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Objective: To develop a self-reportable risk assessment tool for elderly type 2
diabetes mellitus (T2DM) patients, evaluating risks of diabetic nephropathy (DN),
retinopathy (DR), peripheral neuropathy (DPN), and diabetic foot (DF) using
machine learning, thereby providing new insights and tools for the screening
and intervention of these complications.

Materials and methods: Data from 1,448 T2DM patients at Xi'an No.9 Hospital
were used. After preprocessing, five machine learning algorithms (XGBoost,
LightGBM, Random Forest, TabPFN, CatBoost) were applied. Models were
trained on 70% of the data and evaluated on 30%, with performance assessed
by multiple metrics and SHAP analysis for feature importance.

Results: The analysis identified 33 risk factors, including 6 shared risk factors
(UACR for DN and DR; diabetes duration for DR, DPN, and DF; IBILI for DF and
DPN; history of DN for DR and DF; U-Cr for DR and DF; MCHC for DN and DPN)
and 27 unique risk factors. Model performance was robust: for DN, TabPFN
achieved an AUC of 0.905 and Random Forest an accuracy of 0.878; for DR,
LightGBM attained an AUC of 0.794; for DPN, both TabPFN and CatBoost
achieved a perfect recall of 1.000 and F1-score of 0.915; and for DF, LightGBM
attaining the highest AUC of 0.704. SHAP analysis highlighted key features for
each complication, such as UACR and Y-protein for DN, diabetes duration and
TPOAB for DR, history of DN and IBILI for DF, and diabetes duration and SBP
for DPN.

Conclusion: This study employed interpretable machine learning to characterize
risk factor profiles for multiple T2DM complications, identifying both common
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and distinct factors associated with major complications. The findings provide a
foundation for exploring personalized risk management strategies and highlight
the potential of data-driven approaches to inform early intervention research in
T2DM complications.

Type 2 diabetes mellitus (T2DM), diabetic complications, SHAP (Shapley Additive
explanation), machine learning, risk factors

Introduction

Diabetes mellitus, especially type 2 diabetes (T2DM), represents
a growing global health crisis, with 537 million individuals currently
affected worldwide (1), and projections suggest this number will rise
to 783 million by 2045 (2). Major complications such as diabetic
nephropathy (DN), retinopathy (DR), peripheral neuropathy
(DPN), and diabetic foot (DF) significantly associated with
morbidity and mortality of patients with T2DM. DN affects
approximately 30-40% of individuals with type 1 or type 2
diabetes, making it a leading cause of end-stage renal disease
(ESRD) in developed countries (3). DR, a major cause of visual
impairment and blindness, is similarly linked to diabetes (4). DPN
prevalence increases with the duration of diabetes, and it is
estimated that around 50% of patients with T2DM will develop
neuropathy during their lifetime (5). DF is one of the most severe
complications in diabetic patients, often leading to disability and
death (6). Recent studies emphasize that elderly individuals with
T2DM are particularly prone to significant declines in renal
function, highlighting the importance of early interventions to
manage complications effectively (7). Early detection is crucial, as
timely interventions can prevent the progression of
complications (8).

Accurately screening T2DM patients for the relevant
complications remains a significant challenge. Conventional risk
models based on logistic regression and Cox proportional hazards
have been criticized for their limited ability to capture nonlinear
relationships between risk factors (e.g., HbAlc, blood pressure, and
lipid profiles) and complications (9). Recent studies have applied
various machine learning techniques to evaluate the risk of DN.
However, as highlighted by a review (10), most of these studies have
only partially exploited the temporal factors in EHR data.
Additionally, although the integration of omics data has shown
potential to improve risk assessment, limitations such as small
sample sizes and insufficient external validation still persist.
Traditional single-complication models overlook shared
pathophysiological pathways (e.g., hyperglycemia-induced
endothelial dysfunction in DN, DR, and DPN) (11) and
predominantly focus on individual complications, thereby
limiting holistic management of T2DM—particularly problematic
that almost 75% of patients have at least one additional comorbidity

Frontiers in Endocrinology

at the time of T2DM diagnosis and 44% have at least two
comorbidities. Moreover, over 40% of those aged 60 and above
have three or more long-term conditions (12). In a recent study, Ji
et al. developed a machine learning model for type 1 diabetes (T1D)
patients to self-identify risks of major complications (DR, DN,
DPN), achieving strong internal and external validation
performance (13). T2DM presents distinct challenges: higher
prevalence, complex risk factors (e.g., obesity, insulin resistance)
(1), and a greater need for scalable tools to evaluate the risk of
multiple complications. This study integrates multiple machine
learning algorithms to develop risk assessment models for various
complications of T2DM, aiming to identify both shared and unique
potential risk factors across different T2DM complications, thereby
providing new insights and tools for the screening and intervention
of these complications.

Materials and methods
Study participants

Clinical data for the 1,448 T2DM patients were retrospectively
collected from Xi'an No.9 Hospital between January 2022 and
December 2023, with input features (laboratory measures and
clinical indicators) gathered during patients’ hospitalization and
in the period after discharge. Participants were included in the study
if they were aged 18 years or older, had a confirmed diagnosis of
T2DM, and had complete clinical data. Participants were excluded
if they had incomplete clinical data, missing information on any of
the four aforementioned complications, or other primary causes of
renal or vascular dysfunction. The detailed process of participant
screening, including initial recruitment numbers and reasons for
exclusion, is illustrated in Supplementary Figure 1. All participants
were diagnosed with T2DM based on the American Diabetes
Association (ADA) diagnostic criteria, with confirmation from
two independent endocrinologists. The diagnosis was validated
through clinical evaluation and laboratory findings, including
HbAlc and fasting blood glucose levels, with a documented
disease duration of at least one year. Diagnostic criteria for
diabetic nephropathy (DN), retinopathy (DR), peripheral
neuropathy (DPN), and diabetic foot (DF) were aligned with the
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China Guidelines for the Prevention and Treatment of Diabetes
(2024 Edition) (14), with detailed criteria provided in
Supplementary Materials. This study was approved by the
Medical Biological Research Ethics Committee of Xi’an Ninth
Hospital (Approval No.202516). All patient data were de-
identified for confidentiality, with the study adhering to the
Declaration of Helsinki; informed consent was waived for the
retrospective, de-identified data as approved by the
ethics committee.

Features and data preprocessing

This study included a total of 129 features, derived from an
initial set of 152 variables with strongly correlated ones (defined by
a correlation coefficient threshold of |r| > 0.8) excluded through
prior correlation analysis to avoid information redundancy, and
these features were finally classified into three major groups:
demographic indicators (age, sex, BMI, diabetes duration, etc.),
biochemical markers (HbAlc, UACR, lipid profiles, etc.), and
complication-related indices (TPOAB, D-Dimer, etc.). Categorical
variables (e.g., smoking status, complication diagnoses) were
encoded as binary or one-hot formats, while continuous variables
(e.g., blood pressure, HbAlc, UACR) were standardized via Z-score
transformation to normalize their scales for model training. All the
features had missing rates <5%. Missing values were imputed using
the Multiple Imputation by Chained Equations (MICE) method, a
well-established technique. To assess the impact of MICE
imputation on model performance, a complete-case analysis using
a subset with no missing values is performed, applying the same
algorithms as the main study and comparing AUC between
complete-case and MICE-imputed datasets.

Model construction and validation

The detailed process of model construction is shown in
Supplementary Figure 2. To develop risk models for diabetic
complications (DR, DN, DPN, and DF), five machine learning
algorithms were selected based on their distinct strengths in
handling clinical tabular data. For DF specifically, resampling and
penalization were applied to address class imbalance. These
algorithms include XGBoost (15) and LightGBM (16) for their
efficiency in capturing non-linear relationships and interactions
among risk factors. Random Forest (17) for its robustness in high-
dimensional data and resistance to overfitting, CatBoost (18) for its
superior handling of categorical variables without manual encoding,
and TabPEN (19) a tabular foundation model, for its ability to
generate synthetic data to augment small samples. In model
construction, algorithm parameters followed conventional
settings. For DF class imbalance, SMOTE oversampling for the
minority class and class weight adjustment were applied. The
dataset was randomly split into a training set (70%) and a test set
(30%), with 5-fold cross-validation on the training set to ensure
stability. Model performance was assessed using accuracy,
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precision, recall, Fl-score, and ROC-AUC. SHapley Additive
exPlanations (SHAP) analysis was specifically used with XGBoost
to interpret the relative importance of key clinical features in
assessing the risk factors of complications (20-22). Logistic
regression was implemented as a reference to benchmark the five
machine learning algorithms. It underwent the same preprocessing
of variables and was evaluated using the same metrics to ensure
direct comparability. All statistical analyses were performed using R
4.3.3 and Python 3.7.7. Details of the XGBoost algorithm and SHAP
analysis are available at https://github.com/dmlc/xgboost and
http://github.com/slundberg/shap, respectively.

Results

Clinical and demographic characteristics of
patients

Data from 1,448 participants with 129 variables were collected
for analysis (Table 1, Supplementary Table S1). Distributions of
multiple variables were present and compared between the training
(N =1,013) and test set (N = 435). The median age was 54.0 years,
with no significant difference between the two groups (P = 0.514). A
majority of patients were male (66.9%), and distributions of
smoking status, alcohol consumption, diabetes duration (median
8.0 years), waist circumference, BMI, and WHR were similar
between the two datasets. Twenty variables in the dataset had
missing rates less than 5%, with detailed information on variable
missing rates (Supplementary Table S2).The prevalences of DN,
DR, DF, and DPN in the T2DM patients were 23.3%, 27.2%, 2.8%,
and 85.2%, respectively.

Performance of machine learning models
for T2DM complications

Machine learning models for four major complications (DN,
DR, DF, and DPN) of T2DM were evaluated using five algorithms,
with results in Table 2 and Figure 1. The model performance for DN
was the best among the four complications. Specifically, TabPFN
achieved the highest area under the curve (AUC) of 0.905, Random
Forest yielded the highest accuracy at 0.878, and XGBoost obtained
the highest F1 score of 0.703. Among the models for DR, LightGBM
achieved the highest AUC of 0.801, while TabPFN showed the
highest accuracy of 0.805. For DF, after resampling and
penalization, Random Forest and TabPFN achieved high accuracy
(0.961), with LightGBM attaining the highest AUC, at 0.704. In the
models of DPN, both TabPEN and CatBoost achieved perfect recall
(1.000), along with the highest F1 scores (0.915) and Accuracy
(0.844). Overall, TabPFN demonstrated robust performance across
multiple diabetic complications, while other algorithms exhibited
specific strengths in evaluating individual complications. Logistic
regression was additionally evaluated for the four complications,
with detailed metrics provided in Supplementary Table S3. The five
machine learning algorithms (XGBoost, LightGBM, Random
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TABLE 1 Baseline clinical and demographic characteristics of patients in the overall, training and test set.

Characteristics Levels Overall Training set Test set P-Value
Total 1448 1013 435
Age, median (IQR) 54.0 (15.0) 54.0 (15.0) 53.0 (16.0) 0.514

Female 479 (33.1) 342 (33.8) 137 (31.5) 0.436
Sex, n (%)

Male 969 (66.9) 671 (66.2) 298 (68.5)

0 1(0.1) 1(0.2) 0.613

1 52 (3.6) 38 (3.8) 14 (3.2)

2 163 (11.3) 111 (11.0) 52 (12.0)
Educational level, n (%)

3 324 (22.4) 227 (22.4) 97 (22.3)

4 371 (25.6) 266 (26.3) 105 (24.1)

5 537 (37.1) 371 (36.6) 166 (38.2)

No 789 (54.5) 556 (54.9) 233 (53.6) 0.685
Smoking, n (%)

Yes 659 (45.5) 457 (45.1) 202 (46.4)

No 1053 (72.7) 748 (73.8) 305 (70.1) 0.163
Alcohol, n (%)

Yes 395 (27.3) 265 (26.2) 130 (29.9)
Family history, n (%) No 725 (50.1) 512 (50.5) 213 (49.0) 0.622

Yes 723 (49.9) 501 (49.5) 222 (51.0)
Diabetes duration, median (IQR) 8.0 (10.0) 8.0 (10.0) 8.0 (10.0) 0.517
Waist, median (IQR) 90.0 (11.0) 90.0 (11.0) 90.0 (12.0) 0.891
BMI, median (IQR) 25.5 (4.3) 25.6 (4.1) 25.1 (4.4) 0.371
WHR, median (IQR) 0.9 (0.1) 0.9 (0.1) 0.9 (0.1) 0.485
SBP, median (IQR) 130.0 (20.0) 130.0 (20.0) 130.0 (20.0) 0.678
DBP, median (IQR) 80.0 (16.0) 80.0 (15.0) 80.0 (20.0) 0.411

No 1110 (76.7) 773 (76.3) 337 (77.5) 0.680
DN, n (%)

Yes 338 (23.3) 240 (23.7) 98 (22.5)

No 1054 (72.8) 728 (71.9) 326 (74.9) 0.254
DR, n (%)

Yes 394 (27.2) 285 (28.1) 109 (25.1)

No 1407 (97.2) 989 (97.6) 418 (96.1) 0.148
DF, n (%)

Yes 41 (2.8) 24 (2.4) 17 (3.9)

No 214 (14.8) 146 (14.4) 68 (15.6) 0.604
DPN, n (%)

Yes 1234 (85.2) 867 (85.6) 367 (84.4)

Bonferroni correction was applied for multiple comparisons, with a corrected significance threshold of P < 0.0031.

Forest, TabPFN, and CatBoost) consistently outperformed logistic
regression across key metrics. AUC consistency between the 812-
sample complete-case and MICE-imputed datasets across
algorithms is shown in Supplementary Table S4.

Feature importance of the models for
T2DM complications

The top 10 most important features for the four major
complications identified through SHAP analysis combined with

Frontiers in Endocrinology

the XGBoost model were summarized in Figure 2. For DN, UACR
(Urinary Albumin-to-Creatinine Ratio) and Y-protein emerged as
the most influential features, creatinine and DPNtime were also
significant contributors. For DR, diabetes duration was the most
critical factor, followed by UACR and TPOAB. Longer diabetes
duration significantly increases the risk of DR, highlighting its
central role in the risk model for retinopathy. For DF, the history
of DN, indirect bilirubin (IBILI), and urinary creatinine (U-Cr)
were key features in assessing the risk of diabetic foot complications.
In the model of DPN, diabetes duration was the most important
feature, followed by systolic blood pressure (SBP) and peripheral
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TABLE 2 Metrics of model performance evaluated for risk assessment models for DN, DR, DF, and DPN based on five machine learning algorithms.
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Complications Model Accuracy Precision Recall F1-Score AUC
DN XGBoost 0.874 0.747 0.663 0.703 0.889
LightGBM 0.871 0.756 0.633 0.689 0.892

Random Forest 0.878 0.826 0.582 0.683 0.888

TabPFN 0.871 0.750 0.643 0.692 0.905

CatBoost 0.871 0.763 0.622 0.685 0.898

DR XGBoost 0.779 0.594 0376 0.461 0.782
LightGBM 0.789 0.627 0.385 0.477 0.801

Random Forest 0.772 0.619 0.239 0344 0.768

TabPFN 0.805 0.658 0.459 0.541 0.794

CatBoost 0.795 0.685 0.339 0.454 0.800

DF XGBoost 0.851 0.071 0.235 0.110 0.611
LightGBM 0.945 - - - 0.704

Random Forest 0.961 - - - 0.627

TabPFN 0.961 - - - 0.579

CatBoost 0.841 0.019 0.059 0.028 0.604

DPN XGBoost 0.825 0.844 0.973 0.904 0.616
LightGBM 0.834 0.845 0.984 0.909 0.606

Random Forest 0.837 0.843 0.992 0911 0.618

TabPEN 0.844 0.844 1.000 0915 0.632

CatBoost 0.844 0.844 1.000 0915 0.636

lymphocyte levels. The ranking of all variables for complications is
provided in Supplementary Table S5.

Shared and unique features for diabetic
complications

The rank of the top 10 most important features for the four
major complications was visualized in Figure 3. Six shared risk
factors were identified, UACR emerged as a shared risk factor across
DN and DR. Diabetes duration was a significant factor in DR, DPN,
and DF, and notably was a top-ranking risk factor for DR. IBILI was
identified as a shared risk factor in DF and DPN. The history of DN
was a common risk factor in DR and DF. U-Cr was identified as a
shared risk factor in DR and DF. MCHC was also found to be a
shared factor for DN and DPN. In terms of unique risk factors, DN
was associated with kidney-specific indices like Y-protein and
creatinine; DR was linked to thyroid peroxidase antibody
(TPOAB) and Fibrin Degradation Products(FPD); DF was
affected by parameters like D-Dimer and Total Thyroxine(TT4).
Notably, D-Dimer ranked prominently in the risk assessment of
DF; DPN was related to peripheral lymphocyte levels and systolic
blood pressure (SBP), among others.

Frontiers in Endocrinology

Discussion

In the present study, features that might assess the risk of major
complications of T2DM were evaluated using a cross-sectional
sample comprised of T2DM patients. Machine learning models
were constructed and evaluated based on five algorithms, including
XGBoost, LightGBM, Random Forest, TabPFN, and CatBoost, to
depict the patterns and profiles of risk features for multiple
T2DM complications.

SHAP analysis revealed distinct risk profiles for each
complication, shedding light on unique underlying biological
pathways. For DN, kidney-specific markers such as Y-protein and
creatinine are strong risk factors, reflecting glomerular
hyperfiltration and tubulointerstitial damage as key pathogenic
mechanisms (23); these factors are associated with progressive
renal fibrosis and loss of filtration integrity, critical hallmarks of
DN (24, 25). DR risk rises with longer diabetes duration, making it
central to retinopathy risk models. It is linked to TPOAB, indicating
autoimmune processes may be associated with retinal vascular
inflammation. Thyroid-mediated immune issues might be
associated with endothelial injury and neovascularization in the
retina. This suggests thyroid-related biomarkers could be important
for assessing diabetic eye disease risk and need further study (26,

frontiersin.org


https://doi.org/10.3389/fendo.2025.1657366
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Liu et al.

10.3389/fendo.2025.1657366

ROC Curves for DN Models ROC Curves for DR Models
1.0 = 10
/"
08 S22 0.8
-
f,,
.
L
206 206
& S
v F
2 2
£ £
& k4
S ]
E 04 =04
02 02 =
—— XGBoost (AUC=0.89) 7 —— XGBoost (AUC=0.78)
—— LightGBM (AUC=0.89) e —— LightGBM (AUC=0.80)
—— Random Forest (AUC=0.89) L —— Random Forest (AUC=0.77)
—— TabPFN (AUC=0.91) L —— TabPFN (AUC=0.79)
—— CatBoost (AUC=0.90) —— CatBoost (AUC=0.80)
0.0 --- Random Guess 00 --- Random Guess
00 02 04 06 08 10 0.0 02 04 06 08 10
c False Positive Rate D False Positive Rate

ROC Curves for DF Models

ROC Curves for DPN Models

—— XGBoost (AUC=0.61)

—— LightGBM (AUC=0.70)
—— Random Forest (AUC=0.63)
—— TabPFN (AUC=0.58)

—— CatBoost (AUC=0.60)

-=- Random Guess

0.8

True Positive Rate
°
£y

°
=

0.2

0.0

True Positive Rate

—— XGBoost (AUC=0.62)

—— LightGBM (AUC=0.61)

—— Random Forest (AUC=0.62)
—— TabPFN (AUC=0.63)

—— CatBoost (AUC=0.64)

~=- Random Guess

0.8

e
By

1
Y

0.2

0.0

0.2 0.4 0.6

False Positive Rate

FIGURE 1

0.2 0.4 0.6

False Positive Rate

ROC curves for five machine learning models assessing four diabetic major complications. This figure presents receiver operating characteristic
(ROC) curves evaluating the discriminative performance of five machine learning models (XGBoost, LightGBM, Random Forest, TabPFN, and
CatBoost) in classifying patients with four diabetic major complications: diabetic nephropathy (DN, subplot A), retinopathy (DR, subplot B), foot (DF,
subplot C), and peripheral neuropathy (DPN, subplot D). The algorithms are color-coded as blue, orange, green, red, and purple, respectively. AUC
values quantify model performance, with higher values indicating better ability to distinguish complication types. For DN models, TabPFN achieves
the highest AUC of 0.91, followed closely by CatBoost at 0.90, while the other three algorithms have an AUC of 0.89. In DR models, LightGBM and
CatBoost both reach an AUC of 0.80. For DF models, LightGBM shows the best performance with an AUC of 0.70. In DPN models, CatBoost leads
with an AUC of 0.64, and all algorithms surpass random performance (AUC > 0.5).

27). DF risk is linked to indirect bilirubin and urinary creatinine,
with implications for metabolic and vascular factors related to the
lower limbs indicated. This aligns with the pathophysiology of
diabetic foot complications, where a prior history of DN suggests
shared vascular pathogenesis, with an association with increased
susceptibility to lower-limb issues. Abnormal levels of IBILI and
changes in U-Cr may reflect underlying metabolic disturbances and
renal/systemic vascular alterations, respectively (28, 29), both of
which disrupt lower limb physiological processes, impair tissue
integrity, and increase the risk of ulceration and infection in diabetic
patients. DPN risk is associated with diabetes duration, systolic
blood pressure (SBP), and peripheral lymphocyte levels, reflecting
the combined association of prolonged hyperglycemia,
hypertension, and lymphocyte-mediated inflammation with nerve
injury (30). Diabetes duration is linked to cumulative
hyperglycemic damage to peripheral nerves, while hypertension is
associated with endoneurial ischemia and elevated lymphocytes
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promote axonal degeneration (31, 32). These factors are
synergistically associated with exacerbate nerve fiber damage in
DPN. Dynamic trade-offs between sensitivity and specificity across
99 cutoff values for each algorithm were further analyzed, with
optimal thresholds identified based on maximum Youden’s Index
to balance true detection of DPN cases and minimization of false
positives in clinical practice (Supplementary Figure 3,
Supplementary Table S6). Notably, MCHC was identified as a
shared factor for DN and DPN. SHAP plots revealed that lower
MCHC values are linked to higher SHAP values for both
conditions, indicating that low MCHC may significantly increase
complication risk. Additionally, a history of DN and urinary
creatinine (U-Cr) emerged as shared risk factors across DR and
DF, highlighting potential multi-comorbidity and overlapping
metabolic mechanisms. Notably, markers like Y-protein and IBILI
emerged as key risk factors, highlighting underrecognized
associations that warrant further exploration of their clinical
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FIGURE 2

SHAP value analysis of clinical feature contributions to major complications. SHAP (SHapley Additive exPlanations) analysis plots depicting the
contributions of various features to the different diabetic major complications. Each subplot (A-D) corresponds to a specific complication. In each
plot, the x-axis represents the Shapley value contribution, reflecting the impact of each feature on the assessment. The y-axis lists the features, and
the color of the points (blue to red) indicates the feature value (low to high). (A) Features influencing the assessment of diabetic nephropathy (DN),
such as UACR, Y-protein, and creatinine. (B) Features for diabetic retinopathy (DR), including diabetes duration, UACR, and TPOAB. (C) Features
related to diabetic foot (DF), like DN history (DN), IBILI, and U - Cr. (D) Features affecting diabetic peripheral neuropathy (DPN), such as diabetes
duration, SBP, and lymphocytes. This visualization shows how much each feature impacts the complication assessment, with higher Shapley values

indicating stronger impacts.

relevance and mechanisms. These findings not only reveal intrinsic
connections between complications through shared risk factors, but
also highlight each complication’s distinct pathophysiological
mechanisms. These SHAP-identified features could translate to
actionable steps: for DN and DR, integrate routine UACR
monitoring into screenings to stratify high-risk patients for
targeted renal/retinal assessments; for DR and DPN, long diabetes
duration could trigger intensified monitoring, such as TPOAB
testing for DR and neurological exams for DPN in those with
longer duration; for DF, a history of DN could prompt quarterly
foot inspections, with abnormal IBILI levels guiding peripheral
circulation evaluations. Such steps link model insights to
clinical workflows.

In this study, machine learning models were trained using five
algorithms, each demonstrating distinct strengths. TabPFN and
CatBoost showed unique advantages in handling categorical data.
TabPEN achieved an AUC of 0.905 for DN. For DPN, while both
TabPFN and CatBoost reached a perfect recall of 1.000 and an F1
score of 0.915, TabPFN still demonstrated notable performance.
TabPFN’s innovative approach — generating synthetic tabular
datasets via a pre-trained transformer-based neural network—
addresses challenges in small or imbalanced datasets, By learning
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patterns from diverse tabular data during pre-training, it
extrapolates effectively to limited samples, while its attention
mechanism captures complex feature interactions, enhancing
performance across complications like DN (AUC = 0.905) and
DPN (recall=1.000) (19). Random Forest proved effective for class-
imbalanced datasets (17), achieving the highest accuracy of 0.878
for DN. XGBoost stood out for its interpretability (15), attaining an
F1 score of 0.703 for DN and providing clear explanations via
feature importance scores. Notably, LightGBM also demonstrated
the highest AUC of 0.704 for DF, outperforming other models.
These findings highlight the efficiency of various algorithms in
processing different data types and the importance of selecting the
appropriate algorithm based on the dataset and problem
characteristics. The strengths of these algorithms collectively
enhance the evaluative accuracy and reliability of models in
assessing the risk of diabetic major complications. By leveraging
these algorithms, researchers and clinicians can develop more
effective risk assessment tools to improve patient outcomes and
manage the complex landscape of diabetes complications
more efficiently.

Contrasting with prior research focused on single-complication
risk assessment (10, 33), a holistic risk assessment framework is
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FIGURE 3
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GFR-gp|

Shared and unique risk factors for T2DM-related major complications. This figure outlines the key influencing factors for four major complications in
T2DM patients: diabetic nephropathy (DN), diabetic retinopathy (DR), diabetic foot (DF), and diabetic peripheral neuropathy (DPN). The size of each
block reflects the relative importance of the corresponding risk factor. DR and DN are shown in two ways: DR at the top-middle is the disease itself;
inner DR indicates the history of DR. Similarly, DN at the top-middle represents the disease, while inner DN serves as a risk factor which is the
history of DN. Shared risk factors include UACR (Urine Albumin-to-Creatinine Ratio) for DN and DR, and diabetes duration for DR, DPN, and DF.
Unique risk factors are Y-protein and creatinine for DN, TPOAB (Thyroid Peroxidase Antibody) for DR, D-Dimer for DF, and lymphocytes(peripheral
lymphocyte levels) for DPN. Other factors indicated include BUN (Blood Urea Nitrogen), RAD (Right Atrial Diameter), and FDP (Fibrin Degradation
Products). The figure also includes various laboratory parameters such as GFR-EPI (estimated glomerular filtration rate calculated using the EPI
equation), TT4 (Total Thyroxine), TSH (Thyroid-Stimulating Hormone), APTT (Activated Partial Thromboplastin Time), HR (Heart Rate), MCHC (Mean
Corpuscular Hemoglobin Concentration), and TGAB (Thyroglobulin Antibody).

addressed in this study for T2DM. Unlike models developed for
TID (13, 34), T2D-specific variables (e.g., BMI, APOAL) are
incorporated in the present study. With the higher prevalence of
multiple long-term complications in elderly T2DM patients—where
integrated risk management is essential—reflected. Notably,
comparisons with logistic regression further confirm the added
value of the machine learning approach. Logistic regression was
observed to perform poorly across all four complications,
particularly in capturing complex relationships between risk
factors. In contrast, the five machine learning algorithms were
observed to consistently achieve higher accuracy, AUC, and F1-
score, demonstrating superior discriminative ability and robustness
—this is particularly important for complications with complex
associations, where traditional linear models struggle to perform.

Frontiers in Endocrinology

Thus, the machine learning models are provided as a more reliable
tool for clinical risk assessment. By highlighting shared risk factors
such as UACR and diabetes duration, calls for comprehensive
strategies to address the interconnectedness of diabetic
complication risks are aligned with, particularly relevant given
that over 40% of T2DM patients aged =60 years have three or
more comorbidities, necessitating risk stratification that transcends
isolated organ-specific screening (35, 36).

This study has suffered from several limitations. The single-
center (37), cross-sectional design may limit its generalizability.
Despite the aforementioned limitations, key indicators of our study
sample—including gender distribution, blood pressure levels, BMI,
as well as the prevalence of DN and DR—showed no significant
differences from the national average, which supports the rationality
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of the data to a certain extent. Due to low DF event numbers, most
models lack complete Precision, Recall, and F1-Score, though
resampling and algorithm adjustments were applied, with
XGBoost and CatBoost yielding full metrics to support DF
evaluation. For DPN, despite its high prevalence (85.2%), robust
validation through 5-fold cross-validation, multi-metric evaluation,
and SHAP-identified risk factors consistent with clinical
pathophysiology support the reliability of model performance.

In addition, the lack of genetic, lifestyle, and omics data, as well
as temporal variables and behavioral data such as medication
adherence, may restrict the discovery of more risk markers and
limit the models’ capacity to capture real-world dynamic risk
patterns. Future research could focus on: increasing sample size
and multi-center validation to enhance generalizability; integrating
longitudinal data to capture temporal changes in risk factors;
exploring shared risk pathways among complications; And
applying stacked model approaches to integrate strengths of
individual algorithms, potentially improving assessment
performance for multi-comorbidity scenarios (38).

In conclusion, this study depicted the profiles of risk factors for
multiple T2DM complications using interpretable machine learning
algorithms. Several shared and unique risk factors for T2DM major
complications were identified and reported. These insights lay the
groundwork for future studies to validate risk stratification tools in
multi-center cohorts, with the ultimate goal of supporting
personalized risk management and data-driven early interventions.
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SUPPLEMENTARY FIGURE 1

Flowchart of Participant Inclusion and Exclusion. This flowchart illustrates the
process of participant selection for the study. Initially, 2000 participants were
screened. After applying the inclusion and exclusion criteria, 552 participants
were excluded. These exclusions were categorized into three main reasons:
300 participants had missing data for more than 5% of the variables, 200 were
either non-T2DM patients or under 18 years of age, and 52 were excluded
due to other specified criteria. Eventually, 1448 participants met all the
requirements and were included in the final analysis.

SUPPLEMENTARY FIGURE 2

Machine Learning Pipeline for T2DM Major Complication Risk Assessment.
This figure presents the research workflow for analyzing major complications
in T2DM patients. It begins with data collection, where inclusion and
exclusion criteria are set to select data from 1,448 T2DM patients at Xi'an
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