77-0.89) 0.92 (0.89-0.96) 0.90 (0.86-0.95) 0.88 (0.83-0.93) 0.90 (0.86-0.94)
SEN 0.92 0.87 0.78 0.82 0.73 0.79
SPE 0.70 0.71 091 0.85 0.85 0.84
PPV 0.85 0.83 0.94 091 0.90 0.90
NPV 0.82 0.76 0.69 0.71 0.63 0.68
ACC 0.85 0.83 0.94 091 0.90 0.90
F1 score 0.89 0.85 0.85 0.86 0.81 0.84
Brier score 0.13 0.15 0.11 0.12 0.13 0.14
Validation set
AUC (95%) 0.82 (0.73-0.92) 0.76 (0.66-0.86) 0.79 (0.69-0.89) 0.82 (0.72-0.91) 0.82 (0.73-0.91) 0.77 (0.67-0.87)
SEN 0.85 0.82 0.70 0.74 0.63 0.80
SPE 0.55 0.61 0.72 0.72 0.86 0.59
PPV 0.78 0.76 0.83 0.83 0.90 0.78
NPV 0.67 0.69 0.57 0.60 0.56 0.61
ACC 0.78 0.76 0.83 0.83 0.90 0.78
F1 score 0.81 0.79 0.76 0.78 0.74 0.79
Brier score 0.16 0.19 0.21 0.16 0.16 0.23

DT, decision tree; KNN, k-nearest neighbors; LR, logistic regression; RF, random forest; SVM, support vector machine; XGB, XGBoost; AUC, area under curve; SEN, sensitivity; SPE, specificity;
PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy.
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FIGURE 2

Performance comparison of different machine learning models in the training set and validation set. (A) ROC curves in the training set. (B) ROC
curves in the validation set. (C) Calibration curves in the training set. (D) Calibration curves in the validation set. (E) DCA results in the training set.

(F) DCA results in the validation set. (A, B) The dotted lines in the ROC curves represent the reference line. (C, D) The dotted lines in the calibration
curves represent a perfect prediction by an ideal model. (E, F) The “treat all” lines in the DCA results assume that all nodules were malignant,
whereas the “treat none” lines assume that all nodules were benign lesions. Abbreviations: DT, decision tree; AUC, area under curve; KNN, k-nearest
neighbors; LR, logistic regression; RF, random forest; SVM, support vector machine; XGB, XGBoost; ROC, receiver operating characteristic; DCA,
Decision Curve Analysis.
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FIGURE 3

(A) Nomogram used for predicting the risk of malignancy for Bethesda Il nodules. Logistic regression algorithm was used to establish nomogram.
The final score (ie, Total Points) is calculated as the sum of the individual scores of each of the ten variables included in the nomogram. (B) A web-
based calculator for predicting malignancy risk in Bethesda Ill nodules. Abbreviations: TI-RADS, Thyroid Imaging Reporting and Data System.

estimates for Bethesda ITI nodules, thereby supporting more informed
clinical decisions. The tool streamlines risk assessment while
facilitating personalized patient management through individualized
risk stratification. The calculator is publicly accessible online at
https://13583155338-L.shinyapps.io/Predictionof AUS/ (Figure 3B).
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4 Discussion

According to the 2023 TBSRTC, the estimated malignant risk
for Bethesda III nodules ranges from 10% to 30%, but recent studies
report a significantly higher malignancy rate than predicted (5, 7,
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FIGURE 4

Performance of the logistic regression model with 500 bootstraps. (A) ROC curves in the training set. (B) ROC curves in the validation set. (C) Calibration
curves in the training set. (D) Calibration curves in the validation set. (E) DCA results in the training set. (F) DCA results in the validation set. (A, B) The
diagonal lines in the ROC curves represent the reference line; the "Apparent ROC" lines represent the apparent performance of the model, whereas the
“Bootstrap ROC" lines represent the model's performance after 500 bootstraps. (C, D) The dotted lines in the calibration curves represent a perfect
prediction by an ideal model; the "Apparent” lines denote the apparent performance of the model, whereas the “Bias-corrected” lines reflect the model's
performance after 500 bootstraps; a closer fit to the dotted lines indicates a better predictive effect. (E, F) The “treat all” lines in the DCA results assume
that all nodules were malignant, whereas the “treat none” lines assume that all nodules were benign lesions; the “"Nomo model” lines represent the
performance of the model. For example, if a patient’s threshold probability is 75%, the net benefit is approximately 0.3 in the validation set, meaning that
30 out of 100 patients may benefit from using this model. ROC, receiver operating characteristic; DCA, Decision Curve Analysis.

33). More importantly, after being informed of the 10-30%
malignancy risk and receiving follow-up treatment
recommendations for US-FNA, these cases show higher rates of
inconclusive results (up to 60%) on repeat FNA (34, 35). Although
several studies have addressed this challenge, most focus on specific
factors, with few providing comprehensive clinical, ultrasound,
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genetic, and pathological data. Additionally, many studies are
limited by small sample sizes due to the absence of
comprehensive postoperative pathological data, hindering their
ability to conduct balanced research or only allowing for one-
sided conclusions. Ahn, H. S. et al. (23) included surgical and
repeat biopsy results to analyze nodule characteristics. By
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combining ultrasound features, nodule size, and cytological
subtypes, they provided more accurate malignancy risk
stratification for Bethesda III nodules. Ahmadi, S. et al. (36)
observed 141 Bethesda III nodules with multigene testing and 12
months of ultrasound follow-up. The study showed a 100% negative
predictive value, demonstrating the feasibility of follow-up using
multigene testing for these nodules. Numerous studies have shown
that multigene testing achieves a negative predictive value close to
100% in follow-up observation of Bethesda III nodules, proving its
feasibility (37, 38). Therefore, we innovatively included Bethesda IIT
nodules with surgical pathology, repeat biopsy, and multigene
testing. We then compared logistic regression and five ML models
to predict and analyze the malignancy risk of Bethesda III nodules,
ultimately selecting logistic regression as the ideal model for
developing predictive models and nomograms.

Due to the lack of standardized guidelines or consensus for
feature selection in predictive models, it remains unclear how many
features should be included in the model. Relevant risk variables
often exhibit correlations, and multicollinearity can cause issues
such as overfitting and computational complexity. To address this,
we applied six feature selection methods to the study population,
aiming to reduce the high correlation between predictors and
capture the complex relationships with outcome variables.

We selected BRAF, composition, shape, orientation, and TI-
RADS, with BRAF identified as the most significant predictor. The
standalone BRAF V600E test has become a relatively cost-effective
and routine preoperative tool in many tertiary hospitals across
China. In this study, the odds ratio (OR) for BRAF was 17, and the
BRAF V600E mutation rate in patients diagnosed with Bethesda III
nodules and ultimately confirmed to have PTC reached 87.93%
(39). However, BRAF for malignancy detection in the Bethesda III
nodules population has a sensitivity of only 30%-40%. Research by
Paspala, A. et al. (40) found that the detection rate of BRAF
mutations in Bethesda IIT is lower than in Bethesda V/VI,
suggesting its greater utility for stratification in high-risk
subgroups but also its limitations in Bethesda III nodules. When
BRAF is negative, gene testing cannot predict whether Bethesda III
nodules are benign or malignant, with a negative predictive value of
38.1%-52.6% (39, 41). Therefore, malignancy prediction in
Bethesda III nodules requires a combined approach that
integrates ultrasound characteristics for improved diagnostic
accuracy (42, 43). Composition, shape, and orientation are
independent imaging risk factors for thyroid nodules and should
be incorporated into predictive models for Bethesda III nodules
malignancy. Jin, L. et al. (44) demonstrated that spatial
heterogeneity in malignant nodules, quantified by ultrasound
contrast enhancement, was significantly higher. Ultrasound
findings of nodules with blurred margins, lobulated, or irregular
contours suggest a higher likelihood of malignancy in Bethesda III
nodules (45, 46). Thyroid nodule taller-than-wide (TTW) feature is
a strong predictor of malignancy. Studies have shown that a shape
with TTW yields a diagnostic accuracy of up to 83%, with a
specificity of 73% (47). Additionally, combining composition,
shape, orientation, and other ultrasound features significantly
enhances both sensitivity and specificity in diagnosis (43, 48).
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This study also included a subgroup analysis of Bethesda III
nodules and examined the correlation between thyroid function and
the benign or malignant nature of Bethesda III nodules. The
findings show that the atypical nuclear category significantly
differs from other categories in multiple aspects. First, the risk of
malignancy (ROM) in cases with atypical nuclei is significantly
higher than in cases with architectural atypia. Categorizing
Bethesda III cases into nuclear atypia and architectural atypia
subgroups may improve ROM stratification (49). Second, the
proportion of malignant tumors in Bethesda III nodules increases
with higher TI-RADS classifications, though no such difference is
observed in FLUS (45). Moreover, both nuclear and architectural
atypia subcategories in AUS exhibit high ROM, classifying them
into high-risk groups (50, 51). Therefore, this study categorized
pathological features into nuclear and architectural atypia.
Unfortunately, neither cytological atypia subtype showed
statistical significance in predicting malignancy in our analysis.
This result is likely attributable to the limited sample size in the
subgroups, particularly for nuclear atypia, which resulted in
insufficient statistical power to detect a potential difference. The
2023 TBSRTC revision has streamlined subcategorization into two
classifications: AUS-nuclear and AUS-other. This modification
indirectly demonstrates the limitations of relying solely on
traditional cytological subtypes for predicting malignancy risk, as
subcategorization alone cannot provide sufficient clinical decision-
making support. Future studies will seek to increase the sample size
to investigate the relationship between pathological subtypes and
the malignancy rate of Bethesda III nodules. The study found
significant differences in TgAb levels between benign and
malignant nodules, suggesting its potential role in preoperative
malignancy diagnosis. Retrospective studies in Chinese patients
showed that the TgAb positivity rate was significantly higher in
PTC patients than in those with benign thyroid nodules, suggesting
a potential link to malignant tumor occurrence (52).

In the era of big data, machine learning models for predicting
clinical events have become increasingly important. Clinical EMR
data is relatively objective, accurate, and easily accessible for
clinicians and researchers. Combining EMR data with complex
machine learning algorithms facilitates the development of clinical
prediction models (53). This study demonstrates the capabilities of
various machine learning models in predicting the benign or
malignant nature of Bethesda III nodules and aims to identify the
most suitable algorithm based on the dataset’s characteristics and
the study’s objectives. Different machine learning algorithms have
distinct principles, strengths, and applicable scenarios, but also
limitations and biases. LR are traditional classification algorithms
suited for linear relationships but sensitive to outliers. Decision
trees, based on tree structures, are prone to overfitting and noise
sensitivity. Random forests, using simple averaging or voting
strategies, require significant computational resources and have
poor interpretability. SVM optimize objective functions to find
the optimal hyperplane but incur high computational costs and
require careful parameter tuning. XGB, employing gradient
boosting, requires long training times and extensive
hyperparameter tuning. KNN are computationally intensive and
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struggle with high-dimensional data (54-56). In this study, the LR
model achieved an AUC of 0.823 in the validation set, with superior
sensitivity, recall, and F1 scores compared to more complex models,
demonstrating its practical significance. When the primary goal is
to analyze the relationship between outcomes and risk factors,
especially with small datasets, traditional methods like logistic
regression may be sufficient (57). This finding supports the
argument that machine learning does not always outperform LR
in predictive modelling (58). Additionally, the generalizability of the
models, assessed through five-fold cross-validation, indicates that
they can handle unseen data and reliably perform risk assessments
in new clinical contexts. This comprehensive approach improved
the predictive accuracy of the models and enhanced their reliability
in practical applications.

The LR model outperformed others in discriminative ability,
calibration, and clinical net benefit. The newly developed LR model,
which integrates easily accessible pathological, ultrasound, and
clinical features, performed well, with an AUC of 0.823 in the
validation set. Besides AUC, we evaluated the LR model’s
performance using other metrics, including precision, recall, F1
score, and Brier score. Due to its simple structure, the LR model
excelled, demonstrating outstanding interpretability and high
performance across these key metrics. The LR model’s higher F1
score reflects a reasonable balance between precision and recall,
minimizing both false positives and false negatives, which is critical
for clinical decision-making. The calibration plot showed good
agreement between predicted and actual values. More
importantly, decision curve analysis revealed that the LR model
provides substantial clinical net benefit, supporting clinical
decision-making. In terms of applicability, the LR model is
characterized by its simple structure and high interpretability.
However, the differences in predictive performance across models
were not significant, likely due to the limited sample size of the
validation set. Considering its interpretability, calibration, clinical
utility, and potential for further analysis, the LR model remains the
optimal choice. Additionally, incorporating AUS subtypes and
thyroid function tests into the model may improve its predictive
performance. The model’s low specificity inevitably increases false-
positive rates in clinical settings. While these false positives may
prompt additional diagnostic procedures, they rarely result in
immediate radical interventions. Decision curve analysis confirms
that despite this limitation, the model prevents more unnecessary
procedures than it generates when benchmarked against universal
treatment strategies. In addition, we recommend that future studies
incorporate additional pathological and biochemical clinical data to
potentially improve predictive outcomes.

This study developed a nomogram, which was evaluated
through 500 bootstrap iterations and assessed for predictive
performance using several goodness-of-fit tests, including the
Hosmer-Lemeshow test, AUC-ROC, calibration curve, and DCA.
The Hosmer-Lemeshow test showed good agreement between
predicted and observed values (P = 0.414). The observed AUC
difference (A = 0.025) between the training and validation cohorts
indicates that the sample size is adequate to assess the model’s
general applicability and effectiveness. The calibration curve also
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showed strong consistency between predicted and actual outcomes,
underscoring the model’s reliability. Furthermore, the DCA results
demonstrated that across a wide range of probability thresholds, the
nomogram consistently offered greater clinical benefit than
universal treatment or no treatment. Previous studies have also
developed nomograms to predict the benign or malignant nature of
Bethesda III nodules using systematic risk factors. Yoon, J. H. et al.
(15) reported a nomogram with an AUC of 0.754 but did not
evaluate its applicability using DCA. Ocal, B. et al. (59) reported an
AUC of 0.784 in the validation set, although their dataset included
uncertain nodules from Bethesda III, IV, and V categories. Zhong,
L. et al. (16) described a nomogram with an AUC of 0.823, but its
applicability was more limited, with a threshold probability range of
21% to 70%. Cao, Y. et al.0 (14) reported a nomogram with an AUC
of 0.80, comparing two machine learning methods to traditional
logistic regression. The nomogram developed in this study has an
AUC higher than those reported in the aforementioned studies and
shows broader applicability in DCA. Moreover, these previous
studies employed only logistic regression or a few machine
learning algorithms, without comparing them to a broader range
of machine learning models. As a result, this study is more
innovative and comprehensive. By using this nomogram,
clinicians can accurately predict the benign or malignant nature
of Bethesda III nodules, thus guiding clinical decision-making.
This study has several limitations. First, although robust
internal validation through cross-validation and bootstrap
methods strengthened the methodological rigor, the lack of
external validation with an independent cohort remains a
significant limitation. The single-center, retrospective nature of
our dataset may introduce selection bias, and the small sample
size could lead to overfitting in machine learning models, limiting
the model’s generalizability across clinical practices with varying
demographic characteristics, institutions, and regions. To address
this limitation, future research should prioritize multicenter
collaborations to validate and optimize the model in diverse
settings, ensuring broader clinical applicability. Second, while our
case selection included Bethesda III nodules patients followed up in
outpatient settings without surgery, we did not conduct prospective
follow-up for all patients. We used BRAF mutation analysis as part
of routine preoperative testing, but did not include the 12-gene
panel in the routine screening, which may have caused
discrepancies in molecular analysis results. Patients who
underwent surgery, repeat FNA, or molecular testing likely
represent a higher-risk subset compared to those managed
conservatively. Although the 12-gene test and repeat biopsy have
nearly 100% negative predictive value, biases may still arise due to
the relatively short follow-up period. Furthermore, we acknowledge
that the minimum six-month follow-up period for non-surgical
cases may be insufficient to capture all slow-growing malignancies.
Future studies should prioritize long-term follow-up and include
these additional mutations to enhance the comprehensiveness and
accuracy of the predictive model. Third, our study cohort presented
a malignancy rate of 65.2%, which is substantially higher than the
13-30% rate typically estimated for Bethesda III nodules.
Consequently, our model was trained on a higher-risk population
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than is typically encountered in general clinical practice. Fourth, our
study did not employ an exhaustive hyperparameter tuning process,
such as grid search or random search, for the more complex
machine learning models like Random Forest and XGBoost.
Lastly, inter-observer variability in the interpretation of US and
FNAB results may occur. In conclusion, of the six machine learning
algorithms evaluated, LR demonstrated the best performance in
this study.

Consequently, a logistic regression-based nomogram was
developed to predict the benign or malignant nature of Bethesda
III nodules. Future studies should focus on further prospective
external validation to assess whether follow-up strategies based on
the final predictive model can effectively predict the benign or
malignant nature of Bethesda III nodules.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the 960th
Hospital of the PLA Joint Logistics Support Force Research Ethics
Committee. The studies were conducted in accordance with the
local legislation and institutional requirements. The participants
provided their written informed consent to participate in this study.

Author contributions

WL: Data curation, Formal analysis, Writing — original draft. JZ:
Data curation, Formal analysis, Writing — review & editing. YW:
Supervision, Validation, Writing — original draft. JL: Visualization,
Resources, Software, Supervision, Writing - review & editing. ZL:
Resources, Software, Visualization, Writing — review & editing. CW:
Data curation, Resources, Software, Writing — review & editing. JX:
Resources, Software, Writing — review & editing. PZ: Funding
acquisition, Supervision, Validation, Visualization, Writing — review
& editing. QH: Funding acquisition, Resources, Software,
Supervision, Validation, Writing - review & editing.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This work was supported

Frontiers in Endocrinology

15

10.3389/fendo.2025.1655828

by the Key Medical Discipline Project of Joint Logistics Support
Force of the People’s Liberation Army of China, Key Discipline
Project of Shandong Province Medical and Health and Shandong
Second Medical University Affiliated Hospital (Teaching Hospital)
Scientific Research Development Fund Project(2024FYM107).

Acknowledgments

This study was generously supported by Jingding Medical Tech,
to whom we extend our sincere gratitude. We especially thank them
for providing authorization and technical support for the
JD_DCPM software. The team at Jingding Medical Tech offered
invaluable assistance in data processing.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fendo.2025.
1655828/full#supplementary-material

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fendo.2025.1655828/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2025.1655828/full#supplementary-material
https://doi.org/10.3389/fendo.2025.1655828
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Li et al.

References

1. Durante C, Grani G, Lamartina L, Filetti S, Mandel S], Cooper DS. The diagnosis
and management of thyroid nodules: A review. JAMA. (2018) 319:914-24.
doi: 10.1001/jama.2018.0898

2. Grani G, Sponziello M, Filetti S, Durante C. Thyroid nodules: Diagnosis and
management. Nat Rev Endocrinol. (2024) 20:715-28. doi: 10.1038/s41574-024-01025-4

3. Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA.
The 2023 Bethesda system for reporting thyroid cytopathology. Thyroid. (2023)
33:1039-44. doi: 10.1089/thy.2023.0141

4. Hassan I, Hassan L, Balalaa N, Askar M, Alshehhi H, Almarzooqi M, et al. The
incidence of thyroid cancer in Bethesda III thyroid nodules: A retrospective analysis at
a single endocrine surgery center. Diagnostics (Basel). (2024) 14, 1026. doi: 10.3390/
diagnostics14101026

5. Pasha HA, Dhanani R, Mughal A, Ahmed KS, Suhail A. Malignancy rate in
thyroid nodules with atypia or follicular lesion of undetermined significance. Int Arch
Otorhinolaryngol. (2020) 24:€221-26. doi: 10.1055/s-0039-1698784

6. Jiragawasan C, Himakhun W. The risk of Malignancy in the atypia of
undetermined significance/follicular lesion of undetermined significance (AUS/
FLUS) category subgroups: A Thai institute experience. ] Am Soc Cytopathol. (2024)
13:16-22. doi: 10.1016/j.jasc.2023.09.006

7. Yoo WS, Ahn HY, Ahn HS, Chung YJ, Kim HS, Cho BY, et al. Malignancy rate of
Bethesda category I1I thyroid nodules according to ultrasound risk stratification system
and cytological subtype. Med (Baltimore). (2020) 99:¢18780. doi: 10.1097/
md.0000000000018780

8. Raghunathan R, Longstaff XR, Hughes EG, Li S, Sant VR, Tseng CH, et al.
Diagnostic performance of molecular testing in indeterminate (Bethesda IIT and IV)
thyroid nodules with Hiirthle cell cytology. Surgery. (2024) 175:221-27. doi: 10.1016/
j.surg.2023.05.046

9. Geng J, Wang H, Liu Y, Tai J, Jin Y, Zhang J, et al. Correlation between BRAF
(V600E) mutation and clinicopathological features in pediatric papillary thyroid
carcinoma. Sci China Life Sci. (2017) 60:729-38. doi: 10.1007/s11427-017-9083-8

10. Fakhruddin N, Jabbour M, Novy M, Tamim H, Bahmad H, Farhat F, et al. BRAF
and NRAS mutations in papillary thyroid carcinoma and concordance in BRAF
mutations between primary and corresponding lymph node metastases. Sci Rep.
(2017) 7:4666. doi: 10.1038/s41598-017-04948-3

11. Sapio MR, Posca D, Troncone G, Pettinato G, Palombini L, Rossi G, et al.
Detection of BRAF mutation in thyroid papillary carcinomas by mutant allele-specific
PCR amplification (MASA). Eur ] Endocrinol. (2006) 154:341-8. doi: 10.1530/
€je.1.02072

12. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, et al.
Impact of mutational testing on the diagnosis and management of patients with
cytologically indeterminate thyroid nodules: A prospective analysis of 1056 FNA
samples. ] Clin Endocrinol Metab. (2011) 96:3390-7. doi: 10.1210/jc.2011-1469

13. Patel KN, Angell TE, Babiarz J, Barth NM, Blevins T, Duh QY, et al. Performance
of a genomic sequencing classifier for the preoperative diagnosis of cytologically
indeterminate thyroid nodules. JAMA Surg. (2018) 153:817-24. doi: 10.1001/
jamasurg.2018.1153

14. Cao Y, Yang Y, Chen Y, Luan M, Hu Y, Zhang L, et al. Optimizing thyroid AUS
nodules Malignancy prediction: A comprehensive study of logistic regression and
machine learning models. Front Endocrinol (Lausanne). (2024) 15:1366687.
doi: 10.3389/fendo.2024.1366687

15. Yoon JH, Lee HS, Kim EK, Moon HJ, Kwak JY. A nomogram for predicting
Malignancy in thyroid nodules diagnosed as atypia of undetermined significance/
follicular lesions of undetermined significance on fine needle aspiration. Surgery. (2014)
155:1006-13. doi: 10.1016/j.surg.2013.12.035

16. Zhong L, Shi L, Lai J, Hu Y, Gu L. Combined model integrating clinical,
radiomics, BRAF(V600E) and ultrasound for differentiating between benign and
Malignant indeterminate cytology (Bethesda III) thyroid nodules: A bi-center
retrospective study. Gland Surg. (2024) 13:1954-64. doi: 10.21037/gs-24-310

17. Wu'Y, Rao K, Liu J, Han C, Gong L, Chong Y, et al. Machine learning algorithms
for the prediction of central lymph node metastasis in patients with papillary thyroid
cancer. Front Endocrinol (Lausanne). (2020) 11:577537. doi: 10.3389/
fendo.2020.577537

18. Yao J, Wang Y, Lei Z, Wang K, Li X, Zhou J, et al. Al-generated content
enhanced computer-aided diagnosis model for thyroid nodules: A chatGPT-style
assistant. arXiv preprint arXiv. (2024) 2402:2401. doi: 10.48550/arXiv.2402.02401

19. Yao J, Wang Y, Lei Z, Wang K, Feng N, Dong F, et al. Multimodal GPT model
for assisting thyroid nodule diagnosis and management. NPJ Digit Med. (2025) 8:245.
doi: 10.1038/s41746-025-01652-9

20. Yao J, Zhang Y, Shen J, Lei Z, Xiong J, Feng B, et al. Al diagnosis of Bethesda
category IV thyroid nodules. iScience. (2023) 26:108-7. doi: 10.1016/.is¢i.2023.108114

21. Gupta A, Bajaj S, Nema P, Purohit A, Kashaw V, Soni V, et al. Potential of AT and
ML in oncology research including diagnosis, treatment and future directions: A
comprehensive prospective. Comput Biol Med. (2025) 189:109918. doi: 10.1016/
j.compbiomed.2025.109918

Frontiers in Endocrinology

16

10.3389/fendo.2025.1655828

22. Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Van Calster B, et al.
TRIPOD+AI statement: Updated guidance for reporting clinical prediction models that
use regression or machine learning methods. BM]J. (2024) 385:¢078378. doi: 10.1136/
bmj-2023-078378

23. Ahn HS, Na DG, Kim JH. Risk stratification of thyroid nodules diagnosed as
Bethesda category III by ultrasound, size, and cytology. Korean ] Radiol. (2024) 25:924—
33. doi: 10.3348/kjr.2024.0292

24. Zhou ], Yin L, Wei X, Zhang S, Song Y, Luo B, et al. 2020 Chinese guidelines for
ultrasound Malignancy risk stratification of thyroid nodules: The C-TIRADS.
Endocrine. (2020) 70:256-79. doi: 10.1007/s12020-020-02441-y

25. Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in
logistic and Cox regression. Am ] Epidemiol. (2007) 165:710-8. doi: 10.1093/aje/
kwk052

26. van Smeden M, Moons KGM, de Groot JA, Collins GS, Altman DG, Eijkemans
M]J, et al. Sample size for binary logistic prediction models: Beyond events per variable
criteria. Stat Methods Med Res. (2019) 28:2455-74. doi: 10.1177/0962280218784726

27. Yuan X, Xu Q, DuF, Gao X, Guo J, ZhangJ, et al. Development and validation of
a model to predict cognitive impairment in traumatic brain injury patients: A
prospective observational study. EClinicalMedicine. (2025) 80:103023. doi: 10.1016/
j.eclinm.2024.103023

28. Riley RD, Ensor J, Snell KIE, Harrell FE Jr, Martin GP, Reitsma JB, et al.
Calculating the sample size required for developing a clinical prediction model. BMJ.
(2020) 368:m441. doi: 10.1136/bmj.m441

29. Dong J, Jin Z, Li C, Yang J, Jiang Y, Li Z, et al. Machine learning models with
prognostic implications for predicting gastrointestinal bleeding after coronary artery
bypass grafting and guiding personalized medicine: Multicenter cohort study. ] Med
Internet Res. (2025) 27:¢68509. doi: 10.2196/68509

30. Xu Z, Chen Q, Zhou Z, Sun J, Tian G, Liu C, et al. Screening risk factors for the
occurrence of wedge effects in intramedullary nail fixation for intertrochanteric
fractures in older people via machine learning and constructing a prediction model:
a retrospective study. BMC Musculoskelet Disord. (2025) 26:403. doi: 10.1186/s12891-
025-08619-7

31. Qi W, Wang Y, Wang Y, Huang S, Li C, Jin H, et al. Prediction of postpartum
depression in women: development and validation of multiple machine learning
models. | Transl Med. (2025) 23:291. doi: 10.1186/s12967-025-06289-6

32. Lee S, Gornitz N, Xing EP, Heckerman D, Lippert C. Ensembles of lasso
screening rules. IEEE Trans Pattern Anal Mach Intell. (2018) 40:2841-52.
doi: 10.1109/tpami.2017.2765321

33. Saoud C, Bailey GE, Graham AJ, Maleki Z. The Bethesda system for reporting
thyroid cytopathology in the African American population: A tertiary centre
experience. Cytopathology. (2024) 35:715-23. doi: 10.1111/cyt.13426

34. Allen L, Al Afif A, Rigby MH, Bullock MJ, Trites J, Taylor SM, et al. The role of
repeat fine needle aspiration in managing indeterminate thyroid nodules. J Otolaryngol
Head Neck Surg. (2019) 48:16. doi: 10.1186/s40463-019-0338-7

35. Papazian MR, Dublin JC, Patel KN, Oweity T, Jacobson AS, Brandler TC, et al.
Repeat fine-needle aspiration with molecular analysis in management of indeterminate
thyroid nodules. Otolaryngol Head Neck Surg. (2023) 168:738-44. doi: 10.1177/
01945998221093527

36. Ahmadi S, Kotwal A, Bikas A, Xiang P, Goldner W, Patel A, et al. Outcomes of
cytologically indeterminate thyroid nodules managed with genomic sequencing
classifier. J Clin Endocrinol Metab. (2024) 109:¢2231-39. doi: 10.1210/clinem/dgael12

37. Steward DL, Carty SE, Sippel RS, Yang SP, Sosa JA, Sipos JA, et al. Performance
of a multigene genomic classifier in thyroid nodules with indeterminate cytology: A
prospective blinded multicenter study. JAMA Oncol. (2019) 5:204-12. doi: 10.1001/
jamaoncol.2018.4616

38. Shrestha RT, Evasovich MR, Amin K, Radulescu A, Sanghvi TS, Nelson AC, et al.
Correlation between histological diagnosis and mutational panel testing of thyroid
nodules: A two-year institutional experience. Thyroid. (2016) 26:1068-76. doi: 10.1089/
thy.2016.0048

39. Lei L, Hong Qing S, Wei L, Ma Mo Yang F, Xiao Xiang Y. The combined use of
fine-needle aspiration (FNA) and BRAF VG600E gene testing: Can it increase the
definitive diagnosis rate of nodules categorized as Bethesda III for papillary thyroid
carcinoma? Am Surg. (2024) 90:3209-15. doi: 10.1177/00031348241265143

40. Paspala A, Bompetsi G, Paschou SA, Charalambopoulos A, Pikoulis E, Peppa M,
et al. The value of preoperative molecular testing in the management of Bethesda V and
Bethesda VI thyroid tumors. (Hormones (Athens). (2025) 24:217-29. doi: 10.1007/
$42000-024-00597-0

41. Oh MY, Choi HM, Jang ], Son H, Park SS, Song M, et al. Small multi-gene DNA
panel can aid in reducing the surgical resection rate and predicting the Malignancy risk
of thyroid nodules. Endocrinol Metab (Seoul). (2024) 39:777-92. doi: 10.3803/
EnM.2024.2034

42. Alyusuf EY, Alhmayin L, Albasri E, Enani J, Altuwaijri H, Alsomali N, et al.
Ultrasonographic predictors of thyroid cancer in Bethesda III and IV thyroid nodules.
Front Endocrinol (Lausanne). (2024) 15:1326134. doi: 10.3389/fend0.2024.1326134

frontiersin.org


https://doi.org/10.1001/jama.2018.0898
https://doi.org/10.1038/s41574-024-01025-4
https://doi.org/10.1089/thy.2023.0141
https://doi.org/10.3390/diagnostics14101026
https://doi.org/10.3390/diagnostics14101026
https://doi.org/10.1055/s-0039-1698784
https://doi.org/10.1016/j.jasc.2023.09.006
https://doi.org/10.1097/md.0000000000018780
https://doi.org/10.1097/md.0000000000018780
https://doi.org/10.1016/j.surg.2023.05.046
https://doi.org/10.1016/j.surg.2023.05.046
https://doi.org/10.1007/s11427-017-9083-8
https://doi.org/10.1038/s41598-017-04948-3
https://doi.org/10.1530/eje.1.02072
https://doi.org/10.1530/eje.1.02072
https://doi.org/10.1210/jc.2011-1469
https://doi.org/10.1001/jamasurg.2018.1153
https://doi.org/10.1001/jamasurg.2018.1153
https://doi.org/10.3389/fendo.2024.1366687
https://doi.org/10.1016/j.surg.2013.12.035
https://doi.org/10.21037/gs-24-310
https://doi.org/10.3389/fendo.2020.577537
https://doi.org/10.3389/fendo.2020.577537
https://doi.org/10.48550/arXiv.2402.02401
https://doi.org/10.1038/s41746-025-01652-9
https://doi.org/10.1016/j.isci.2023.108114
https://doi.org/10.1016/j.compbiomed.2025.109918
https://doi.org/10.1016/j.compbiomed.2025.109918
https://doi.org/10.1136/bmj-2023-078378
https://doi.org/10.1136/bmj-2023-078378
https://doi.org/10.3348/kjr.2024.0292
https://doi.org/10.1007/s12020-020-02441-y
https://doi.org/10.1093/aje/kwk052
https://doi.org/10.1093/aje/kwk052
https://doi.org/10.1177/0962280218784726
https://doi.org/10.1016/j.eclinm.2024.103023
https://doi.org/10.1016/j.eclinm.2024.103023
https://doi.org/10.1136/bmj.m441
https://doi.org/10.2196/68509
https://doi.org/10.1186/s12891-025-08619-7
https://doi.org/10.1186/s12891-025-08619-7
https://doi.org/10.1186/s12967-025-06289-6
https://doi.org/10.1109/tpami.2017.2765321
https://doi.org/10.1111/cyt.13426
https://doi.org/10.1186/s40463-019-0338-7
https://doi.org/10.1177/01945998221093527
https://doi.org/10.1177/01945998221093527
https://doi.org/10.1210/clinem/dgae112
https://doi.org/10.1001/jamaoncol.2018.4616
https://doi.org/10.1001/jamaoncol.2018.4616
https://doi.org/10.1089/thy.2016.0048
https://doi.org/10.1089/thy.2016.0048
https://doi.org/10.1177/00031348241265143
https://doi.org/10.1007/s42000-024-00597-0
https://doi.org/10.1007/s42000-024-00597-0
https://doi.org/10.3803/EnM.2024.2034
https://doi.org/10.3803/EnM.2024.2034
https://doi.org/10.3389/fendo.2024.1326134
https://doi.org/10.3389/fendo.2025.1655828
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Li et al.

43. WuL, ShuH, Chen W, Gao Y, Yuan Y, Li X, et al. Diagnostic value of thyroid imaging
reporting and data system combined with BRAF(V600E) mutation analysis in Bethesda
categories ITI-V thyroid nodules. Sci Rep. (2022) 12:5934. doi: 10.1038/s41598-022-09822-5

44. Jin L, Xu C, Xie X, Li F, Lv X, Du L. An algorithm of image heterogeneity with
contrast-enhanced ultrasound in differential diagnosis of solid thyroid nodules.
Ultrasound Med Biol. (2017) 43:104-10. doi: 10.1016/j.ultrasmedbio.2016.05.011

45. Kim J, Shin JH, Oh YL, Hahn SY, Park KW. Approach to Bethesda System
category III thyroid nodules according to US-risk stratification. Endocr J. (2022) 69:67-
74. doi: 10.1507/endocrj.EJ21-0300

46. Lee S, Shin JH, Oh YL, Hahn SY. Subcategorization of Bethesda System category
III by ultrasonography. Thyroid. (2016) 26:836-42. doi: 10.1089/thy.2015.0637

47. Papapostolou KD, Evangelopoulou CC, Ioannidis IA, Kassi GN, Morfas KS,
Karaminas NI, et al. Taller-than-wide thyroid nodules with microcalcifications are at
high risk of Malignancy. In Vivo. (2020) 34:2101-05. doi: 10.21873/invivo.12014

48. Alhajlan M, Al-Masabi M, Al Mansour M, Saihb A, AlAyed S, Alwadai R, et al.
The accuracy of fine-needle aspiration cytology and ultrasonography in assessing
thyroid nodules in correlation with histopathology: A retrospective study. Ann Med
Surg (Lond). (2024) 86:7002-09. doi: 10.1097/ms9.0000000000002676

49. Alden J, Lambrou D, Yang J. Two-tier subclassification of the Bethesda category
IIT (Atypia of undetermined significance/follicular lesion of undetermined significance)
in thyroid cytology. Diagn Cytopathol. (2024) 52:156-62. doi: 10.1002/dc.25261

50. Jin X, Jing X, Smola B, Heider A. Malignant risk of pediatric Bethesda category
III thyroid nodules subcategorized by nuclear atypia and other: A single institution
experience. Cancer Cytopathol. (2024) 132:564-68. doi: 10.1002/cncy.22831

51. Bagis M, Can N, Sut N, Tastekin E, Erdogan EG, Bulbul BY, et al. A
comprehensive approach to the thyroid Bethesda category III (AUS) in the
transition zone between 2nd edition and 3rd edition of the Bethesda System for

Frontiers in Endocrinology

17

10.3389/fendo.2025.1655828

Reporting Thyroid Cytopathology: Subcategorization, nuclear scoring, and more.
Endocr Pathol. (2024) 35:51-76. doi: 10.1007/s12022-024-09797-1

52. Jia X, Pang P, Wang L, Zhao L, Jiang L, Song Y, et al. Clinical analysis of
preoperative anti-thyroglobulin antibody in papillary thyroid cancer between 2011 and
2015 in Beijing, China: A retrospective study. Front Endocrinol (Lausanne). (2020)
11:452. doi: 10.3389/fendo.2020.00452

53. Goecks J, Jalili V, Heiser LM, Gray JW. How machine learning will transform
biomedicine. Cell. (2020) 181:92-101. doi: 10.1016/j.cell.2020.03.022

54. Motamedi F, Pérez-Sanchez H, Mehridehnavi A, Fassihi A, Ghasemi F.
Accelerating big data analysis through lasso-random forest algorithm in QSAR
studies. Bioinformatics. (2022) 38:469-75. doi: 10.1093/bioinformatics/btab659

55. Goin JE. Classification bias of the k-nearest neighbor algorithm. IEEE Trans
Pattern Anal Mach Intell. (1984) 6:379-81. doi: 10.1109/tpami.1984.4767533

56. Rezvani S, Wu J. Handling multi-class problem by intuitionistic fuzzy twin
support vector machines based on relative density information. IEEE Trans Pattern
Anal Mach Intell. (2023) 45:14653-64. doi: 10.1109/tpami.2023.3310908

57. Jiang W, Li Z. Comparison of machine learning algorithms and nomogram
construction for diabetic retinopathy prediction in type 2 diabetes mellitus patients.
Ophthalmic Res. (2024) 67:537-48. doi: 10.1159/000541294

58. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B.
A systematic review shows no performance benefit of machine learning over logistic
regression for clinical prediction models. J Clin Epidemiol. (2019) 110:12-22.
doi: 10.1016/j.jclinepi.2019.02.004

59. Ocal B, Korkmaz MH, Yilmazer D, Tagkin Tirkmenoglu T, Bayir 0, Cadallt
Tatar E, et al. The Malignancy risk assessment of cytologically indeterminate thyroid
nodules improves markedly by using a predictive model. Eur Thyroid J. (2019) 8:83-9.
doi: 10.1159/000494720

frontiersin.org


https://doi.org/10.1038/s41598-022-09822-5
https://doi.org/10.1016/j.ultrasmedbio.2016.05.011
https://doi.org/10.1507/endocrj.EJ21-0300
https://doi.org/10.1089/thy.2015.0637
https://doi.org/10.21873/invivo.12014
https://doi.org/10.1097/ms9.0000000000002676
https://doi.org/10.1002/dc.25261
https://doi.org/10.1002/cncy.22831
https://doi.org/10.1007/s12022-024-09797-1
https://doi.org/10.3389/fendo.2020.00452
https://doi.org/10.1016/j.cell.2020.03.022
https://doi.org/10.1093/bioinformatics/btab659
https://doi.org/10.1109/tpami.1984.4767533
https://doi.org/10.1109/tpami.2023.3310908
https://doi.org/10.1159/000541294
https://doi.org/10.1016/j.jclinepi.2019.02.004
https://doi.org/10.1159/000494720
https://doi.org/10.3389/fendo.2025.1655828
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Prediction of malignancy risk in Bethesda III nodules: development and validation of multiple machine learning models
	1 Introduction
	2 Materials and methods
	2.1 Study cohort
	2.2 Clinical features and data collection
	2.3 Assessment of study outcomes
	2.4 Sample size calculation
	2.5 Data preprocessing
	2.6 Selection of variables
	2.7 Model development and performance comparison
	2.8 Model explanation
	2.9 Statistical analysis

	3 Result
	3.1 Study cohort and baseline information
	3.2 Selection of clinical characteristics
	3.3 Performances of different models
	3.4 Nomogram construction and application

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


