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Objective: To develop a self-reportable risk assessment tool for elderly type 2

diabetes mellitus (T2DM) patients, evaluating risks of diabetic nephropathy (DN),

retinopathy (DR), peripheral neuropathy (DPN), and diabetic foot (DF) using

machine learning, thereby providing new insights and tools for the screening

and intervention of these complications.

Materials and methods: Data from 1,448 T2DM patients at Xi’an No.9 Hospital

were used. After preprocessing, five machine learning algorithms (XGBoost,

LightGBM, Random Forest, TabPFN, CatBoost) were applied. Models were

trained on 70% of the data and evaluated on 30%, with performance assessed

by multiple metrics and SHAP analysis for feature importance.

Results: The analysis identified 33 risk factors, including 6 shared risk factors

(UACR for DN and DR; diabetes duration for DR, DPN, and DF; IBILI for DF and

DPN; history of DN for DR and DF; U-Cr for DR and DF; MCHC for DN and DPN)

and 27 unique risk factors. Model performance was robust: for DN, TabPFN

achieved an AUC of 0.905 and Random Forest an accuracy of 0.878; for DR,

LightGBM attained an AUC of 0.794; for DPN, both TabPFN and CatBoost

achieved a perfect recall of 1.000 and F1-score of 0.915; and for DF, LightGBM

attaining the highest AUC of 0.704. SHAP analysis highlighted key features for

each complication, such as UACR and Y-protein for DN, diabetes duration and

TPOAB for DR, history of DN and IBILI for DF, and diabetes duration and SBP

for DPN.

Conclusion: This study employed interpretable machine learning to characterize

risk factor profiles for multiple T2DM complications, identifying both common
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and distinct factors associated with major complications. The findings provide a

foundation for exploring personalized risk management strategies and highlight

the potential of data-driven approaches to inform early intervention research in

T2DM complications.
KEYWORDS

Type 2 diabetes mellitus (T2DM), diabetic complications, SHAP (Shapley Additive
explanation), machine learning, risk factors
Introduction

Diabetes mellitus, especially type 2 diabetes (T2DM), represents

a growing global health crisis, with 537 million individuals currently

affected worldwide (1), and projections suggest this number will rise

to 783 million by 2045 (2). Major complications such as diabetic

nephropathy (DN), retinopathy (DR), peripheral neuropathy

(DPN), and diabetic foot (DF) significantly associated with

morbidity and mortality of patients with T2DM. DN affects

approximately 30-40% of individuals with type 1 or type 2

diabetes, making it a leading cause of end-stage renal disease

(ESRD) in developed countries (3). DR, a major cause of visual

impairment and blindness, is similarly linked to diabetes (4). DPN

prevalence increases with the duration of diabetes, and it is

estimated that around 50% of patients with T2DM will develop

neuropathy during their lifetime (5). DF is one of the most severe

complications in diabetic patients, often leading to disability and

death (6). Recent studies emphasize that elderly individuals with

T2DM are particularly prone to significant declines in renal

function, highlighting the importance of early interventions to

manage complications effectively (7). Early detection is crucial, as

t imely interventions can prevent the progress ion of

complications (8).

Accurately screening T2DM patients for the relevant

complications remains a significant challenge. Conventional risk

models based on logistic regression and Cox proportional hazards

have been criticized for their limited ability to capture nonlinear

relationships between risk factors (e.g., HbA1c, blood pressure, and

lipid profiles) and complications (9). Recent studies have applied

various machine learning techniques to evaluate the risk of DN.

However, as highlighted by a review (10), most of these studies have

only partially exploited the temporal factors in EHR data.

Additionally, although the integration of omics data has shown

potential to improve risk assessment, limitations such as small

sample sizes and insufficient external validation still persist.

Traditional single-complication models overlook shared

pathophysiological pathways (e.g., hyperglycemia-induced

endothelial dysfunction in DN, DR, and DPN) (11) and

predominantly focus on individual complications, thereby

limiting holistic management of T2DM—particularly problematic

that almost 75% of patients have at least one additional comorbidity
02
at the time of T2DM diagnosis and 44% have at least two

comorbidities. Moreover, over 40% of those aged 60 and above

have three or more long-term conditions (12). In a recent study, Ji

et al. developed a machine learning model for type 1 diabetes (T1D)

patients to self-identify risks of major complications (DR, DN,

DPN), achieving strong internal and external validation

performance (13). T2DM presents distinct challenges: higher

prevalence, complex risk factors (e.g., obesity, insulin resistance)

(1), and a greater need for scalable tools to evaluate the risk of

multiple complications. This study integrates multiple machine

learning algorithms to develop risk assessment models for various

complications of T2DM, aiming to identify both shared and unique

potential risk factors across different T2DM complications, thereby

providing new insights and tools for the screening and intervention

of these complications.
Materials and methods

Study participants

Clinical data for the 1,448 T2DM patients were retrospectively

collected from Xi’an No.9 Hospital between January 2022 and

December 2023, with input features (laboratory measures and

clinical indicators) gathered during patients’ hospitalization and

in the period after discharge. Participants were included in the study

if they were aged 18 years or older, had a confirmed diagnosis of

T2DM, and had complete clinical data. Participants were excluded

if they had incomplete clinical data, missing information on any of

the four aforementioned complications, or other primary causes of

renal or vascular dysfunction. The detailed process of participant

screening, including initial recruitment numbers and reasons for

exclusion, is illustrated in Supplementary Figure 1. All participants

were diagnosed with T2DM based on the American Diabetes

Association (ADA) diagnostic criteria, with confirmation from

two independent endocrinologists. The diagnosis was validated

through clinical evaluation and laboratory findings, including

HbA1c and fasting blood glucose levels, with a documented

disease duration of at least one year. Diagnostic criteria for

diabetic nephropathy (DN), retinopathy (DR), peripheral

neuropathy (DPN), and diabetic foot (DF) were aligned with the
frontiersin.org
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China Guidelines for the Prevention and Treatment of Diabetes

(2024 Edition) (14), with detailed criteria provided in

Supplementary Materials. This study was approved by the

Medical Biological Research Ethics Committee of Xi’an Ninth

Hospital (Approval No.202516). All patient data were de-

identified for confidentiality, with the study adhering to the

Declaration of Helsinki; informed consent was waived for the

retrospect ive , de-identified data as approved by the

ethics committee.
Features and data preprocessing

This study included a total of 129 features, derived from an

initial set of 152 variables with strongly correlated ones (defined by

a correlation coefficient threshold of |r| > 0.8) excluded through

prior correlation analysis to avoid information redundancy, and

these features were finally classified into three major groups:

demographic indicators (age, sex, BMI, diabetes duration, etc.),

biochemical markers (HbA1c, UACR, lipid profiles, etc.), and

complication-related indices (TPOAB, D-Dimer, etc.). Categorical

variables (e.g., smoking status, complication diagnoses) were

encoded as binary or one-hot formats, while continuous variables

(e.g., blood pressure, HbA1c, UACR) were standardized via Z-score

transformation to normalize their scales for model training. All the

features had missing rates <5%. Missing values were imputed using

the Multiple Imputation by Chained Equations (MICE) method, a

well-established technique. To assess the impact of MICE

imputation on model performance, a complete-case analysis using

a subset with no missing values is performed, applying the same

algorithms as the main study and comparing AUC between

complete-case and MICE-imputed datasets.
Model construction and validation

The detailed process of model construction is shown in

Supplementary Figure 2. To develop risk models for diabetic

complications (DR, DN, DPN, and DF), five machine learning

algorithms were selected based on their distinct strengths in

handling clinical tabular data. For DF specifically, resampling and

penalization were applied to address class imbalance. These

algorithms include XGBoost (15) and LightGBM (16) for their

efficiency in capturing non-linear relationships and interactions

among risk factors. Random Forest (17) for its robustness in high-

dimensional data and resistance to overfitting, CatBoost (18) for its

superior handling of categorical variables without manual encoding,

and TabPFN (19) a tabular foundation model, for its ability to

generate synthetic data to augment small samples. In model

construction, algorithm parameters followed conventional

settings. For DF class imbalance, SMOTE oversampling for the

minority class and class weight adjustment were applied. The

dataset was randomly split into a training set (70%) and a test set

(30%), with 5-fold cross-validation on the training set to ensure

stability. Model performance was assessed using accuracy,
Frontiers in Endocrinology 03
precision, recall, F1-score, and ROC-AUC. SHapley Additive

exPlanations (SHAP) analysis was specifically used with XGBoost

to interpret the relative importance of key clinical features in

assessing the risk factors of complications (20–22). Logistic

regression was implemented as a reference to benchmark the five

machine learning algorithms. It underwent the same preprocessing

of variables and was evaluated using the same metrics to ensure

direct comparability. All statistical analyses were performed using R

4.3.3 and Python 3.7.7. Details of the XGBoost algorithm and SHAP

analysis are available at https://github.com/dmlc/xgboost and

http://github.com/slundberg/shap, respectively.
Results

Clinical and demographic characteristics of
patients

Data from 1,448 participants with 129 variables were collected

for analysis (Table 1, Supplementary Table S1). Distributions of

multiple variables were present and compared between the training

(N = 1,013) and test set (N = 435). The median age was 54.0 years,

with no significant difference between the two groups (P = 0.514). A

majority of patients were male (66.9%), and distributions of

smoking status, alcohol consumption, diabetes duration (median

8.0 years), waist circumference, BMI, and WHR were similar

between the two datasets. Twenty variables in the dataset had

missing rates less than 5%, with detailed information on variable

missing rates (Supplementary Table S2).The prevalences of DN,

DR, DF, and DPN in the T2DM patients were 23.3%, 27.2%, 2.8%,

and 85.2%, respectively.
Performance of machine learning models
for T2DM complications

Machine learning models for four major complications (DN,

DR, DF, and DPN) of T2DM were evaluated using five algorithms,

with results in Table 2 and Figure 1. The model performance for DN

was the best among the four complications. Specifically, TabPFN

achieved the highest area under the curve (AUC) of 0.905, Random

Forest yielded the highest accuracy at 0.878, and XGBoost obtained

the highest F1 score of 0.703. Among the models for DR, LightGBM

achieved the highest AUC of 0.801, while TabPFN showed the

highest accuracy of 0.805. For DF, after resampling and

penalization, Random Forest and TabPFN achieved high accuracy

(0.961), with LightGBM attaining the highest AUC, at 0.704. In the

models of DPN, both TabPFN and CatBoost achieved perfect recall

(1.000), along with the highest F1 scores (0.915) and Accuracy

(0.844). Overall, TabPFN demonstrated robust performance across

multiple diabetic complications, while other algorithms exhibited

specific strengths in evaluating individual complications. Logistic

regression was additionally evaluated for the four complications,

with detailed metrics provided in Supplementary Table S3. The five

machine learning algorithms (XGBoost, LightGBM, Random
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Forest, TabPFN, and CatBoost) consistently outperformed logistic

regression across key metrics. AUC consistency between the 812-

sample complete-case and MICE-imputed datasets across

algorithms is shown in Supplementary Table S4.
Feature importance of the models for
T2DM complications

The top 10 most important features for the four major

complications identified through SHAP analysis combined with
Frontiers in Endocrinology 04
the XGBoost model were summarized in Figure 2. For DN, UACR

(Urinary Albumin-to-Creatinine Ratio) and Y-protein emerged as

the most influential features, creatinine and DPNtime were also

significant contributors. For DR, diabetes duration was the most

critical factor, followed by UACR and TPOAB. Longer diabetes

duration significantly increases the risk of DR, highlighting its

central role in the risk model for retinopathy. For DF, the history

of DN, indirect bilirubin (IBILI), and urinary creatinine (U-Cr)

were key features in assessing the risk of diabetic foot complications.

In the model of DPN, diabetes duration was the most important

feature, followed by systolic blood pressure (SBP) and peripheral
TABLE 1 Baseline clinical and demographic characteristics of patients in the overall, training and test set.

Characteristics Levels Overall Training set Test set P-Value

Total 1448 1013 435

Age, median (IQR) 54.0 (15.0) 54.0 (15.0) 53.0 (16.0) 0.514

Sex, n (%)
Female 479 (33.1) 342 (33.8) 137 (31.5) 0.436

Male 969 (66.9) 671 (66.2) 298 (68.5)

Educational level, n (%)

0 1 (0.1) 1 (0.2) 0.613

1 52 (3.6) 38 (3.8) 14 (3.2)

2 163 (11.3) 111 (11.0) 52 (12.0)

3 324 (22.4) 227 (22.4) 97 (22.3)

4 371 (25.6) 266 (26.3) 105 (24.1)

5 537 (37.1) 371 (36.6) 166 (38.2)

Smoking, n (%)
No 789 (54.5) 556 (54.9) 233 (53.6) 0.685

Yes 659 (45.5) 457 (45.1) 202 (46.4)

Alcohol, n (%)
No 1053 (72.7) 748 (73.8) 305 (70.1) 0.163

Yes 395 (27.3) 265 (26.2) 130 (29.9)

Family history, n (%) No 725 (50.1) 512 (50.5) 213 (49.0) 0.622

Yes 723 (49.9) 501 (49.5) 222 (51.0)

Diabetes duration, median (IQR) 8.0 (10.0) 8.0 (10.0) 8.0 (10.0) 0.517

Waist, median (IQR) 90.0 (11.0) 90.0 (11.0) 90.0 (12.0) 0.891

BMI, median (IQR) 25.5 (4.3) 25.6 (4.1) 25.1 (4.4) 0.371

WHR, median (IQR) 0.9 (0.1) 0.9 (0.1) 0.9 (0.1) 0.485

SBP, median (IQR) 130.0 (20.0) 130.0 (20.0) 130.0 (20.0) 0.678

DBP, median (IQR) 80.0 (16.0) 80.0 (15.0) 80.0 (20.0) 0.411

DN, n (%)
No 1110 (76.7) 773 (76.3) 337 (77.5) 0.680

Yes 338 (23.3) 240 (23.7) 98 (22.5)

DR, n (%)
No 1054 (72.8) 728 (71.9) 326 (74.9) 0.254

Yes 394 (27.2) 285 (28.1) 109 (25.1)

DF, n (%)
No 1407 (97.2) 989 (97.6) 418 (96.1) 0.148

Yes 41 (2.8) 24 (2.4) 17 (3.9)

DPN, n (%)
No 214 (14.8) 146 (14.4) 68 (15.6) 0.604

Yes 1234 (85.2) 867 (85.6) 367 (84.4)
Bonferroni correction was applied for multiple comparisons, with a corrected significance threshold of P < 0.0031.
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lymphocyte levels. The ranking of all variables for complications is

provided in Supplementary Table S5.
Shared and unique features for diabetic
complications

The rank of the top 10 most important features for the four

major complications was visualized in Figure 3. Six shared risk

factors were identified, UACR emerged as a shared risk factor across

DN and DR. Diabetes duration was a significant factor in DR, DPN,

and DF, and notably was a top-ranking risk factor for DR. IBILI was

identified as a shared risk factor in DF and DPN. The history of DN

was a common risk factor in DR and DF. U-Cr was identified as a

shared risk factor in DR and DF. MCHC was also found to be a

shared factor for DN and DPN. In terms of unique risk factors, DN

was associated with kidney-specific indices like Y-protein and

creatinine; DR was linked to thyroid peroxidase antibody

(TPOAB) and Fibrin Degradation Products(FPD); DF was

affected by parameters like D-Dimer and Total Thyroxine(TT4).

Notably, D-Dimer ranked prominently in the risk assessment of

DF; DPN was related to peripheral lymphocyte levels and systolic

blood pressure (SBP), among others.
Frontiers in Endocrinology 05
Discussion

In the present study, features that might assess the risk of major

complications of T2DM were evaluated using a cross-sectional

sample comprised of T2DM patients. Machine learning models

were constructed and evaluated based on five algorithms, including

XGBoost, LightGBM, Random Forest, TabPFN, and CatBoost, to

depict the patterns and profiles of risk features for multiple

T2DM complications.

SHAP analysis revealed distinct risk profiles for each

complication, shedding light on unique underlying biological

pathways. For DN, kidney-specific markers such as Y-protein and

creatinine are strong risk factors, reflecting glomerular

hyperfiltration and tubulointerstitial damage as key pathogenic

mechanisms (23); these factors are associated with progressive

renal fibrosis and loss of filtration integrity, critical hallmarks of

DN (24, 25). DR risk rises with longer diabetes duration, making it

central to retinopathy risk models. It is linked to TPOAB, indicating

autoimmune processes may be associated with retinal vascular

inflammation. Thyroid-mediated immune issues might be

associated with endothelial injury and neovascularization in the

retina. This suggests thyroid-related biomarkers could be important

for assessing diabetic eye disease risk and need further study (26,
TABLE 2 Metrics of model performance evaluated for risk assessment models for DN, DR, DF, and DPN based on five machine learning algorithms.

Complications Model Accuracy Precision Recall F1-Score AUC

DN XGBoost 0.874 0.747 0.663 0.703 0.889

LightGBM 0.871 0.756 0.633 0.689 0.892

Random Forest 0.878 0.826 0.582 0.683 0.888

TabPFN 0.871 0.750 0.643 0.692 0.905

CatBoost 0.871 0.763 0.622 0.685 0.898

DR XGBoost 0.779 0.594 0.376 0.461 0.782

LightGBM 0.789 0.627 0.385 0.477 0.801

Random Forest 0.772 0.619 0.239 0.344 0.768

TabPFN 0.805 0.658 0.459 0.541 0.794

CatBoost 0.795 0.685 0.339 0.454 0.800

DF XGBoost 0.851 0.071 0.235 0.110 0.611

LightGBM 0.945 – – – 0.704

Random Forest 0.961 – – – 0.627

TabPFN 0.961 – – – 0.579

CatBoost 0.841 0.019 0.059 0.028 0.604

DPN XGBoost 0.825 0.844 0.973 0.904 0.616

LightGBM 0.834 0.845 0.984 0.909 0.606

Random Forest 0.837 0.843 0.992 0.911 0.618

TabPFN 0.844 0.844 1.000 0.915 0.632

CatBoost 0.844 0.844 1.000 0.915 0.636
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27). DF risk is linked to indirect bilirubin and urinary creatinine,

with implications for metabolic and vascular factors related to the

lower limbs indicated. This aligns with the pathophysiology of

diabetic foot complications, where a prior history of DN suggests

shared vascular pathogenesis, with an association with increased

susceptibility to lower-limb issues. Abnormal levels of IBILI and

changes in U-Cr may reflect underlying metabolic disturbances and

renal/systemic vascular alterations, respectively (28, 29), both of

which disrupt lower limb physiological processes, impair tissue

integrity, and increase the risk of ulceration and infection in diabetic

patients. DPN risk is associated with diabetes duration, systolic

blood pressure (SBP), and peripheral lymphocyte levels, reflecting

the combined association of prolonged hyperglycemia,

hypertension, and lymphocyte-mediated inflammation with nerve

injury (30). Diabetes duration is linked to cumulative

hyperglycemic damage to peripheral nerves, while hypertension is

associated with endoneurial ischemia and elevated lymphocytes
Frontiers in Endocrinology 06
promote axonal degeneration (31, 32). These factors are

synergistically associated with exacerbate nerve fiber damage in

DPN. Dynamic trade-offs between sensitivity and specificity across

99 cutoff values for each algorithm were further analyzed, with

optimal thresholds identified based on maximum Youden’s Index

to balance true detection of DPN cases and minimization of false

positives in clinical practice (Supplementary Figure 3,

Supplementary Table S6). Notably, MCHC was identified as a

shared factor for DN and DPN. SHAP plots revealed that lower

MCHC values are linked to higher SHAP values for both

conditions, indicating that low MCHC may significantly increase

complication risk. Additionally, a history of DN and urinary

creatinine (U-Cr) emerged as shared risk factors across DR and

DF, highlighting potential multi-comorbidity and overlapping

metabolic mechanisms. Notably, markers like Y-protein and IBILI

emerged as key risk factors, highlighting underrecognized

associations that warrant further exploration of their clinical
FIGURE 1

ROC curves for five machine learning models assessing four diabetic major complications. This figure presents receiver operating characteristic
(ROC) curves evaluating the discriminative performance of five machine learning models (XGBoost, LightGBM, Random Forest, TabPFN, and
CatBoost) in classifying patients with four diabetic major complications: diabetic nephropathy (DN, subplot A), retinopathy (DR, subplot B), foot (DF,
subplot C), and peripheral neuropathy (DPN, subplot D). The algorithms are color-coded as blue, orange, green, red, and purple, respectively. AUC
values quantify model performance, with higher values indicating better ability to distinguish complication types. For DN models, TabPFN achieves
the highest AUC of 0.91, followed closely by CatBoost at 0.90, while the other three algorithms have an AUC of 0.89. In DR models, LightGBM and
CatBoost both reach an AUC of 0.80. For DF models, LightGBM shows the best performance with an AUC of 0.70. In DPN models, CatBoost leads
with an AUC of 0.64, and all algorithms surpass random performance (AUC > 0.5).
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relevance and mechanisms. These findings not only reveal intrinsic

connections between complications through shared risk factors, but

also highlight each complication’s distinct pathophysiological

mechanisms. These SHAP-identified features could translate to

actionable steps: for DN and DR, integrate routine UACR

monitoring into screenings to stratify high-risk patients for

targeted renal/retinal assessments; for DR and DPN, long diabetes

duration could trigger intensified monitoring, such as TPOAB

testing for DR and neurological exams for DPN in those with

longer duration; for DF, a history of DN could prompt quarterly

foot inspections, with abnormal IBILI levels guiding peripheral

circulation evaluations. Such steps link model insights to

clinical workflows.

In this study, machine learning models were trained using five

algorithms, each demonstrating distinct strengths. TabPFN and

CatBoost showed unique advantages in handling categorical data.

TabPFN achieved an AUC of 0.905 for DN. For DPN, while both

TabPFN and CatBoost reached a perfect recall of 1.000 and an F1

score of 0.915, TabPFN still demonstrated notable performance.

TabPFN’s innovative approach — generating synthetic tabular

datasets via a pre-trained transformer-based neural network—

addresses challenges in small or imbalanced datasets, By learning
Frontiers in Endocrinology 07
patterns from diverse tabular data during pre-training, it

extrapolates effectively to limited samples, while its attention

mechanism captures complex feature interactions, enhancing

performance across complications like DN (AUC = 0.905) and

DPN (recall=1.000) (19). Random Forest proved effective for class-

imbalanced datasets (17), achieving the highest accuracy of 0.878

for DN. XGBoost stood out for its interpretability (15), attaining an

F1 score of 0.703 for DN and providing clear explanations via

feature importance scores. Notably, LightGBM also demonstrated

the highest AUC of 0.704 for DF, outperforming other models.

These findings highlight the efficiency of various algorithms in

processing different data types and the importance of selecting the

appropriate algorithm based on the dataset and problem

characteristics. The strengths of these algorithms collectively

enhance the evaluative accuracy and reliability of models in

assessing the risk of diabetic major complications. By leveraging

these algorithms, researchers and clinicians can develop more

effective risk assessment tools to improve patient outcomes and

manage the complex landscape of diabetes complications

more efficiently.

Contrasting with prior research focused on single-complication

risk assessment (10, 33), a holistic risk assessment framework is
FIGURE 2

SHAP value analysis of clinical feature contributions to major complications. SHAP (SHapley Additive exPlanations) analysis plots depicting the
contributions of various features to the different diabetic major complications. Each subplot (A-D) corresponds to a specific complication. In each
plot, the x-axis represents the Shapley value contribution, reflecting the impact of each feature on the assessment. The y-axis lists the features, and
the color of the points (blue to red) indicates the feature value (low to high). (A) Features influencing the assessment of diabetic nephropathy (DN),
such as UACR, Y-protein, and creatinine. (B) Features for diabetic retinopathy (DR), including diabetes duration, UACR, and TPOAB. (C) Features
related to diabetic foot (DF), like DN history (DN), IBILI, and U - Cr. (D) Features affecting diabetic peripheral neuropathy (DPN), such as diabetes
duration, SBP, and lymphocytes. This visualization shows how much each feature impacts the complication assessment, with higher Shapley values
indicating stronger impacts.
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addressed in this study for T2DM. Unlike models developed for

T1D (13, 34), T2D-specific variables (e.g., BMI, APOA1) are

incorporated in the present study. With the higher prevalence of

multiple long-term complications in elderly T2DM patients—where

integrated risk management is essential—reflected. Notably,

comparisons with logistic regression further confirm the added

value of the machine learning approach. Logistic regression was

observed to perform poorly across all four complications,

particularly in capturing complex relationships between risk

factors. In contrast, the five machine learning algorithms were

observed to consistently achieve higher accuracy, AUC, and F1-

score, demonstrating superior discriminative ability and robustness

—this is particularly important for complications with complex

associations, where traditional linear models struggle to perform.
Frontiers in Endocrinology 08
Thus, the machine learning models are provided as a more reliable

tool for clinical risk assessment. By highlighting shared risk factors

such as UACR and diabetes duration, calls for comprehensive

strategies to address the interconnectedness of diabetic

complication risks are aligned with, particularly relevant given

that over 40% of T2DM patients aged ≥60 years have three or

more comorbidities, necessitating risk stratification that transcends

isolated organ-specific screening (35, 36).

This study has suffered from several limitations. The single-

center (37), cross-sectional design may limit its generalizability.

Despite the aforementioned limitations, key indicators of our study

sample—including gender distribution, blood pressure levels, BMI,

as well as the prevalence of DN and DR—showed no significant

differences from the national average, which supports the rationality
FIGURE 3

Shared and unique risk factors for T2DM-related major complications. This figure outlines the key influencing factors for four major complications in
T2DM patients: diabetic nephropathy (DN), diabetic retinopathy (DR), diabetic foot (DF), and diabetic peripheral neuropathy (DPN). The size of each
block reflects the relative importance of the corresponding risk factor. DR and DN are shown in two ways: DR at the top-middle is the disease itself;
inner DR indicates the history of DR. Similarly, DN at the top-middle represents the disease, while inner DN serves as a risk factor which is the
history of DN. Shared risk factors include UACR (Urine Albumin-to-Creatinine Ratio) for DN and DR, and diabetes duration for DR, DPN, and DF.
Unique risk factors are Y-protein and creatinine for DN, TPOAB (Thyroid Peroxidase Antibody) for DR, D-Dimer for DF, and lymphocytes(peripheral
lymphocyte levels) for DPN. Other factors indicated include BUN (Blood Urea Nitrogen), RAD (Right Atrial Diameter), and FDP (Fibrin Degradation
Products). The figure also includes various laboratory parameters such as GFR-EPI (estimated glomerular filtration rate calculated using the EPI
equation), TT4 (Total Thyroxine), TSH (Thyroid-Stimulating Hormone), APTT (Activated Partial Thromboplastin Time), HR (Heart Rate), MCHC (Mean
Corpuscular Hemoglobin Concentration), and TGAB (Thyroglobulin Antibody).
frontiersin.org

https://doi.org/10.3389/fendo.2025.1657366
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2025.1657366
of the data to a certain extent. Due to low DF event numbers, most

models lack complete Precision, Recall, and F1-Score, though

resampling and algorithm adjustments were applied, with

XGBoost and CatBoost yielding full metrics to support DF

evaluation. For DPN, despite its high prevalence (85.2%), robust

validation through 5-fold cross-validation, multi-metric evaluation,

and SHAP-identified risk factors consistent with clinical

pathophysiology support the reliability of model performance.

In addition, the lack of genetic, lifestyle, and omics data, as well

as temporal variables and behavioral data such as medication

adherence, may restrict the discovery of more risk markers and

limit the models’ capacity to capture real-world dynamic risk

patterns. Future research could focus on: increasing sample size

and multi-center validation to enhance generalizability; integrating

longitudinal data to capture temporal changes in risk factors;

exploring shared risk pathways among complications; And

applying stacked model approaches to integrate strengths of

individual algorithms, potentially improving assessment

performance for multi-comorbidity scenarios (38).

In conclusion, this study depicted the profiles of risk factors for

multiple T2DM complications using interpretable machine learning

algorithms. Several shared and unique risk factors for T2DM major

complications were identified and reported. These insights lay the

groundwork for future studies to validate risk stratification tools in

multi-center cohorts, with the ultimate goal of supporting

personalized risk management and data-driven early interventions.
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SUPPLEMENTARY FIGURE 1

Flowchart of Participant Inclusion and Exclusion. This flowchart illustrates the

process of participant selection for the study. Initially, 2000 participants were
screened. After applying the inclusion and exclusion criteria, 552 participants

were excluded. These exclusions were categorized into three main reasons:
300 participants had missing data for more than 5% of the variables, 200 were

either non-T2DM patients or under 18 years of age, and 52 were excluded

due to other specified criteria. Eventually, 1448 participants met all the
requirements and were included in the final analysis.

SUPPLEMENTARY FIGURE 2

Machine Learning Pipeline for T2DM Major Complication Risk Assessment.
This figure presents the research workflow for analyzing major complications

in T2DM patients. It begins with data collection, where inclusion and

exclusion criteria are set to select data from 1,448 T2DM patients at Xi’an
Frontiers in Endocrinology 10
No.9 Hospital. Then the data preprocessing involves handling missing data
using the MICE method and splitting the dataset into training and testing sets.

In the model construction stage, five algorithms—XGBoost, LightGBM,
Random Forest, CatBoost, and TabPFN—are applied and trained on the

training set, with the test set reserved for evaluation. Finally, the model is

evaluated using multiple metrics, including AUROC, Accuracy, Sensitivity,
Specificity, and F1-score, along with SHAP analysis for feature importance.

SUPPLEMENTARY FIGURE 3

DPN Models Cutoff Analysis. This figure illustrates the dynamic trade-offs
between sensitivity and specificity across 99 cutoff values for each algorithm,

with optimal thresholds identified based on the maximum Youden’s Index to

balance the true detection of DPN cases and the minimization of false
positives in clinical practice. As shown in the three sub-plots, the top chart

visualizes how the sensitivity of XGBoost, LightGBM, Random Forest, TabPFN,
and CatBoost models changes with cutoff values when assessing DPN,

reflecting their capacity to correctly identify true DPN-positive cases. The
middle plot presents the variation of specificity across cutoff values, indicating

the models’ ability to rule out false positives. The bottom sub-plot depicts

Youden’s Index fluctuations, where peaks (e.g., the marked optimal values for
each model in the legend) correspond to the cutoff points that best balance

sensitivity and specificity, guiding the selection of thresholds for effective
DPN diagnosis in real-world clinical scenarios.
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