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Background: Women display marked variability in ovarian reserve, which is
pivotal for fertility and menopausal timing. Traditional criteria, such as Bologna
and Poseidon, classify women into broad groups but do not provide
individualized predictions for ovarian aging or reproductive milestones. This
study aims to refine the AA model (AMH + age) to enhance clinical usability,
robustness, and interpretability.

Materials and Methods: Single-center retrospective ART cohort (GnRH-
antagonist cycles, 2017-2021). Training: 15,241 cycles (2017-2019); Testing:
14,498 cycles (2020-2021). Poor ovarian response (POR) was defined as <5
oocytes. Three logistic-regression specifications were compared: categorical
(Model-0), continuous (Model-1), and polynomial (age quadratic, AMH cubic;
Model-2). Discrimination (AUC), calibration, and net reclassification
improvement (NRI) were evaluated. A two-parameter logistic curve was fitted
to age versus predicted POR (used population-level as “predicted DOR") to
construct an ovarian-aging trajectory and derive an interpretable “endocrine-
age” index. Sensitivity analyses assessed cycle-day AMH variation; a community
dataset was used to compare age-stratified AMH distributions.

Results: While all models achieved comparable discrimination (AUC = 0.85), a
cubic transformation model (Model-2) demonstrated superior calibration and
was selected as the final algorithm. A two-parameter logistic curve allowed
translation of ovarian reserve scores into an “endocrine age” and enabled
individualized prediction of future milestones, such as diminished reserve with
ovarian score of 50 and perimenopause, the lowest ovarian reserve score in our
ART population. AMH sampling on different cycle days showed only modest
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effects from minor fluctuations; only substantial AMH decreases significantly
affected prediction accuracy. Age-stratified AMH distributions were similar
between ART and community cohorts in women <40, supporting external
relevance. The updated OvaRePred (HerTempo) model is cost-effective,
scalable, and operationally simple.

Conclusion: OvaRePred (HerTempo) delivers individualized, well-calibrated
estimates of ovarian reserve and an interpretable endocrine-age index and
future fertility milestone onset. While the tool can inform personalized fertility
planning and may have broader public-health utility, the algorithm is trained on
ART endpoints. Any projections of future reproductive milestones derived from
the population ovarian-aging curve—and the fixed-interval hypothesis that
underpins that curve—are hypothesis-generating and require prospective
validation, particularly in non-ART cohorts with longitudinal follow-up.

ovarian reserve, anti-mullerian hormone (AMH), ovarian aging curve, endocrine age,
reproductive milestone prediction, personalized fertility planning, health management

Introduction

As is well known, women lose their fertility at menopause due to
the depletion of ovarian reserve, which is widely considered the
most critical factor affecting fertility (1, 2). However, what is less
appreciated is the significant inter-individual variability in ovarian
reserve (3, 4). Ovarian reserve, defined by the number of primordial
follicles, exhibits marked differences even at birth, from thousands
to millions (1). Although the rate of ovarian aging is relatively
consistent among individuals, these inherent variations in ovarian
reserve lead to a wide disparity in the age at menopause (1, 5). The
Bologna (6) and Poseidon (7) criterias for poor ovarian response,
although commonly used for assessing ovarian reserve, have
notable limitations. Specifically, the Bologna standard categorizes
patients into only two groups, while the Poseidon criteria, despite
subdividing into four categories, still do not fully capture individual
differences. Additionally, both standards heavily rely on ultrasound-
based antral follicle count (AFC) assessments, which typically
require transvaginal ultrasound for greater accuracy. This
method, however, can cause discomfort for some women and is
subject to variability due to differences in equipment and operator
proficiency. Moreover, they assess ovarian reserve only at a single
point in time without providing dynamic predictions of future
changes. In light of these deficiencies, and given the vast
individual differences in ovarian reserve, the ability to perform
individualized ovarian reserve assessments and to predict
reproductive milestones is of paramount importance.

In 2023, the reproductive center team at Peking University
Third Hospital leveraged their extensive big data resources to
introduce the OvaRePred (HerTempo) tool for ovarian reserve
evaluation and future milestone prediction (8, 9). This tool has
since been adopted in multiple hospitals across China, including
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Peking University Third Hospital, as well as in health examination
centers and online platforms, with favorable patient feedback.
OvaRePred (HerTempo) provides a ranking of ovarian reserve
from optimal to poor based on the probability of a poor ovarian
response (POR), generating a score for current ovarian reserve.
Furthermore, by integrating the Fixed Interval theory—which
posits that the ovarian aging curves of populations are similar
and follow an S-shaped curve—our team has constructed a
population-level ovarian aging curve. This enables the tool not
only to assess current ovarian reserve but also to predict the age at
which critical reproductive milestones occur, such as the onset of
diminished ovarian reserve (DOR, corresponding to an ovarian
reserve score of 50) and the beginning of perimenopause (marked
by the lowest ovarian reserve score in our ART populations).
OvaRePred (HerTempo) proposes three prediction models
tailored to different clinical scenarios—AAFA (AMH-AFC-FSH-
Age), AFA (AMH-FSH-Age), and AA (AMH-Age)—for evaluating
ovarian reserve and forecasting subsequent reproductive
milestones. Although these models incorporate different
combinations of variables, their predictive performance is
statistically similar, suggesting that a simpler model may suffice in
clinical practice. In particular, the AA model, which relies solely on
anti-Miillerian hormone (AMH) and age, offers the advantages of
simplicity and cost-effectiveness while maintaining high predictive
accuracy (10). Moreover, AMH measurement is not time-restricted
and blood can be drawn on any day of the menstrual cycle, the AA
model offers greater flexibility and convenience. However, both the
AFA and AAFA models depend on FSH measurements obtained via
precisely timed blood draws during the menstrual cycle, and the
AAFA model further requires antral follicle counts by transvaginal
ultrasound—adding procedural complexity, higher costs, and
greater patient discomfort. Thus, our current study focuses on
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updating and refining the AA model using larger datasets and
advanced statistical techniques, with the ultimate goal of
establishing a robust, high-performing ovarian reserve assessment
and reproductive milestone prediction tool that is both user-
friendly and operationally efficient.

Our original AA model (10) employed categorical
transformations for its independent variables. Categorical variable
models offer simplicity and ease of interpretation by grouping data
to capture overall trends, maintain stability, and resist the influence
of outliers (11, 12). While this method effectively captures general
trends and ensures stability, it falls short in reflecting finer changes.
In contrast, continuous variable models retain the complete
spectrum of the original data and, through appropriate
transformations (such as a cubic transformation), can more
accurately capture the nonlinear relationships between variables.
This leads to enhanced discriminative power and improved
predictive accuracy. However, continuous models are more
complex to construct and interpret, are more sensitive to outliers,
and may risk overfitting, particularly with smaller sample sizes (12).
For these reasons, we aim to update our AA model by exploring
various transformations of the independent variables. Our goal was
to achieve better discrimination and calibration compared to the
original model.

Despite its clinical promise, the original AA model—which
categorizes AMH and age—may be too coarse to capture subtle
nonlinear relationships, and its calibration can be further improved.
Meanwhile, although the AFA and AAFA models achieve similar
discrimination, their reliance on cycle-timed FSH measurements
and transvaginal AFC assessment increases complexity, cost, and
patient burden. To address these gaps, the present study leverages a
substantially expanded single—center ART dataset to explore
different transformations of AMH and age, evaluate the variations
of AMH on model performance, and rigorously compare model
discrimination, calibration, and reclassification performance. Our
aim is to refine the AA model into a streamlined, high—precision
tool that maintains interpretability and operational efficiency,
thereby enhancing personalized ovarian reserve assessment,
endocrine age evaluation and the prediction of key
reproductive milestones.

10.3389/fendo.2025.1658068

Materials and methods
Study population and data sources

This retrospective, single-center analysis enrolled women
undergoing controlled ovarian stimulation with gonadotropin-
releasing hormone (GnRH) antagonist protocols from 2017 to
2021. All participants received stimulation at our center, with
serum AMH levels, chronological age, and pertinent clinical
variables recorded at baseline. No apparent outliers in AMH or
age were identified in the exported database; thus, no data exclusion
for outliers was performed. Retaining the full spectrum of observed
AMH and age values enhances the model’s generalizability,
particularly for individuals at the extremes of ovarian reserve.
Initially, 16,327 antagonist cycles from January 2017 to December
2019 constituted the training cohort, and 15,596 cycles from
January 2020 to December 2021 comprised the independent
validation cohort. After removing multiple cycles contributed by
the same women to address the clustering issue, the final numbers
of cycles included in the analysis were 15,241 for 2017-2019 and
14,498 for 2020-2021. Poor ovarian response (POR) was defined as
retrieval of fewer than five oocytes. As this study aims to update our
previous AA model, Table 1 reports only the distributions of AMH
and age according to POR status. This study was approved by the
Institutional Review Board of Peking University Third Hospital
(approval number: 2015sz-017).

Clarification of POR and DOR definitions

To avoid ambiguity, we clarify the distinct definitions of poor
ovarian response (POR) used in this study. Clinically, POR was
defined as retrieval of fewer than five oocytes, and this criterion was
applied consistently for all modeling and validation analyses. For
constructing the ovarian aging curve, we defined predicted POR (or
diminished ovarian reserve, DOR) using a probability threshold of
0.15, reflecting the actual incidence of POR in our cohort, rather
than the standard 0.5 binary classification threshold used in the
software. We recognize that these differing definitions may cause

TABLE 1 Characteristics of the modeling dataset and the external validation dataset.

Training set (2017-2019) Test set (2020-2021)
Variable Statistic
POR=No POR=Yes POR=No POR=Yes
N 13017 2224 12468 2030
Median 3.14 0.67 2.79 0.75
AMH (ng/ml) 25t percentile 1.7 0.34 1.58 0.4
750 percentile 5.4 131 4.69 1.37
Median 32 36 32 36
Age (years) 25th percentile 29 32 30 32
75" percentile 35 40 35 39
POR, poor ovarian response, with less than 5 oocytes retrived.
Frontiers in Endocrinology 03 frontiersin.org
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confusion; therefore, we emphasize that the clinical definition
(fewer than five oocytes) is used for model evaluation, while the
0.15 threshold is employed specifically for population-level aging
curve construction.

Statistical analysis

A logistic regression framework was used to model the risk of
POR (< 5 oocytes retrieved), facilitating direct comparison with our
previously published model (Model-0). Three candidate
specifications for age and AMH were evaluated:

1. Model-1 (continuous): age and AMH were included as
untransformed continuous variables.

2. Model-2 (polynomial): age was represented by a quadratic
term and AMH by a cubic term, based on exploratory
generalized additive modeling.

Model discrimination was quantified by the area under the receiver
operating characteristic curve (AUC). Calibration was assessed via
calibration plots comparing predicted probabilities with observed POR
rates. Incremental improvement over Model-0 was measured using the
net reclassification improvement (NRI) index.

Subsequently, the relationship between the proportion of
predicted POR (also defined as predicted DOR in our study) and
age was characterized. Given the anticipated sigmoidal pattern, a
logistic growth curve was fitted to the age-DOR data.

To evaluate whether the AMH-age model derived from assisted
reproductive technology (ART) data is generalizable to a broader
population, we conducted an exploratory comparison of AMH
distributions between our single-center ART cohort and a
community-based epidemiologic survey'’. Participants in both
datasets were stratified into three age groups: <30 years, >30-<40
years, and >40 years. For each age group, we plotted the empirical
distribution of serum AMH concentrations and compared their
medians and interquartile ranges.

All analyses were conducted in JMP Pro 17.0 (SAS Institute) and
R 4.4.1, with statistical significance defined as two-sided p < 0.05.

10.3389/fendo.2025.1658068

Results
Ovarian reserve scoring construction

Prediction of poor ovarian response

This study aims to optimize the original AA model (10)—which
utilizes AMH and age to predict the probability of POR—by
expanding the sample size and performing a comprehensive
analysis and appropriate transformation of the independent
variables (AMH and age). Three distinct models were developed:
the original model with categorical transformation of independent
variables (Model-0), a new model without any transformation
(Model-1), and a new model employing a cubic transformation of
AMH and a quadratic term of age, based on exploratory generalized
additive modeling. (Model-2).

Comparisons using NRI, ROC curves (Table 2), and calibration
curves (Figure 1) led to the following key conclusions. While
differences in ROC and NRI metrics were not markedly
significant, the calibration curve of Model-2 was superior to the
other models. Figure 1 compares the calibration of Model-0, Model-
1, Model-2, and the Ideal model across both the training (2017-
2019) and test (2020-2021) datasets. Model-2 consistently performs
the best, with its curve closely aligning with the Ideal model,
especially in the mid and low probability ranges. Although
Model-1 also performs well, Model-0 shows significant deviations
compared to the other models. The lower panel zooms in on the 0-
0.25 probability range, which is particularly important as it
represents 82.3% of the female population in our dataset. In this
zoomed-in view, Model-2 again outperforms the other models,
demonstrating superior calibration and making it the most reliable
for predicting outcomes in this most common probability range.

Based on these findings, we have chosen the Model-2 as the final
version of the updated model. In clinical practice, model calibration
is of paramount importance. Good calibration ensures that the
predicted incidence of POR accurately reflects the true incidence
within the population, thereby guaranteeing that each predicted
value closely approximates the actual occurrence rate. This accurate
incidence estimation serves as a crucial foundation for subsequent
predictions, such as the age at the onset of perimenopause.

TABLE 2 Discrimination performance for the four models predicting poor ovarian response (POR).

Names of models

NRI in test set

AUC (95% ClI) in training set

Model-0 ‘ 0.858 (0.849,0.867)
Model-1 ‘ 0.860 (0.851,0.869)
Model-2 0.861 (0.851,0.870)

NRI, Net reclassification improvement.

AUC (95% ClI) in test set

0.847 (0.837,0.857)

0.847 (0.837,0.857)

NRI in training set

0.845 (0.834,0.855) — ‘ —

0.0075 (-0.009,0.0239) ‘ -0.0015 (-0.0179,0.015)

0.004 (-0.0153,0.0233) ‘ 0.0128 (-0.0055,0.0312)

Model-0: The original model, in which AMH and age were converted into categorical variables for modeling.

Model-1: Age and AMH were included as untransformed continuous variables.

Model-2: Age was represented by a quadratic term and AMH by a cubic term, based on exploratory generalized additive modeling.
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FIGURE 1

Calibration of POR prediction models. (A) Training cohort (2017-2019); (B) Test cohort (2020-2021). Upper panels cover the full 0-1.0 range; lower
panels zoom to 0—0.25. Dashed black = ideal. Model-0 (green) overestimates risk < 0.60; Model-1 (purple) improves fit; Model-2 (red) tracks the

ideal line most closely.

Ovarian reserve score conversion

In the OvaRePred (HerTempo) model, we convert the predicted
probability of POR into an ovarian reserve score using the formula:
(1 - predicted probability of POR) x 100. This conversion inversely
maps the risk of POR to the quanlity of ovarian reserve: a higher
score indicates a lower risk of POR and a better ovarian reserve,
whereas a lower score suggests a higher risk of POR and a poorer
ovarian reserve. This transformation not only standardizes the
expression of the predicted probabilities but also makes the
evaluation results more intuitive, thereby aiding clinicians in risk
communication and decision-making.

Ovarian aging curve and determination of
endocrine age

In our previous work, we constructed an ovarian aging curve
using cross—sectional data based on the fixed—interval theory (2, 5),
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achieving an r* 0f 0.978 (8). In this study, we aim to further optimize
that ovarian aging curve by incorporating more data and exploring
additional methods. First, we recognize that ovarian aging follows a
sigmoidal (S—shaped) trajectory. We therefore applied a two
—parameter logistic curve to depict the trend in the predicted
prevalence of POR across ages. DOR, predicted POR, was defined
based on the newly developed Model-2, which applies a cubic
transformation to AMH. Using an actual POR incidence rate of
0.15 as the cut-off to define POR, we plotted the proportion of DOR
against age, as shown in Figure 2. The logistic curve model achieved
an r* of 0.989—an improvement over the original 0.978—
demonstrating superior overall fit. However, both the youngest
and oldest age ranges show poorer alignment with the fitted curve,
likely because fewer participants occupy these extremes, reducing
the sample’s representativeness and statistical power there. In
addition, increased biological variability and potential outliers at
the tails can further weaken the model’s ability to capture true
trends in those regions.
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Age-related trajectory of female reproductive decline. (A) Fixed Interval Theory, from an early 20th—century cross—sectional study without birth
control, proposes that age intervals between fertility states are relatively fixed (2, 5). We reconstructed its conceptual schematic by redrawing from
the original reference, mapping four key milestones—subfertility, sterility, menstrual irregularity onset, and menopause—as sigmoidal functions of
age. The 50% probability thresholds lie at approximately 31, 41, 46, and 51 years, respectively, illustrating a predictable, age—related progression of
reproductive decline (5). (B) Empirical ovarian—aging curve derived from 31,923 first—cycle ART patients: observed proportions of diminished ovarian
reserve (DOR, black dots) plotted against age with a two—parameter logistic fit. The close agreement confirms an S—shaped rise in DOR risk that

underpins panel (A) schematic.

Using the fitted S—shaped curve, we can map any individual’s
predicted probability of POR, also called predicted DOR in our
study, onto the ovarian aging curve to derive their “endocrine age.”
Here, ovarian endocrine age is an index that projects an individual’s
ovarian reserve score onto the population ovarian aging trajectory,
with the goal of reflecting the relative state of their ovarian function
rather than their chronological age.

Specifically, by measuring AMH levels and noting the subject’s
chronological age, we calculate a predicted probability of POR. We
then locate that probability on the S—shaped ovarian aging curve
constructed from large—scale population data; the age at which the
curve reaches that probability is defined as the ovarian endocrine
age. If a young woman’s ovarian reserve score corresponds to an
endocrine age substantially higher than her chronological age, this
may indicate accelerated ovarian decline and a potentially earlier
drop in fertility. Conversely, if her endocrine age is close to or below
her chronological age, it suggests her ovarian function is relatively
well preserved. In this way, ovarian endocrine age reflects the true
status of ovarian reserve and, compared with chronological age,
more accurately reveals the degree and rate of ovarian aging.

Predicting the age of onset for future
fertility milestones

The “fixed-interval hypothesis” assumes that an individual’s
ovarian aging trajectory shares the same shape as the population’s
average curve—meaning the time intervals between successive
stages of ovarian decline are constant, differing only in their
starting points. In other words, although individuals may begin

Frontiers in Endocrinology

with different ovarian reserve levels, the overall pattern of functional
decline over time can be described by a single sigmoid (S-shaped)
curve (5). Evidence supporting this hypothesis primarily comes
from cross-sectional observations (2). This hypothesis provides the
theoretical basis and methodological support for predicting future
ovarian reserve changes from a cross-sectional data.

On this basis, we derived the time intervals required for an
individual to reach specific ovarian reserve states (predicted
probability of POR). First, we map the subject’s current ovarian
reserve score onto the S-curve to determine her position within the
overall aging process. Next, using the fitted curve, we calculate the
interval needed to drop from the current score to a predefined POR
probability (e.g., a specific POR probability, which correspond to a
specific ovarian reserve score), then converted these intervals into
ages at which she would reach each milestone. We implemented this
functionality in a software tool (see Figure 3). The program uses
AMH and chronological age to calculate the user’s current reserve
score and “endocrine age,” then predicts the ages at which she will
reach a score of 50 and enter perimenopause (the lowest reserve
score observed in an ART population). We have also updated these
algorithms into an online tool (http://121.43.113.123:8005/).

AMH distributions across age groups in
ART vs. community populations

In our study, serum AMH concentrations from the ART cohort
—comprising women undergoing assisted reproductive technology
treatments—served as the primary data source. The median AMH
values for women aged < 30 years, > 30-< 40 years, and > 40 years

frontiersin.org
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OvaRePred

Ovarian Reserve Assessment and Menopause Prediction
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were 3.65 ng/mlL, 2.26 ng/mL, and 0.98 ng/mL, respectively. These
were compared with median AMH levels reported in previously
published population-based epidemiological studies representing
the general female population, which showed values of 3.89 ng/mL,
2.28 ng/mL, and 0.34 ng/mL for the corresponding age groups (13).
For women under 40, the empirical AMH distributions in the ART
and general population cohorts were nearly identical, whereas in
women over 40, the community data demonstrated a lower, left-
shifted distribution (Figure 4), distributions are nearly identical in
younger groups; a divergence appears in women 240, reflecting
differences in sample composition. Likely reflecting the inclusion of
a more representative cross-section of women in the general
population survey. Since women under 40 made up the majority
of both cohorts and exhibited highly similar AMH profiles, these
findings indicate that the AMH-age relationship derived from our
ART cohort is largely generalizable to the wider population.
Detailed percentiles of AMH concentrations by age group for
both cohorts are provided in Supplementary Table 1.
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Discussion

Advancing ovarian reserve assessment:
from categorical to continuous modeling
in OvaRePred(HerTempo) optimization

Ovarian reserve is the primary determinant of female fertility
(14). With advancing age or under disease impact, ovarian reserve
gradually becomes depleted and fertility correspondingly declines
until exhaustion. Assessing ovarian reserve enables early detection
of insufficiency and supports personalized fertility planning and
health management for women. This study aims to update and
optimize the algorithms underlying the previous OvaRePred
(HerTempo) tool using AA model (AMH+Age) (8, 10). The
original AA model employed categorical transformations of its
predictors. Categorical-variable models are simple and
interpretable: by grouping data they capture overall trends,
maintain stability, and exhibit strong robustness to outliers.
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women >40, reflecting differences in sample composition.

However, grouping can be crude, failing to reflect subtle variations,
and the choice of cutpoints is often subjective.

In contrast, continuous-variable models retain all original
information and—through appropriate transformations (e.g.,
cubic terms)—more accurately characterize nonlinear
relationships, enhancing discrimination and predictive accuracy.
However, they are more complex to build and interpret, sensitive to
outliers, and prone to overfitting with limited sample sizes. For
these reasons, and given our earlier sample size, we converted
continuous variables into categorical ones. In this update,
however, with a larger dataset, we experimented with multiple
predictor transformations, and the final Model-2 achieved
superior calibration compared to the original Model-0.

Comparison of parametric and non
—parametric modeling approaches

During the modeling process, we explored various non-
parametric methods (models without explicit functional forms),
such as random forest, neural networks, and generalized additive
models (GAMs). Although these models performed slightly better
on the training set, their performance on the test set was similar to
that of our traditional parametric models, with AUCs of 0.861,
0.863, and 0.863 for random forest, neural networks, and GAMs,
respectively. This indicates that the non-parametric models
achieved comparable results to the parametric approaches
discussed in this manuscript. In comparison, we preferred
parametric models with clear predictive formulas and high
interpretability. These models have well-defined algorithmic
principles that enable clinicians to intuitively understand the
decision-making mechanisms, thereby improving trust and
acceptance. Additionally, they are less demanding in terms of
computational resources, making them easier to implement across
different levels of healthcare institutions. Therefore, we ultimately
selected a model that combines strong interpretability with practical
clinical applicability.
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Impact of estradiol-driven AMH variation
on model performance

During controlled ovarian stimulation, estradiol (E2) levels rise
steadily, peaking around the hCG trigger day. Our supplementary
data show that AMH concentrations decline significantly during
this period—about 17.4% by day 6 and nearly 49.7% by the hCG day
compared to day 2 levels (As shown in supplementary result). This
sharp AMH decrease at hCG day leads to a notable drop in model
performance, with the predictive accuracy (AUC) falling from 0.868
to 0.652. However, when AMH variation is minimal or moderate
earlier in ovarian stimulation (e.g., cycle day 6 VS cycle day 2),
model discrimination remains largely stable. These results highlight
the importance of measuring AMH at the early follicular phase,
when levels are more stable and E2 is low, to ensure optimal
accuracy of ovarian reserve assessments and reproductive
milestone predictions with tools like OvaRePred (HerTempo).

Sources of AMH variability

When using the OvaRePred (HerTempo) tool, users should
note that AMH is the primary and most heavily weighted predictive
marker (8, 15), any element that causes AMH fluctuations may
impact its prediction performance. Although AMH is generally
considered stable during the menstrual cycle (16, 17), fluctuations
in follicle status can lead to significant intra-cycle changes. AMH
naturally declines with age (18), emphasizing the need for regular
ovarian reserve assessments. Estrogenic drugs—such as those used
in hormone replacement therapy or oral contraceptives—can
temporarily lower AMH levels (19). Similarly, ovarian stimulation
with FSH during assisted reproductive treatment (20), certain
chemotherapy agents like cyclophosphamide (21), and acute
ovarian conditions (e.g., cysts or inflammation) can affect AMH
levels (22). Additional factors such as stress, systemic inflammation
(23, 24), lifestyle changes like intense exercise or extreme diets (25),
rapid weight fluctuations (26), testing time, blood collection
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techniques, sample storage conditions (27, 28), and variations
between testing platforms or reagent batches (29) may all
contribute to technical variability. Early pregnancy may cause a
temporary decline in AMH (30), and short-term exposure to
environmental endocrine disruptors (e.g., bisphenol A) can also
affect AMH levels, either temporarily or permanently (31, 32).

Standardization and best practices for AMH
measurement

We recognize that the reliability of AMH-based predictive
models depends critically on standardized measurement protocols
and meticulous clinical documentation. Although AMH is generally
considered relatively stable, both biological and technical factors—
including cycle variability, medications, ovarian pathology,
environmental exposures, and assay differences—can influence its
levels (16, 17, 19, 25, 26, 29, 31, 32).

To minimize variability and improve the accuracy of both
clinical and research applications, we recommend that blood
samples for AMH measurement be collected in the early follicular
phase (typically cycle days 2-3), whenever feasible. At this time,
estradiol levels are at their nadir, minimizing their suppressive effect
on AMH secretion (33). Importantly, this is also the time window
during which AMH measurements were obtained for the majority
of participants in our model development and validation cohorts.
For women with irregular menstrual cycles, identifying the early
follicular phase may be more challenging. In such cases, clinicians
should use careful cycle tracking and clinical judgment to
approximate this window as closely as possible.

Repeat measurement of AMH may be considered in specific
clinical scenarios, particularly when (i) the AMH value is
unexpectedly low or high and inconsistent with other clinical
findings (e.g., antral follicle count or reproductive history); (ii) the
patient has recently undergone hormonal treatment (e.g., oral
contraceptives, GnRH agonists); (iii) there is recent ovarian
pathology (e.g., cysts, surgery, inflammation); or (iv) the
measurement was taken during an ill-defined phase of the
menstrual cycle or under unclear pre-analytical conditions. In
such situations, a second AMH test—ideally performed in the
early follicular phase and under stable physiological conditions—
can improve result reliability and model prediction accuracy.

Longitudinal monitoring should be performed using the same
validated assay platform. If switching platforms is unavoidable,
calibration and conversion tools (such as our previously developed
AMHConverter algorithm (34)) should be used to ensure
comparability. Additionally, strict adherence to standardized
protocols for sample collection, processing, transport, and storage
is essential to minimize pre-analytical variability.

Finally, detailed clinical documentation—including the timing
of the blood draw, menstrual cycle phase, concurrent medications,
and any acute illness or environmental exposures—is crucial for
interpreting AMH results accurately. By implementing these best
practices, the robustness and clinical utility of AMH-based tools
such as OvaRePred (HerTempo) can be further enhanced while
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maintaining consistency between model assumptions and real-
world application.

Challenges for high—-reserve women

Our OvaRePred (HerTempo) tool assumes that women have
already passed the plateau phase—typically reached during puberty—
when ovarian reserve peaks, before predicting future reproductive
milestones. Consequently, many younger women with a high ovarian
reserve may exhibit similar ovarian reserve scores for many years,
which poses challenges in accurately predicting the timing of future
reproductive milestones. For example, in women whose ovarian reserve
remains high and stable, the model’s predicted age of perimenopause
onset may substantially precede the actual age at which it will occur.

Platform flexibility and mitigation of batch
variability

The updated version of the OvaRePred (HerTempo) tool now
supports various AMH detection platforms, with conversion
algorithms derived from our prior research (34). Moreover, we
will continue to collaborate with reagent manufacturers to further
mitigate the influence of batch variability on the results.

Generalizability to the general population

The AMH-age model was developed from single-center ART
data, yet our AMH distribution analysis shows that women under
40 in the community cohort have AMH values comparable to those
in the ART cohort. This observation supports the model’s general
applicability for women <40 years and provides reassurance that
ART-derived AMH-age relationships mirror those in the general
population. However, differences observed in women >40 years
indicate that future studies should recruit more older general
participants to improve accuracy across the entire age spectrum.

Systemic effects of ovarian aging and
holistic utility of OvaRePred

Ovarian aging is a pivotal component of the overall female
aging process. Beyond its essential role in reproduction, the ovary
functions as a crucial endocrine gland, regulating systemic
homeostasis through the secretion of estrogen, progesterone, and
androgens. As ovarian reserve diminishes and functional decline
ensues, the consequent reduction in sex hormone production has
been associated in prior literature with increased risk of
cardiovascular diseases, osteoporosis, cognitive decline, metabolic
disorders, immune dysregulation, and skin aging (35-43).

OvaRePred (HerTempo) was designed as an early—warning tool
for ovarian aging. Specifically, for women with a low ovarian reserve
score and an earlier predicted onset of perimenopause, OvaRePred
may support earlier fertility planning or consideration of oocyte
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cryopreservation. Conversely, those with strong ovarian reserve and
later predicted perimenopause may align reproductive timing with
life goals. These fertility-focused applications remain the core
validated purpose of the tool.

In addition to guiding fertility decisions, the OvaRePred tool can
inform comprehensive health management, as illustrated in Figure 5.
In this context, the significance of OvaRePred (HerTempo) extends
far beyond predicting ovarian aging, offering a comprehensive tool
for holistic women’s health management. However, the potential to
expand OvaRePred’s utility for anticipatory health guidance remains
an area for future research and should not be construed as a current
clinical indication. While these associations suggest that ovarian
health may play a broader role in women’s systemic well-being, we
acknowledge that the current version of OvaRePred (HerTempo) has
only been validated in the context of assisted reproduction. Therefore,
these broader implications are only hypothetical future directions
rather than validated applications.

Population—level applications and public
health integration

OvaRePred (HerTempo)’s validated, user-friendly algorithm
enables scalable ovarian reserve assessment at the population level.

10.3389/fendo.2025.1658068

Integration into national or regional women’s health programs could
facilitate early detection of diminished ovarian reserve, guide fertility
counseling, and inform public health resource planning. Key barriers
—such as test cost, laboratory access, and low public awareness—can
be mitigated through tiered screening approaches, point-of-care
diagnostics, health education initiatives, and strategic policy
support. Harnessing aggregated OvaRePred data may also enable
population health surveillance and support data-driven policy-
making to improve women’s health outcomes on a broader scale.

Limitations

Despite significant progress achieved in this study, the
OvaRePred (HerTempo) tool has several limitations that warrant
further refinement. First, the current model is primarily developed
based on single-center ART population data; thus, broader
applicability requires additional samples and multi-center external
validation. It is crucial to address variability across different
ethnicities, regions, and cultural backgrounds to continuously
optimize model parameters and improve both clinical utility and
predictive accuracy. Second, the lack of documented blood collection
timing (i.e., specific day of the menstrual cycle) for some
reproductive-age women may affect result accuracy, underscoring

OvaRePred: placing the ovary at the core of women's aging and proactive multisystem health managemt
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Infographic illustrating OvaRePred’s concept of ovarian reserve scoring. A female silhouette highlights the ovary as the “core of female aging,” linking
endocrine age to cardiovascular, bone, cognitive and metabolic screening priorities. The gauge depicts reserve score (0-100); a timeline aligns
diminished reserve, perimenopause and menopause for anticipatory, proactive health management.
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the need for improved data collection protocols to ensure stability
and reproducibility. Third, while temporal data splitting was used to
simulate prospective validation, this approach may be subject to time-
based confounding—such as changes in clinical protocols, shifts in
patient population characteristics, or external factors like the
COVID-19 pandemic—which could influence model performance.
Future studies should consider combining temporal and random
splitting strategies or incorporating external datasets to better
mitigate such effects. Moreover, expanding the range of input
parameters—such as ovarian aging variations under diverse disease
conditions, and influences from medications, lifestyle factors, and
environmental exposures—could enhance the tool’s adaptability and
precision in complex clinical settings, supporting more personalized
health management.

The fixed-interval hypothesis, which posits a consistent temporal
relationship between reproductive aging events, underpins part of our
predictive framework. Although it is supported by cross-sectional and
historical population data, this assumption remains unvalidated at
the individual level. Longitudinal confirmation would require
tracking natural menstrual and fertility patterns over many years;
however, in contemporary settings, such prospective designs are
extremely difficult to implement. The widespread use of hormonal
contraception, together with other medical or lifestyle interventions,
obscures natural reproductive trajectories and greatly limits the
feasibility of obtaining uninterrupted, long-term observations.
Consequently, reliance on this unverified assumption constitutes a
significant limitation, particularly for making individualized long-
term predictions. Future research should prioritize the rare
opportunity to conduct long-term, prospectively designed cohort
studies in populations minimally influenced by hormonal
contraception or other factors that alter natural reproductive aging.

Importantly, OvaRePred (HerTempo) focuses solely on
quantifying ovarian reserve, reflected by follicle quantity, and does
not directly assess follicle or oocyte quality, nor overall fertility
potential. This distinction is critical in clinical scenarios such as
PCOS, where patients may exhibit high follicle counts but impaired
oocyte developmental competence. In such cases, a high reserve score
does not necessarily equate to optimal reproductive capacity.
Therefore, for a more comprehensive fertility evaluation,
OvaRePred results should be interpreted alongside complementary
diagnostic markers—such as oocyte maturity rates, detailed
hormonal profiles, and, where available, indicators of oocyte or
embryo competence. Integrating these multidimensional
assessments enables a more nuanced understanding of reproductive
potential and guides individualized clinical decision-making.

Conclusion

In summary, OvaRePred (HerTempo), a comprehensive
evaluation tool powered by big data and artificial intelligence, not
only provides precise decision support for fertility planning but also
paves a new path for holistic women’s health management.
Through continual optimization and interdisciplinary integration,
OvaRePred (HerTempo) is poised to become a vital bridge between
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reproductive medicine and overall health management, offering
more precise and personalized health guidance for women.
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