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Background: Women display marked variability in ovarian reserve, which is

pivotal for fertility and menopausal timing. Traditional criteria, such as Bologna

and Poseidon, classify women into broad groups but do not provide

individualized predictions for ovarian aging or reproductive milestones. This

study aims to refine the AA model (AMH + age) to enhance clinical usability,

robustness, and interpretability.

Materials and Methods: Single-center retrospective ART cohort (GnRH-

antagonist cycles, 2017–2021). Training: 15,241 cycles (2017–2019); Testing:

14,498 cycles (2020–2021). Poor ovarian response (POR) was defined as <5

oocytes. Three logistic-regression specifications were compared: categorical

(Model-0), continuous (Model-1), and polynomial (age quadratic, AMH cubic;

Model-2). Discrimination (AUC), calibration, and net reclassification

improvement (NRI) were evaluated. A two-parameter logistic curve was fitted

to age versus predicted POR (used population-level as “predicted DOR”) to

construct an ovarian-aging trajectory and derive an interpretable “endocrine-

age” index. Sensitivity analyses assessed cycle-day AMH variation; a community

dataset was used to compare age-stratified AMH distributions.

Results: While all models achieved comparable discrimination (AUC ≈ 0.85), a

cubic transformation model (Model-2) demonstrated superior calibration and

was selected as the final algorithm. A two-parameter logistic curve allowed

translation of ovarian reserve scores into an “endocrine age” and enabled

individualized prediction of future milestones, such as diminished reserve with

ovarian score of 50 and perimenopause, the lowest ovarian reserve score in our

ART population. AMH sampling on different cycle days showed only modest
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effects from minor fluctuations; only substantial AMH decreases significantly

affected prediction accuracy. Age-stratified AMH distributions were similar

between ART and community cohorts in women <40, supporting external

relevance. The updated OvaRePred (HerTempo) model is cost-effective,

scalable, and operationally simple.

Conclusion: OvaRePred (HerTempo) delivers individualized, well-calibrated

estimates of ovarian reserve and an interpretable endocrine-age index and

future fertility milestone onset. While the tool can inform personalized fertility

planning and may have broader public-health utility, the algorithm is trained on

ART endpoints. Any projections of future reproductive milestones derived from

the population ovarian-aging curve—and the fixed-interval hypothesis that

underpins that curve—are hypothesis-generating and require prospective

validation, particularly in non-ART cohorts with longitudinal follow-up.
KEYWORDS

ovarian reserve, anti-müllerian hormone (AMH), ovarian aging curve, endocrine age,
reproductive milestone prediction, personalized fertility planning, health management
Introduction

As is well known, women lose their fertility at menopause due to

the depletion of ovarian reserve, which is widely considered the

most critical factor affecting fertility (1, 2). However, what is less

appreciated is the significant inter-individual variability in ovarian

reserve (3, 4). Ovarian reserve, defined by the number of primordial

follicles, exhibits marked differences even at birth, from thousands

to millions (1). Although the rate of ovarian aging is relatively

consistent among individuals, these inherent variations in ovarian

reserve lead to a wide disparity in the age at menopause (1, 5). The

Bologna (6) and Poseidon (7) criterias for poor ovarian response,

although commonly used for assessing ovarian reserve, have

notable limitations. Specifically, the Bologna standard categorizes

patients into only two groups, while the Poseidon criteria, despite

subdividing into four categories, still do not fully capture individual

differences. Additionally, both standards heavily rely on ultrasound-

based antral follicle count (AFC) assessments, which typically

require transvaginal ultrasound for greater accuracy. This

method, however, can cause discomfort for some women and is

subject to variability due to differences in equipment and operator

proficiency. Moreover, they assess ovarian reserve only at a single

point in time without providing dynamic predictions of future

changes. In light of these deficiencies, and given the vast

individual differences in ovarian reserve, the ability to perform

individualized ovarian reserve assessments and to predict

reproductive milestones is of paramount importance.

In 2023, the reproductive center team at Peking University

Third Hospital leveraged their extensive big data resources to

introduce the OvaRePred (HerTempo) tool for ovarian reserve

evaluation and future milestone prediction (8, 9). This tool has

since been adopted in multiple hospitals across China, including
02
Peking University Third Hospital, as well as in health examination

centers and online platforms, with favorable patient feedback.

OvaRePred (HerTempo) provides a ranking of ovarian reserve

from optimal to poor based on the probability of a poor ovarian

response (POR), generating a score for current ovarian reserve.

Furthermore, by integrating the Fixed Interval theory—which

posits that the ovarian aging curves of populations are similar

and follow an S-shaped curve—our team has constructed a

population-level ovarian aging curve. This enables the tool not

only to assess current ovarian reserve but also to predict the age at

which critical reproductive milestones occur, such as the onset of

diminished ovarian reserve (DOR, corresponding to an ovarian

reserve score of 50) and the beginning of perimenopause (marked

by the lowest ovarian reserve score in our ART populations).

OvaRePred (HerTempo) proposes three prediction models

tailored to different clinical scenarios—AAFA (AMH-AFC-FSH-

Age), AFA (AMH-FSH-Age), and AA (AMH-Age)—for evaluating

ovarian reserve and forecasting subsequent reproductive

milestones. Although these models incorporate different

combinations of variables, their predictive performance is

statistically similar, suggesting that a simpler model may suffice in

clinical practice. In particular, the AA model, which relies solely on

anti-Müllerian hormone (AMH) and age, offers the advantages of

simplicity and cost-effectiveness while maintaining high predictive

accuracy (10). Moreover, AMH measurement is not time-restricted

and blood can be drawn on any day of the menstrual cycle, the AA

model offers greater flexibility and convenience. However, both the

AFA and AAFAmodels depend on FSHmeasurements obtained via

precisely timed blood draws during the menstrual cycle, and the

AAFA model further requires antral follicle counts by transvaginal

ultrasound—adding procedural complexity, higher costs, and

greater patient discomfort. Thus, our current study focuses on
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updating and refining the AA model using larger datasets and

advanced statistical techniques, with the ultimate goal of

establishing a robust, high-performing ovarian reserve assessment

and reproductive milestone prediction tool that is both user-

friendly and operationally efficient.

Our original AA model (10) employed categorical

transformations for its independent variables. Categorical variable

models offer simplicity and ease of interpretation by grouping data

to capture overall trends, maintain stability, and resist the influence

of outliers (11, 12). While this method effectively captures general

trends and ensures stability, it falls short in reflecting finer changes.

In contrast, continuous variable models retain the complete

spectrum of the original data and, through appropriate

transformations (such as a cubic transformation), can more

accurately capture the nonlinear relationships between variables.

This leads to enhanced discriminative power and improved

predictive accuracy. However, continuous models are more

complex to construct and interpret, are more sensitive to outliers,

and may risk overfitting, particularly with smaller sample sizes (12).

For these reasons, we aim to update our AA model by exploring

various transformations of the independent variables. Our goal was

to achieve better discrimination and calibration compared to the

original model.

Despite its clinical promise, the original AA model—which

categorizes AMH and age—may be too coarse to capture subtle

nonlinear relationships, and its calibration can be further improved.

Meanwhile, although the AFA and AAFA models achieve similar

discrimination, their reliance on cycle−timed FSH measurements

and transvaginal AFC assessment increases complexity, cost, and

patient burden. To address these gaps, the present study leverages a

substantially expanded single−center ART dataset to explore

different transformations of AMH and age, evaluate the variations

of AMH on model performance, and rigorously compare model

discrimination, calibration, and reclassification performance. Our

aim is to refine the AA model into a streamlined, high−precision

tool that maintains interpretability and operational efficiency,

thereby enhancing personalized ovarian reserve assessment,

endocrine age evaluat ion and the predict ion of key

reproductive milestones.
Frontiers in Endocrinology 03
Materials and methods

Study population and data sources

This retrospective, single-center analysis enrolled women

undergoing controlled ovarian stimulation with gonadotropin-

releasing hormone (GnRH) antagonist protocols from 2017 to

2021. All participants received stimulation at our center, with

serum AMH levels, chronological age, and pertinent clinical

variables recorded at baseline. No apparent outliers in AMH or

age were identified in the exported database; thus, no data exclusion

for outliers was performed. Retaining the full spectrum of observed

AMH and age values enhances the model’s generalizability,

particularly for individuals at the extremes of ovarian reserve.

Initially, 16,327 antagonist cycles from January 2017 to December

2019 constituted the training cohort, and 15,596 cycles from

January 2020 to December 2021 comprised the independent

validation cohort. After removing multiple cycles contributed by

the same women to address the clustering issue, the final numbers

of cycles included in the analysis were 15,241 for 2017–2019 and

14,498 for 2020–2021. Poor ovarian response (POR) was defined as

retrieval of fewer than five oocytes. As this study aims to update our

previous AA model, Table 1 reports only the distributions of AMH

and age according to POR status. This study was approved by the

Institutional Review Board of Peking University Third Hospital

(approval number: 2015sz-017).
Clarification of POR and DOR definitions

To avoid ambiguity, we clarify the distinct definitions of poor

ovarian response (POR) used in this study. Clinically, POR was

defined as retrieval of fewer than five oocytes, and this criterion was

applied consistently for all modeling and validation analyses. For

constructing the ovarian aging curve, we defined predicted POR (or

diminished ovarian reserve, DOR) using a probability threshold of

0.15, reflecting the actual incidence of POR in our cohort, rather

than the standard 0.5 binary classification threshold used in the

software. We recognize that these differing definitions may cause
TABLE 1 Characteristics of the modeling dataset and the external validation dataset.

Variable Statistic
Training set (2017-2019) Test set (2020-2021)

POR=No POR=Yes POR=No POR=Yes

N 13017 2224 12468 2030

AMH (ng/ml)

Median 3.14 0.67 2.79 0.75

25th percentile 1.7 0.34 1.58 0.4

75th percentile 5.4 1.31 4.69 1.37

Age (years)

Median 32 36 32 36

25th percentile 29 32 30 32

75th percentile 35 40 35 39
POR, poor ovarian response, with less than 5 oocytes retrived.
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confusion; therefore, we emphasize that the clinical definition

(fewer than five oocytes) is used for model evaluation, while the

0.15 threshold is employed specifically for population-level aging

curve construction.
Statistical analysis

A logistic regression framework was used to model the risk of

POR (< 5 oocytes retrieved), facilitating direct comparison with our

previously published model (Model-0). Three candidate

specifications for age and AMH were evaluated:
Fron
1. Model-1 (continuous): age and AMH were included as

untransformed continuous variables.

2. Model-2 (polynomial): age was represented by a quadratic

term and AMH by a cubic term, based on exploratory

generalized additive modeling.
Model discrimination was quantified by the area under the receiver

operating characteristic curve (AUC). Calibration was assessed via

calibration plots comparing predicted probabilities with observed POR

rates. Incremental improvement over Model-0 was measured using the

net reclassification improvement (NRI) index.

Subsequently, the relationship between the proportion of

predicted POR (also defined as predicted DOR in our study) and

age was characterized. Given the anticipated sigmoidal pattern, a

logistic growth curve was fitted to the age-DOR data.

To evaluate whether the AMH–age model derived from assisted

reproductive technology (ART) data is generalizable to a broader

population, we conducted an exploratory comparison of AMH

distributions between our single-center ART cohort and a

community-based epidemiologic survey13. Participants in both

datasets were stratified into three age groups: ≤30 years, >30–≤40

years, and >40 years. For each age group, we plotted the empirical

distribution of serum AMH concentrations and compared their

medians and interquartile ranges.

All analyses were conducted in JMP Pro 17.0 (SAS Institute) and

R 4.4.1, with statistical significance defined as two-sided p < 0.05.
tiers in Endocrinology 04
Results

Ovarian reserve scoring construction

Prediction of poor ovarian response
This study aims to optimize the original AA model (10)—which

utilizes AMH and age to predict the probability of POR—by

expanding the sample size and performing a comprehensive

analysis and appropriate transformation of the independent

variables (AMH and age). Three distinct models were developed:

the original model with categorical transformation of independent

variables (Model-0), a new model without any transformation

(Model-1), and a new model employing a cubic transformation of

AMH and a quadratic term of age, based on exploratory generalized

additive modeling. (Model-2).

Comparisons using NRI, ROC curves (Table 2), and calibration

curves (Figure 1) led to the following key conclusions. While

differences in ROC and NRI metrics were not markedly

significant, the calibration curve of Model-2 was superior to the

other models. Figure 1 compares the calibration of Model-0, Model-

1, Model-2, and the Ideal model across both the training (2017–

2019) and test (2020–2021) datasets. Model-2 consistently performs

the best, with its curve closely aligning with the Ideal model,

especially in the mid and low probability ranges. Although

Model-1 also performs well, Model-0 shows significant deviations

compared to the other models. The lower panel zooms in on the 0-

0.25 probability range, which is particularly important as it

represents 82.3% of the female population in our dataset. In this

zoomed-in view, Model-2 again outperforms the other models,

demonstrating superior calibration and making it the most reliable

for predicting outcomes in this most common probability range.

Based on these findings, we have chosen the Model-2 as the final

version of the updated model. In clinical practice, model calibration

is of paramount importance. Good calibration ensures that the

predicted incidence of POR accurately reflects the true incidence

within the population, thereby guaranteeing that each predicted

value closely approximates the actual occurrence rate. This accurate

incidence estimation serves as a crucial foundation for subsequent

predictions, such as the age at the onset of perimenopause.
TABLE 2 Discrimination performance for the four models predicting poor ovarian response (POR).

Names of models AUC (95% CI) in training set AUC (95% CI) in test set NRI in training set NRI in test set

Model-0 0.858 (0.849,0.867) 0.845 (0.834,0.855) — —

Model-1 0.860 (0.851,0.869) 0.847 (0.837,0.857) 0.0075 (-0.009,0.0239) -0.0015 (-0.0179,0.015)

Model-2 0.861 (0.851,0.870) 0.847 (0.837,0.857) 0.004 (-0.0153,0.0233) 0.0128 (-0.0055,0.0312)
NRI, Net reclassification improvement.
Model−0: The original model, in which AMH and age were converted into categorical variables for modeling.
Model-1: Age and AMH were included as untransformed continuous variables.
Model-2: Age was represented by a quadratic term and AMH by a cubic term, based on exploratory generalized additive modeling.
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Ovarian reserve score conversion

In the OvaRePred (HerTempo) model, we convert the predicted

probability of POR into an ovarian reserve score using the formula:

(1 – predicted probability of POR) × 100. This conversion inversely

maps the risk of POR to the quanlity of ovarian reserve: a higher

score indicates a lower risk of POR and a better ovarian reserve,

whereas a lower score suggests a higher risk of POR and a poorer

ovarian reserve. This transformation not only standardizes the

expression of the predicted probabilities but also makes the

evaluation results more intuitive, thereby aiding clinicians in risk

communication and decision-making.
Ovarian aging curve and determination of
endocrine age

In our previous work, we constructed an ovarian aging curve

using cross−sectional data based on the fixed−interval theory (2, 5),
Frontiers in Endocrinology 05
achieving an r² of 0.978 (8). In this study, we aim to further optimize

that ovarian aging curve by incorporating more data and exploring

additional methods. First, we recognize that ovarian aging follows a

sigmoidal (S−shaped) trajectory. We therefore applied a two

−parameter logistic curve to depict the trend in the predicted

prevalence of POR across ages. DOR, predicted POR, was defined

based on the newly developed Model-2, which applies a cubic

transformation to AMH. Using an actual POR incidence rate of

0.15 as the cut-off to define POR, we plotted the proportion of DOR

against age, as shown in Figure 2. The logistic curve model achieved

an r² of 0.989—an improvement over the original 0.978—

demonstrating superior overall fit. However, both the youngest

and oldest age ranges show poorer alignment with the fitted curve,

likely because fewer participants occupy these extremes, reducing

the sample’s representativeness and statistical power there. In

addition, increased biological variability and potential outliers at

the tails can further weaken the model’s ability to capture true

trends in those regions.
FIGURE 1

Calibration of POR prediction models. (A) Training cohort (2017–2019); (B) Test cohort (2020–2021). Upper panels cover the full 0–1.0 range; lower
panels zoom to 0–0.25. Dashed black = ideal. Model−0 (green) overestimates risk < 0.60; Model−1 (purple) improves fit; Model−2 (red) tracks the
ideal line most closely.
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Using the fitted S−shaped curve, we can map any individual’s

predicted probability of POR, also called predicted DOR in our

study, onto the ovarian aging curve to derive their “endocrine age.”

Here, ovarian endocrine age is an index that projects an individual’s

ovarian reserve score onto the population ovarian aging trajectory,

with the goal of reflecting the relative state of their ovarian function

rather than their chronological age.

Specifically, by measuring AMH levels and noting the subject’s

chronological age, we calculate a predicted probability of POR. We

then locate that probability on the S−shaped ovarian aging curve

constructed from large−scale population data; the age at which the

curve reaches that probability is defined as the ovarian endocrine

age. If a young woman’s ovarian reserve score corresponds to an

endocrine age substantially higher than her chronological age, this

may indicate accelerated ovarian decline and a potentially earlier

drop in fertility. Conversely, if her endocrine age is close to or below

her chronological age, it suggests her ovarian function is relatively

well preserved. In this way, ovarian endocrine age reflects the true

status of ovarian reserve and, compared with chronological age,

more accurately reveals the degree and rate of ovarian aging.
Predicting the age of onset for future
fertility milestones

The “fixed-interval hypothesis” assumes that an individual’s

ovarian aging trajectory shares the same shape as the population’s

average curve—meaning the time intervals between successive

stages of ovarian decline are constant, differing only in their

starting points. In other words, although individuals may begin
Frontiers in Endocrinology 06
with different ovarian reserve levels, the overall pattern of functional

decline over time can be described by a single sigmoid (S-shaped)

curve (5). Evidence supporting this hypothesis primarily comes

from cross-sectional observations (2). This hypothesis provides the

theoretical basis and methodological support for predicting future

ovarian reserve changes from a cross-sectional data.

On this basis, we derived the time intervals required for an

individual to reach specific ovarian reserve states (predicted

probability of POR). First, we map the subject’s current ovarian

reserve score onto the S-curve to determine her position within the

overall aging process. Next, using the fitted curve, we calculate the

interval needed to drop from the current score to a predefined POR

probability (e.g., a specific POR probability, which correspond to a

specific ovarian reserve score), then converted these intervals into

ages at which she would reach each milestone. We implemented this

functionality in a software tool (see Figure 3). The program uses

AMH and chronological age to calculate the user’s current reserve

score and “endocrine age,” then predicts the ages at which she will

reach a score of 50 and enter perimenopause (the lowest reserve

score observed in an ART population). We have also updated these

algorithms into an online tool (http://121.43.113.123:8005/).
AMH distributions across age groups in
ART vs. community populations

In our study, serum AMH concentrations from the ART cohort

—comprising women undergoing assisted reproductive technology

treatments—served as the primary data source. The median AMH

values for women aged ≤ 30 years, > 30–≤ 40 years, and > 40 years
FIGURE 2

Age−related trajectory of female reproductive decline. (A) Fixed Interval Theory, from an early 20th−century cross−sectional study without birth
control, proposes that age intervals between fertility states are relatively fixed (2, 5). We reconstructed its conceptual schematic by redrawing from
the original reference, mapping four key milestones—subfertility, sterility, menstrual irregularity onset, and menopause—as sigmoidal functions of
age. The 50% probability thresholds lie at approximately 31, 41, 46, and 51 years, respectively, illustrating a predictable, age−related progression of
reproductive decline (5). (B) Empirical ovarian−aging curve derived from 31,923 first−cycle ART patients: observed proportions of diminished ovarian
reserve (DOR, black dots) plotted against age with a two−parameter logistic fit. The close agreement confirms an S−shaped rise in DOR risk that
underpins panel (A) schematic.
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were 3.65 ng/mL, 2.26 ng/mL, and 0.98 ng/mL, respectively. These

were compared with median AMH levels reported in previously

published population-based epidemiological studies representing

the general female population, which showed values of 3.89 ng/mL,

2.28 ng/mL, and 0.34 ng/mL for the corresponding age groups (13).

For women under 40, the empirical AMH distributions in the ART

and general population cohorts were nearly identical, whereas in

women over 40, the community data demonstrated a lower, left-

shifted distribution (Figure 4), distributions are nearly identical in

younger groups; a divergence appears in women ≥40, reflecting

differences in sample composition. Likely reflecting the inclusion of

a more representative cross-section of women in the general

population survey. Since women under 40 made up the majority

of both cohorts and exhibited highly similar AMH profiles, these

findings indicate that the AMH–age relationship derived from our

ART cohort is largely generalizable to the wider population.

Detailed percentiles of AMH concentrations by age group for

both cohorts are provided in Supplementary Table 1.
Frontiers in Endocrinology 07
Discussion

Advancing ovarian reserve assessment:
from categorical to continuous modeling
in OvaRePred(HerTempo) optimization

Ovarian reserve is the primary determinant of female fertility

(14). With advancing age or under disease impact, ovarian reserve

gradually becomes depleted and fertility correspondingly declines

until exhaustion. Assessing ovarian reserve enables early detection

of insufficiency and supports personalized fertility planning and

health management for women. This study aims to update and

optimize the algorithms underlying the previous OvaRePred

(HerTempo) tool using AA model (AMH+Age) (8, 10). The

original AA model employed categorical transformations of its

predictors. Categorical‐variable models are simple and

interpretable: by grouping data they capture overall trends,

maintain stability, and exhibit strong robustness to outliers.
FIGURE 3

The OvaRePred software interface for ovarian reserve assessment and menopause prediction. The left panel captures patient demographics and
AMH data, while the right panel presents outputs: ovarian reserve score with grade, endocrine ovarian age, estimated ages at 50−point reserve and
perimenopause onset, and risk assessment.
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However, grouping can be crude, failing to reflect subtle variations,

and the choice of cutpoints is often subjective.

In contrast, continuous‐variable models retain all original

information and—through appropriate transformations (e.g.,

cubic terms)—more accurately characterize nonlinear

relationships, enhancing discrimination and predictive accuracy.

However, they are more complex to build and interpret, sensitive to

outliers, and prone to overfitting with limited sample sizes. For

these reasons, and given our earlier sample size, we converted

continuous variables into categorical ones. In this update,

however, with a larger dataset, we experimented with multiple

predictor transformations, and the final Model-2 achieved

superior calibration compared to the original Model-0.
Comparison of parametric and non
−parametric modeling approaches

During the modeling process, we explored various non-

parametric methods (models without explicit functional forms),

such as random forest, neural networks, and generalized additive

models (GAMs). Although these models performed slightly better

on the training set, their performance on the test set was similar to

that of our traditional parametric models, with AUCs of 0.861,

0.863, and 0.863 for random forest, neural networks, and GAMs,

respectively. This indicates that the non-parametric models

achieved comparable results to the parametric approaches

discussed in this manuscript. In comparison, we preferred

parametric models with clear predictive formulas and high

interpretability. These models have well-defined algorithmic

principles that enable clinicians to intuitively understand the

decision-making mechanisms, thereby improving trust and

acceptance. Additionally, they are less demanding in terms of

computational resources, making them easier to implement across

different levels of healthcare institutions. Therefore, we ultimately

selected a model that combines strong interpretability with practical

clinical applicability.
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Impact of estradiol-driven AMH variation
on model performance

During controlled ovarian stimulation, estradiol (E2) levels rise

steadily, peaking around the hCG trigger day. Our supplementary

data show that AMH concentrations decline significantly during

this period—about 17.4% by day 6 and nearly 49.7% by the hCG day

compared to day 2 levels (As shown in supplementary result). This

sharp AMH decrease at hCG day leads to a notable drop in model

performance, with the predictive accuracy (AUC) falling from 0.868

to 0.652. However, when AMH variation is minimal or moderate

earlier in ovarian stimulation (e.g., cycle day 6 VS cycle day 2),

model discrimination remains largely stable. These results highlight

the importance of measuring AMH at the early follicular phase,

when levels are more stable and E2 is low, to ensure optimal

accuracy of ovarian reserve assessments and reproductive

milestone predictions with tools like OvaRePred (HerTempo).
Sources of AMH variability

When using the OvaRePred (HerTempo) tool, users should

note that AMH is the primary and most heavily weighted predictive

marker (8, 15), any element that causes AMH fluctuations may

impact its prediction performance. Although AMH is generally

considered stable during the menstrual cycle (16, 17), fluctuations

in follicle status can lead to significant intra-cycle changes. AMH

naturally declines with age (18), emphasizing the need for regular

ovarian reserve assessments. Estrogenic drugs—such as those used

in hormone replacement therapy or oral contraceptives—can

temporarily lower AMH levels (19). Similarly, ovarian stimulation

with FSH during assisted reproductive treatment (20), certain

chemotherapy agents like cyclophosphamide (21), and acute

ovarian conditions (e.g., cysts or inflammation) can affect AMH

levels (22). Additional factors such as stress, systemic inflammation

(23, 24), lifestyle changes like intense exercise or extreme diets (25),

rapid weight fluctuations (26), testing time, blood collection
FIGURE 4

Age−specific log−transformed AMH distributions in ART versus general populations. Log−transformed AMH distributions for assisted−reproduction
(ART, blue) and community−based general (red) populations stratified by age: ≤30 years (ART = 10 365, general = 2 417), 30–≤40 years (ART = 19
237, general = 4 342) and ≥40 years (ART = 2 321, general = 3 356). Distributions are nearly identical in younger groups; a divergence appears in
women ≥40, reflecting differences in sample composition.
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techniques, sample storage conditions (27, 28), and variations

between testing platforms or reagent batches (29) may all

contribute to technical variability. Early pregnancy may cause a

temporary decline in AMH (30), and short-term exposure to

environmental endocrine disruptors (e.g., bisphenol A) can also

affect AMH levels, either temporarily or permanently (31, 32).
Standardization and best practices for AMH
measurement

We recognize that the reliability of AMH-based predictive

models depends critically on standardized measurement protocols

and meticulous clinical documentation. Although AMH is generally

considered relatively stable, both biological and technical factors—

including cycle variability, medications, ovarian pathology,

environmental exposures, and assay differences—can influence its

levels (16, 17, 19, 25, 26, 29, 31, 32).

To minimize variability and improve the accuracy of both

clinical and research applications, we recommend that blood

samples for AMH measurement be collected in the early follicular

phase (typically cycle days 2–3), whenever feasible. At this time,

estradiol levels are at their nadir, minimizing their suppressive effect

on AMH secretion (33). Importantly, this is also the time window

during which AMH measurements were obtained for the majority

of participants in our model development and validation cohorts.

For women with irregular menstrual cycles, identifying the early

follicular phase may be more challenging. In such cases, clinicians

should use careful cycle tracking and clinical judgment to

approximate this window as closely as possible.

Repeat measurement of AMH may be considered in specific

clinical scenarios, particularly when (i) the AMH value is

unexpectedly low or high and inconsistent with other clinical

findings (e.g., antral follicle count or reproductive history); (ii) the

patient has recently undergone hormonal treatment (e.g., oral

contraceptives, GnRH agonists); (iii) there is recent ovarian

pathology (e.g., cysts, surgery, inflammation); or (iv) the

measurement was taken during an ill-defined phase of the

menstrual cycle or under unclear pre-analytical conditions. In

such situations, a second AMH test—ideally performed in the

early follicular phase and under stable physiological conditions—

can improve result reliability and model prediction accuracy.

Longitudinal monitoring should be performed using the same

validated assay platform. If switching platforms is unavoidable,

calibration and conversion tools (such as our previously developed

AMHConverter algorithm (34)) should be used to ensure

comparability. Additionally, strict adherence to standardized

protocols for sample collection, processing, transport, and storage

is essential to minimize pre-analytical variability.

Finally, detailed clinical documentation—including the timing

of the blood draw, menstrual cycle phase, concurrent medications,

and any acute illness or environmental exposures—is crucial for

interpreting AMH results accurately. By implementing these best

practices, the robustness and clinical utility of AMH-based tools

such as OvaRePred (HerTempo) can be further enhanced while
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maintaining consistency between model assumptions and real-

world application.
Challenges for high−reserve women

Our OvaRePred (HerTempo) tool assumes that women have

already passed the plateau phase—typically reached during puberty—

when ovarian reserve peaks, before predicting future reproductive

milestones. Consequently, many younger women with a high ovarian

reserve may exhibit similar ovarian reserve scores for many years,

which poses challenges in accurately predicting the timing of future

reproductive milestones. For example, in women whose ovarian reserve

remains high and stable, the model’s predicted age of perimenopause

onset may substantially precede the actual age at which it will occur.
Platform flexibility and mitigation of batch
variability

The updated version of the OvaRePred (HerTempo) tool now

supports various AMH detection platforms, with conversion

algorithms derived from our prior research (34). Moreover, we

will continue to collaborate with reagent manufacturers to further

mitigate the influence of batch variability on the results.
Generalizability to the general population

The AMH–age model was developed from single-center ART

data, yet our AMH distribution analysis shows that women under

40 in the community cohort have AMH values comparable to those

in the ART cohort. This observation supports the model’s general

applicability for women ≤40 years and provides reassurance that

ART-derived AMH–age relationships mirror those in the general

population. However, differences observed in women >40 years

indicate that future studies should recruit more older general

participants to improve accuracy across the entire age spectrum.
Systemic effects of ovarian aging and
holistic utility of OvaRePred

Ovarian aging is a pivotal component of the overall female

aging process. Beyond its essential role in reproduction, the ovary

functions as a crucial endocrine gland, regulating systemic

homeostasis through the secretion of estrogen, progesterone, and

androgens. As ovarian reserve diminishes and functional decline

ensues, the consequent reduction in sex hormone production has

been associated in prior literature with increased risk of

cardiovascular diseases, osteoporosis, cognitive decline, metabolic

disorders, immune dysregulation, and skin aging (35–43).

OvaRePred (HerTempo) was designed as an early−warning tool

for ovarian aging. Specifically, for women with a low ovarian reserve

score and an earlier predicted onset of perimenopause, OvaRePred

may support earlier fertility planning or consideration of oocyte
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cryopreservation. Conversely, those with strong ovarian reserve and

later predicted perimenopause may align reproductive timing with

life goals. These fertility-focused applications remain the core

validated purpose of the tool.

In addition to guiding fertility decisions, the OvaRePred tool can

inform comprehensive health management, as illustrated in Figure 5.

In this context, the significance of OvaRePred (HerTempo) extends

far beyond predicting ovarian aging, offering a comprehensive tool

for holistic women’s health management. However, the potential to

expand OvaRePred’s utility for anticipatory health guidance remains

an area for future research and should not be construed as a current

clinical indication. While these associations suggest that ovarian

health may play a broader role in women’s systemic well-being, we

acknowledge that the current version of OvaRePred (HerTempo) has

only been validated in the context of assisted reproduction. Therefore,

these broader implications are only hypothetical future directions

rather than validated applications.
Population−level applications and public
health integration

OvaRePred (HerTempo)’s validated, user-friendly algorithm

enables scalable ovarian reserve assessment at the population level.
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Integration into national or regional women’s health programs could

facilitate early detection of diminished ovarian reserve, guide fertility

counseling, and inform public health resource planning. Key barriers

—such as test cost, laboratory access, and low public awareness—can

be mitigated through tiered screening approaches, point-of-care

diagnostics, health education initiatives, and strategic policy

support. Harnessing aggregated OvaRePred data may also enable

population health surveillance and support data-driven policy-

making to improve women’s health outcomes on a broader scale.
Limitations

Despite significant progress achieved in this study, the

OvaRePred (HerTempo) tool has several limitations that warrant

further refinement. First, the current model is primarily developed

based on single-center ART population data; thus, broader

applicability requires additional samples and multi-center external

validation. It is crucial to address variability across different

ethnicities, regions, and cultural backgrounds to continuously

optimize model parameters and improve both clinical utility and

predictive accuracy. Second, the lack of documented blood collection

timing (i.e., specific day of the menstrual cycle) for some

reproductive-age women may affect result accuracy, underscoring
FIGURE 5

Infographic illustrating OvaRePred’s concept of ovarian reserve scoring. A female silhouette highlights the ovary as the “core of female aging,” linking
endocrine age to cardiovascular, bone, cognitive and metabolic screening priorities. The gauge depicts reserve score (0‑100); a timeline aligns
diminished reserve, perimenopause and menopause for anticipatory, proactive health management.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1658068
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu et al. 10.3389/fendo.2025.1658068
the need for improved data collection protocols to ensure stability

and reproducibility. Third, while temporal data splitting was used to

simulate prospective validation, this approachmay be subject to time-

based confounding—such as changes in clinical protocols, shifts in

patient population characteristics, or external factors like the

COVID-19 pandemic—which could influence model performance.

Future studies should consider combining temporal and random

splitting strategies or incorporating external datasets to better

mitigate such effects. Moreover, expanding the range of input

parameters—such as ovarian aging variations under diverse disease

conditions, and influences from medications, lifestyle factors, and

environmental exposures—could enhance the tool’s adaptability and

precision in complex clinical settings, supporting more personalized

health management.

The fixed-interval hypothesis, which posits a consistent temporal

relationship between reproductive aging events, underpins part of our

predictive framework. Although it is supported by cross-sectional and

historical population data, this assumption remains unvalidated at

the individual level. Longitudinal confirmation would require

tracking natural menstrual and fertility patterns over many years;

however, in contemporary settings, such prospective designs are

extremely difficult to implement. The widespread use of hormonal

contraception, together with other medical or lifestyle interventions,

obscures natural reproductive trajectories and greatly limits the

feasibility of obtaining uninterrupted, long-term observations.

Consequently, reliance on this unverified assumption constitutes a

significant limitation, particularly for making individualized long-

term predictions. Future research should prioritize the rare

opportunity to conduct long-term, prospectively designed cohort

studies in populations minimally influenced by hormonal

contraception or other factors that alter natural reproductive aging.

Importantly, OvaRePred (HerTempo) focuses solely on

quantifying ovarian reserve, reflected by follicle quantity, and does

not directly assess follicle or oocyte quality, nor overall fertility

potential. This distinction is critical in clinical scenarios such as

PCOS, where patients may exhibit high follicle counts but impaired

oocyte developmental competence. In such cases, a high reserve score

does not necessarily equate to optimal reproductive capacity.

Therefore, for a more comprehensive fertility evaluation,

OvaRePred results should be interpreted alongside complementary

diagnostic markers—such as oocyte maturity rates, detailed

hormonal profiles, and, where available, indicators of oocyte or

embryo competence. Integrating these multidimensional

assessments enables a more nuanced understanding of reproductive

potential and guides individualized clinical decision-making.
Conclusion

In summary, OvaRePred (HerTempo), a comprehensive

evaluation tool powered by big data and artificial intelligence, not

only provides precise decision support for fertility planning but also

paves a new path for holistic women’s health management.

Through continual optimization and interdisciplinary integration,

OvaRePred (HerTempo) is poised to become a vital bridge between
Frontiers in Endocrinology 11
reproductive medicine and overall health management, offering

more precise and personalized health guidance for women.
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