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This review identifies the mechanosensitive ion channel Piezol as the central
regulator of bone homeostasis. Piezol senses mechanical loads in osteocytes,
osteoblasts, and bone marrow mesenchymal stem cells (BMSCs), converting
them into Ca®*-dependent signals that activate key pathways, including CaMKil,
YAP/TAZ, Wnt/B-catenin, and ERK. These cascades collectively promote
osteoblast differentiation and suppress osteoclastogenesis via OPG/RANKL
modulation. Age-related Piezol decline impairs bone mechanoresponsiveness,
driving both senile and disuse osteoporosis. Piezol also integrates bone
metabolism with vascular—immune interactions (e.g., promoting VEGFA release
from bone marrow macrophages via the CaN/NFAT/HIF-1lo pathway) and the
gut—bone axis (e.g., intestinal Piezol deletion relieves osteoblast proliferation
inhibition by reducing serotonin levels). Therapeutically, Piezol agonists restore
bone mass in osteoporosis models by reactivating mechanotransduction, while
physical interventions achieve similar effects. Outstanding challenges include
optimizing mechanical parameters (e.g., vibration frequency, ultrasound
intensity) for individualized therapy, disentangling pathway crosstalk under
aging and inflammation, and developing bone-targeted delivery systems for
Piezol modulators. Overall, Piezol emerges as a pivotal therapeutic target
for osteoporosis.
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1 Introduction

Osteoporosis (OP) is characterized by reduced bone mass and deteriorated
microarchitecture, leading to increased fragility and fracture risk (1, 2). Its pathology
arises from an imbalance in bone remodeling: excessive osteoclast-mediated resorption
coupled with insufficient osteoblast-driven formation (3, 4). Mechanical stress is a
fundamental determinant of skeletal remodeling—loading (e.g., exercise) enhances bone
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mass and strength, while unloading (e.g., bed rest, spaceflight)
induces rapid bone loss (1, 5).

The mechanosensitive ion channel Piezol shows age-related
decline, which correlates with impaired skeletal responsiveness to
mechanical cues and contributes to bone loss in aging (6). In
pathological models, the Piezol agonist Yodal restores
mechanotransduction, improving bone mass and strength in
glucocorticoid-induced and disuse osteoporosis (7).

Current studies mostly focus on Piezol’s local role in bone cells,
while its systemic regulatory mechanisms in the gut-bone axis and
vascular-immune axis have not been systematically summarized;
existing Piezol agonists (e.g., Yodal) have off-target risks and long-
term safety controversies, and the clinical translation path remains
unclear—this review aims to address these gaps by integrating
Piezol’s local and systemic functions in osteoporosis.

Piezol is broadly expressed in osteocytes, chondrocytes, and
BMSCs. By converting mechanical forces such as fluid shear stress
(FSS) into cellular signals, Piezol regulates diverse processes
including skeletal development, angiogenesis, and immune
responses (8). In osteocytes and chondrocytes, Piezol modulates
osteogenesis and cartilage homeostasis (9); in BMSCs, it promotes
osteogenic differentiation while inhibiting adipogenesis (10).
Importantly, Piezol-mediated FSS suppresses osteoporosis
progression by reducing RANKL secretion from osteocytes (11).
In ovariectomized animal models, Piezol also exhibits anti-
osteoporotic effects. Genetic studies show Piezol polymorphisms
(e.g., rs4238686, rs11643303) are associated with human OP: the
rs4238686 variant reduces Piezol channel opening efficiency,
leading to decreased mechanosensitivity of osteocytes and
significant correlation with reduced bone mineral density (BMD)
in elderly women (12); additionally, Piezol expression is markedly
reduced in patient bone tissue (9, 12, 13).

1.1 Piezol-mediated molecular
mechanisms of bone mechanical
adaptation

Wolft’s law posits that bone adapts structurally to stress: growth
occurs in regions of high load, while resorption predominates where
stress is low (14). Frost’s “mechanostat” concept further emphasizes
that bone senses mechanical cues and adjusts accordingly (15).

Piezol, a mechanosensitive cation channel with a trimeric propeller-
shaped structure, is expressed in tissues such as lung, kidney, bladder,
vasculature, and bone (16-18). Its single transmembrane protein
consists of 2,521 amino acids—the largest known transmembrane
molecule—organized into 38 helices per subunit, forming peripheral
blades that constitute the mechanosensing module. This structure is
highly conserved across evolution (19).

Multiple studies identify Piezol as a core component of the
skeletal mechanostat. Osteoblast-specific Piezol deficiency leads to
bone loss, spontaneous fractures, and increased resorption, while
conferring resistance to unloading-induced bone loss in mice (9).
Mechanistically, Piezol influences type II and IX collagen
expression through the YAP pathway: Activated YAP promotes
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the synthesis of type II and IX collagens, enhancing bone matrix
integrity; meanwhile, collagens activate FAK signaling in osteoclasts
via integrin o3, inhibiting their excessive differentiation and
ultimately maintaining the balance between bone resorption and
formation. Deletion of Piezol in osteoblasts disrupts osteogenesis,
causes skeletal fragility, and its expression declines with age in
human OP patients (20). These findings firmly establish Piezol as a
molecular bridge linking mechanical force to bone homeostasis.

At the functional level, Piezol maintains skeletal integrity via
dual mechanisms: it upregulates osteoprotegerin (OPG) to inhibit
osteoclastogenesis and simultaneously promotes osteoblast activity,
particularly protecting against age-related cortical bone loss (21).
Developmental studies show that Piezol deletion during
embryogenesis (global knockout: Piezolfl/fl; Sox2-Cre) induces
bone deformities and fractures, whereas loss of function in
adulthood (osteoblast-specific knockout: Piezolfl/fl; OCN-Cre)
directly causes osteoporosis (6). Together, evidence from both
developmental biology and adult bone metabolism underscores
Piezol as a central regulator of skeletal health. Its age-dependent
expression provides a strong rationale for anti-osteoporosis
therapies targeting Piezol activation.

2 Mechanical regulatory functions of
Piezol and other mechanosensors in
bone metabolism

2.1 Dominant role of Piezol in bone
metabolism

Hindlimb suspension (HS) experiments show that unloading
reduces bone strength in wild-type mice but not in Piezol-knockout
(KO) mice, suggesting that Piezol primarily regulates skeletal
remodeling via osteoblasts (9). In osteocalcin (OCN)-specific KO
mice, Piezol deletion caused shortened and weakened long bones,
reduced bone mass, impaired osteoblast differentiation, and abolished
mechanical loading-induced osteoblast-osteoclast coupling. By
contrast, Piezo2 deletion had no significant impact on bone mass or
bone length (22, 23). These results establish Piezol as the dominant
mechanosensor in bone, with Piezo2 playing only a minor role.

Piezol and Piezo2 form mechanosensitive cation channels (24),
but Piezol is the primary transducer of membrane tension. Upon
mechanical stimulation, Piezol opens to mediate Ca** influx,
converting external forces into intracellular signals that drive
mechanotransduction and cellular adaptation (25-27). This process
is indispensable for bone-forming cell survival, differentiation, and
matrix mineralization, as well as skeletal remodeling and regeneration
(28) (Figure 1).To provide a comprehensive overview, Figure 1
illustrates both the structural characteristics of Piezol—highlighting
its trimeric architecture, central ion pore, and curved blades—and its
expression patterns in bone tissue, where it shows cell type-specific
localization and functions.

Osteocyte apoptosis critically affects bone homeostasis.
Excessive apoptosis, such as that induced by glucocorticoids
(GCs), disrupts the lacunar—canalicular network, reducing fluid
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FIGURE 1

Structural characteristics of the Piezol ion channel and its distribution in bone tissue. (Top) Cryo-EM structure of Piezol, highlighting its trimeric
architecture, central ion pore, and curved blade domains. (Bottom) Schematic representation of Piezol expression in bone tissue. Piezol mediates
rapid ion transport (Ca?*, Na*, K¥) in response to mechanical force. It is highly expressed in osteocytes (the core mechanosensors), moderately in
osteoblasts and osteoclasts, and weakly in bone marrow MSCs (BMSCs). Localized primarily at the cell membrane (direct mechanotransduction) and
at low levels in the endoplasmic reticulum (involved in calcium homeostasis), Piezol converts mechanical cues into biochemical signals—with cell-
specific functions (osteocytes, sensing fluid shear stress; BMSCs, regulating differentiation fate)—to regulate bone metabolism.

flow and connectivity, ultimately impairing bone quality (29, 30).
This process involves caspase-3 activation and phosphorylation of
proline-rich tyrosine kinase 2 (PYK2) and c-Jun N-terminal kinase
(JNK). Conversely, mechanical stress promotes production of anti-
apoptotic mediators (e.g., nitric oxide and prostaglandin E2),
helping preserve osteocyte viability (31, 32).

In BMSCs, Piezol also mediates proliferation and osteogenic
differentiation. In vitro cyclic mechanical stretch (CMS) increases
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proliferation and upregulates osteogenic markers (COL1A1, OSX,
RUNX2) in rat BMSCs. Piezol knockdown significantly reduces
these effects, underscoring its critical role in mechanotransduction
(33). Osteocytes sense fluid shear forces via Piezol, triggering Ca>"
signaling cascades that regulate bone remodeling (11). In osteoblasts
and chondrocytes, Piezol-mediated Ca®" influx activates downstream
ERK1/2 and PI3K/Akt pathways, promoting osteogenesis and
regulating cartilage metabolism (34). In periodontal ligament cells,
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Piezol responds to orthodontic pressure, modulating alveolar bone
remodeling (35, 36).

Bone mechanotransduction is a multi-level system. Osteocytes
form a mechanosensing complex with dendritic networks, integrins,
ion channels (e.g., ANO1), and primary cilia. Mechanical loading
also induces osteocytes to release exosomes carrying regulatory
miRNAs, potentially contributing to systemic homeostasis. In
osteoblasts, Piezol-mediated Ca** signaling interacts with ANO1
chloride channels to influence osteoclast regulation (37, 38).
Moreover, bone microvascular endothelial cells participate in
signal transmission, and unloading disrupts this function (39).

Wnt/B-catenin and RANKL signaling pathways are central to
Piezol-mediated mechanical regulation. Mechanical loading activates
Wnt/B-catenin signaling, promoting osteoblast differentiation, while
suppressing RANKL-mediated osteoclastogenesis (40). YAP/TAZ
also function as mechanosensitive transcriptional regulators,
guiding BMSC fate via Runx2. For example, loading enhances
expression of Fgf23 and Mepe, genes critical for phosphate
metabolism and bone mineralization (41).

2.2 Other mechanosensors in bone
metabolism

2.2.1 TRPV4 as a complementary mechanosensor

TRPV4 senses low-intensity, physiological mechanical
deformation (0.1-1 dyne/cm’®, e.g., bone tissue hydrostatic
pressure) and regulates chondrocyte differentiation, extracellular
matrix metabolism, and osteogenic gene expression through Ca®*
influx. In contrast, Piezol responds to supraphysiological or
injurious forces (=5 dyne/cm?, e.g., exercise-induced fluid
impact). When Piezol is impaired (e.g., aging, knockout), TRPV4
partially compensates to sustain tissue homeostasis: mice with
double knockout of Piezol and TRPV4 exhibit significantly more
severe bone loss than Piezol single-knockout mice, with a 2.3-fold
increase in osteoclast number (42, 43).

2.2.2 GPR68 as a supplementary mechanosensor

GPR68 provides additional compensation by responding to
mechanically associated environmental changes such as pH shifts
and fluid shear stress, especially under inflammatory conditions.
GPR68 activation reduces osteoclast-related factors via PLC-IP3
signaling. In osteoarthritis, upregulation of GPR68 suppresses
aberrant cartilage degradation through RaplA-dependent
pathways, offering a non-Ca®'-dependent compensatory
mechanism—under inflammatory conditions, this pathway can
partially reverse the enhanced bone resorption caused by Piezol
deficiency (44-46).

2.2.3 Synergy among Piezol, TRPV4, and GPR68
Piezol remains the central mechanotransducer, regulating bone
remodeling, survival, and inflammatory responses (6, 47). TRPV4
and GPR68 act as compensatory systems: TRPV4 maintains Ca*"
signaling during physiological stimuli (0.1-1 dyne/cm?), while
GPR68 compensates through pH-sensitive G-protein pathways.
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This redundancy across stimulus intensity and signaling modes
ensures skeletal balance even when Piezol function declines.

3 Direct and systemic regulatory
mechanisms of Piezol in osteoporosis

3.1 Direct regulation of bone cells by
Piezol

3.1.1 Osteoblast differentiation

Under hydrostatic pressure, Piezol functions as a signaling hub
that rapidly initiates osteogenic programs. Piezol-mediated Ca®"
influx activates ERK1/2 phosphorylation cascades and promotes F-
actin assembly—F-actin assembly further promotes the G1/S phase
transition of osteoblasts by activating YAP nuclear translocation
(upregulating Cyclin D1 expression) and enhances cell adhesion,
providing cytoskeletal support for osteoblast proliferation. Agonists
such as Yodal significantly enhance BMP2 expression, directing
BMSCs toward osteogenesis while suppressing adipogenesis.
Conversely, Piezol silencing reduces BMP2 expression and cell
migration (48).

A newly identified agonist, MCB-22-174, activates the Piezol/
CaMKII/ERK axis, offering a therapeutic approach for disuse
osteoporosis (49). Collectively, Piezol acts as a central conductor
of osteogenic differentiation, orchestrating signaling pathways that
coordinate bone formation.

3.1.2 Cartilage differentiation and ossification
balance

Piezol is highly expressed in chondrocytes, where it regulates
responses to mechanical strain. Inhibition with GsMTx4 markedly
diminishes chondrocyte mechanosensitivity (50). In inflammatory
conditions, IL-1o. enhances Piezol expression, causing Ca?*
overload and chondrocyte dedifferentiation, which predisposes to
osteoarthritis (51).

During endochondral ossification, Piezol deletion disrupts key
gene expression (e.g., Sox9, Col10al), damaging growth plate structure
and increasing fracture susceptibility (52). In osteoarthritis models,
mechanical overload induces Piezol-mediated Ca®* influx that
destabilizes the cytoskeleton and upregulates MMP13, accelerating
cartilage degeneration (53). These findings underscore Piezol as a
guardian of cartilage mechanohomeostasis, with dysfunction closely
linked to degenerative joint disease.

3.2 Phenotypic differences of Piezol in
skeletal development

3.2.1 Developmental vs. adult bone homeostasis
During embryogenesis, Piezol is indispensable for skeletal
development. Its deletion (Piezolfl/fl; Sox2-Cre) causes cranial
defects, cortical porosity, reduced strength, and aberrant STAT3
activation (54-56). In adults, Piezol inactivation (Piezo1fl/fl; OCN-
Cre) results in cortical thinning, increased porosity, decreased
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trabecular bone volume, and reduced bone formation—hallmarks
of high-turnover osteoporosis (57-59). These findings demonstrate
stage-specific functions: Piezol orchestrates development early, and
maintains homeostasis later in life.

3.2.2 Aging and sex differences

Piezol expression declines with age, impairing osteoblast
function and aggravating cortical bone loss. Activation of Piezol
can reverse glucocorticoid-induced osteoporosis by restoring Wnt/
[3-catenin signaling (6). Genetic variants of Piezol are also linked to
bone mineral density and fracture risk (60).

Estrogen deficiency further reduces Piezol expression, particularly
in aging females: estrogen binds to the estrogen response element
(ERE) in the Piezol promoter via ERat to promote its transcription;
after estrogen deficiency, ERo-mediated transcriptional regulation of
Piezol is lost, and simultaneous activation of the ROCK pathway leads
to F-actin depolymerization, weakening cytoskeletal remodeling and
reducing suppression of osteoclastogenesis (6, 61, 62). Estrogen
deficiency also increases oxidative stress and reduces osteogenic
activity, which synergize with Piezol loss. Mechanistically, Piezol
deletion disrupts metabolism through the SIRT3-SDHA-OXPHOS
axis, exacerbating impaired bone formation (63, 64). Furthermore, the
Wnt/Ca>* pathway, normally activated by Piezol, is suppressed under
estrogen deficiency, reducing osteogenesis (12, 36).

4 Indirect regulation of Piezol
through non-bone cell networks

4.1 Vascular—-immune axis: coordinated
regulation of the bone microenvironment

In endothelial cells, Piezol functions as a mechanosensor that
regulates vascular tone and blood flow distribution (65). Following
radiation-induced bone injury, Piezol activation in bone marrow
macrophages stimulates VEGFA release through the CaN/NFAT/
HIF-10. pathway, thereby promoting vascular regeneration (66).
Conversely, Piezol deletion downregulates PI3K-Akt and Notch
signaling during fracture healing, impairing osteoblast
maturation (67).

Under mechanical loading, periosteal myeloid cells differentiate
into CD68"F4/80" macrophages, which release thrombospondin-1
(TSP1) to activate TGF-B1 signaling, synergistically promoting
bone formation (68). These findings indicate that Piezol regulates
skeletal remodeling not only through direct mechanotransduction
in bone cells but also by modulating the vascular-immune axis.

4.2 Gut—bone axis

Piezol also influences skeletal metabolism through the
intestinal system. Intestine-specific Piezol deletion reduces serum
serotonin (5-HT) levels—serotonin normally inhibits osteoblast
proliferation—thus enhancing osteoblast activity and producing a
high bone mass phenotype (69, 70). This finding identifies intestinal
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Piezol as a negative regulator of osteogenesis and highlights the
gut-bone axis as an inter-organ regulatory network influencing
skeletal health.

5 Core mechanosignaling pathways
mediated by Piezol

Piezol integrates pathways into a unified mechanosignaling
network that regulates osteogenesis and osteoclast activity
(Figure 2). The following subsections detail the key components
of this network.

5.1 CaMKiIl pathway: calcium signaling hub

Mechanical stimulation activates Piezol, leading to Ca?" influx
and subsequent activation of Ca**/calmodulin-dependent protein
kinase IT (CaMKII) (71). Activated CaMKII phosphorylates focal
adhesion kinase (FAK) and Src—phosphorylated FAK/Src inhibits
the activity of Hippo pathway kinase MST1/2, reducing YAP
phosphorylation at Ser127 and thereby driving YAP nuclear
translocation to regulate osteogenic gene expression (72). This
pathway plays a critical role in pathological ossification, such as
ankylosing spondylitis, where aberrant mechanical signaling
promotes osteophyte formation. In osteoporosis, insufficient
Piezol activation reduces CaMKII signaling, YAP nuclear
localization, and osteogenic gene expression, resulting in impaired

bone formation.

5.2 YAP/TAZ pathway: cytoskeletal
remodeling switch

Piezol-mediated mechanical stimulation activates the RhoA/
ROCK pathway, inducing cytoskeletal remodeling through F-actin
polymerization and myosin reorganization (47). This structural
reorganization facilitates YAP nuclear translocation, which
upregulates osteogenic transcription factors such as Runx2 and
BMP2 (73). For example, triangular micropatterns enhance BMSC
osteogenesis through this mechanism (74). In osteoporosis,
weakened mechanical stimulation reduces Piezol activity,
restricting cytoskeletal remodeling and YAP signaling, thereby
impairing osteogenic differentiation and promoting adipogenesis.

5.3 Wnt/B-catenin pathway: bridge to bone
metabolism

Piezol may activate the Wnt/B-catenin pathway via NFATcl
(75). Wnt activation drives B-catenin nuclear translocation,
promoting transcription of osteogenic genes such as OSX while
inhibiting adipogenesis (76). In osteoporosis, reduced Piezol
activity attenuates Wnt/f-catenin signaling, leading to diminished
osteogenesis and increased marrow adiposity.
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FIGURE 2

Integrated Piezol signaling network. Mechanical activation of Piezol triggers multiple downstream pathways (CaMKII-YAP, RhoA/ROCK, Wnt/B-
catenin, ERK1/2, PI3K/Akt), collectively promoting osteogenesis and suppressing osteoclastogenesis.

5.4 ERK1/2 phosphorylation pathway: rapid
response channel

Piezol activation by hydrostatic pressure or Yodal induces
ERK1/2 phosphorylation, promoting BMSC osteogenic
differentiation (77). Under physiological fluid shear stress, Piezol
is upregulated in osteocytes, which activate Notch3 signaling to
enhance OPG expression and suppress RANKL, thereby inhibiting
osteoclastogenesis (11). Mechanical stretch also activates the PI3K/
Akt pathway via Piezol, downregulating Sost while enhancing Wnt/
[-catenin signaling, thus driving osteogenesis (78). Moreover,
Piezol activation reverses dexamethasone-induced osteocyte
apoptosis through PI3K/Akt-mediated Ca®" signaling (79, 80).

5.5 Multi-pathway synergy under
mechanical stimulation

Piezol integrates multiple pathways during mechanical
interventions. For instance, piezoelectric microvibration (PMVS)
activates Wnt/B-catenin signaling by upregulating miR-29a and
suppressing DKK-1 (81, 82). Additionally, Piezol polarizes
macrophages toward the M2 phenotype: Piezol-mediated Ca®*
influx activates the STAT6 pathway, upregulating M2 markers
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(Argl, IL-10) and promoting TGF-P1 precursor maturation, thereby
stimulating TGF-P1 secretion to enhance BMSC osteogenesis (83).
This coordinated multi-pathway network ensures precise bone
responses to mechanical stimuli. In osteoporosis, disruption of this
network leads to impaired bone remodeling (Figure 3).

6 Interactions of Piezol with different
pathways in specific bone cell types

6.1 Interaction with the CaMKIl pathway

In adipose-derived stem cells (ADSCs), Piezol-mediated Ca*" influx
activates CaMKII phosphorylation, enhancing 3-catenin transcriptional
activity and nuclear translocation, ultimately promoting osteogenesis
(84). In osteoblasts and related cells, Piezol activation under stress
also triggers CaMKII signaling, which synergizes with the
Wnt/B-catenin pathway to regulate osteogenic differentiation (71).

6.2 Interaction with the YAP/TAZ pathway

In human dental follicle cells (hDFCs), cyclic tensile stress

activates Piezol, inducing Ca®" influx that promotes YAP nuclear
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Mechanical loading—Piezol axis. Mechanical forces such as fluid shear stress, compression, and matrix stiffness deform the bone matrix, increasing
membrane tension and triggering Piezol activation—with force-specific cellular targets (gravitational loading: osteoblasts; muscle contraction:

osteocytes; FSS: osteocytes + vascular endothelial cells). Piezol then mediates Ca?

*influx, which activates downstream mechanosignaling cascades

(YAP/TAZ, Calcineurin-NFAT, Wnt/B-catenin), converting physical loading into biochemical responses that regulate bone homeostasis. In the “Loss of
Function” state, molecular changes include reduced YAP nuclear translocation, decreased Wnt3a expression, and increased RANKL/OPG ratio,

leading to impaired bone structural integrity.

translocation and upregulates osteogenic genes (85). In BMSCs,
Piezol integrates with YAP signaling, regulating target genes such
as ATF4 via P-catenin and influencing proliferation and
osteogenesis (7, 86). In valvular interstitial cells (VICs), Piezol
activation drives Ca®"-dependent YAP signaling, enhancing
osteogenesis through GLS1-mediated glutamine metabolism (87).
In osteoblasts and osteosarcoma cells, Piezol-mediated Ca®" influx
is essential for YAP/TAZ activation, which regulates cell motility

and bone-associated processes (88).

6.3 Interaction with the Wnt/B-catenin
pathway

In periodontal ligament cells (PDLCs), compressive force
upregulates Piezol and B-catenin, while Piezol inhibition
decreases P-catenin activity and osteogenic differentiation,
modulating alveolar bone remodeling (35). In hDFCs, Piezol
activation (e.g., Yodal) enhances Wnt3a and P-catenin
expression, activating canonical osteogenesis (89). In BMSCs and
osteoblasts, Piezol promotes B-catenin nuclear translocation via
Ca® influx, cooperating with CaMKII to support osteogenesis.
Importantly, Piezol restores suppressed Wnt/B-catenin activity
under microgravity, mitigating bone loss (75). In ADSCs,
compressive stress-induced Piezol activation enhances [3-catenin
transcriptional activity and contributes to bone remodeling (36).
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6.4 Interaction with the ERK1/2 pathway

In BMSCs, Piezol activation by hydrostatic pressure or Yodal
triggers Ca®* influx and ERK1/2 phosphorylation, promoting
osteogenesis; this effect is abolished under Ca®* deficiency (49,
90). In osteoblasts and osteosarcoma cells, Piezol-mediated Ca%*
entry activates ERK via the MAPK cascade, which also cross-talks
with YAP and Wnt/B-catenin signaling (91). In periodontal
ligament cells and chondrocytes, Piezol activation engages ERK1/
2 via PI3K-Akt/NF-xB, indirectly regulating proliferation and
bone-related processes (92-94).

7 Therapeutic implications

Building upon the detailed molecular mechanisms of Piezol
signaling, we propose a comprehensive pathophysiological
framework that links mechanical input to skeletal outcomes
(Figure 4).
mechanical loading—from physiological stimulation to overload

This model delineates how the spectrum of

or absence of force—dictates Piezol activation states, thereby
governing the fate of bone cells and ultimately determining bone
mass and quality. Crucially, this framework incorporates critical
modifiers of bone homeostasis, including hormonal status (e.g.,
estrogen deficiency), bone site-specific remodeling patterns, and
common comorbidities.
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Pathophysiological outcomes of Piezol dysregulation and therapeutic implications. The spectrum of mechanical loading determines Piezol activity
states, which govern skeletal fate. Physiological stimuli maintain Piezol activation and pro-osteogenic signaling, ensuring homeostasis. Loss of
loading (e.g., aging, disuse) causes Piezol downregulation, shifting MSC fate toward adipogenesis and leading to bone loss (e.g., EDOP, GIOP).
Conversely, pathological overloading hyperactivates Piezol, inducing aberrant signaling and inflammation that contribute to arthritic pathology. This
framework highlights key modifiers, including sex hormones (estrogen deficiency), bone site-specific responses (craniofacial vs. long bone
remodeling), and comorbidities, underscoring the therapeutic goal of achieving precise Piezol modulation.

This mechano-dependent duality is exemplified in the context-
specific, bidirectional regulation of osteoclasts by Piezol. For
example, in peri-prosthetic models, fluid shear stress mediated by
Piezol exhibits frequency-dependent effects: low-frequency, high-
amplitude stimulation enhances resorption, whereas high-frequency,
low-amplitude stimulation promotes bone formation (95). In
orthodontic models, Piezol activation increases the RANKL/OPG
ratio, elevating TRAP" osteoclast numbers (96). Conversely,
prolonged high-amplitude fluid shear stress induces osteoclast
formation by inhibiting the sarcoplasmic reticulum Ca*" pump (97).

Piezol can also suppress osteoclastogenesis by upregulating
OPG; its deficiency increases endocortical resorption (6). Thus,
selective Piezol agonists (e.g., Yodal and its optimized derivatives)
represent promising candidates for anti-osteoporosis therapies (6).
In fracture repair, Piezol regulates endochondral ossification by
modulating HIF-10, signaling in chondrocytes (98).

7.1 Broad regulatory effects

Engineered biomaterials exploit Piezol signaling to enhance
bone repair. For example, oleic acid-modified iron oxide
nanoparticles (I0-OA/PLGA) increase Piezol expression under
magnetic fields: magnetic fields induce local mechanical vibration
(10-50 Hz) of IO-OA/PLGA particles, activating Piezol channels

Frontiers in Endocrinology

via membrane tension, while particles slowly release oleic acid to
promote Piezol transcription (99). Similarly, 3D-printed Ti2448
alloy scaffolds enhance angiogenesis and osteogenesis via Piezol/
YAP signaling, while titanium dioxide nanotubes stimulate Piezol-
mediated osteogenesis (100).

In fracture healing, reduced Piezol expression delays callus
mineralization, whereas Yodal treatment increases BV/TV and
bone mineral density, accelerating cartilage and callus maturation
(101). Mechanical interventions such as low-intensity pulsed
ultrasound or piezoelectric microvibration (PMVS) also activate
Piezol, promoting osteoblast precursor proliferation and migration,
thereby improving bone strength (48).

7.2 Exercise therapy and rehabilitation

Exercise activates Piezol through cyclic loading, enhancing Ca®
" influx and Akt phosphorylation, which promote osteogenesis and
skeletal muscle protein synthesis (102-104). Radial extracorporeal
shock wave (R-ESW) therapy stimulates Piezol/CaMKII/CREB
signaling in senile osteoporosis (SOP) patient-derived BMSCs,
enhancing their osteogenic and angiogenic capacity while
reducing bone loss in animal models (105). These findings
highlight Piezol as a therapeutic target linking musculoskeletal
rehabilitation and osteoporosis treatment (Tables 1, 2).
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8 Difficulties and challenges

Despite significant progress, research on Piezol faces several
challenges that hinder its translation into clinical therapies. A major
obstacle is the precise modulation of mechanical stimulation
parameters. Mechanical loading exerts bidirectional effects: low-
frequency, high-amplitude stress tends to promote osteoclast-
mediated resorption, whereas high-frequency, low-amplitude stress
favors osteogenesis. Current studies on vibration frequency focus on
20-100 Hz, and ultrasound intensity on 0.5-2 W/cm?, but optimal
parameters vary significantly among populations of different ages
(young vs. elderly) and genders (male vs. postmenopausal female),
and an individualized parameter database is lacking—determining
optimal parameters to maximize the osteogenic benefits of Piezol
activation remains unresolved (60).

Another challenge lies in the complexity of signaling crosstalk.
Piezol activates multiple downstream pathways, including PI3K/Akt,
ERK, and YAP, through Ca" influx. The relative contribution and
interaction of these cascades in osteocytes, BMSCs, and osteoclasts
are still poorly defined. Moreover, aging and inflammation further
complicate regulation: declining Piezol expression reduces Wnt/pB-
catenin signaling, while pro-inflammatory cytokines such as IL-1o
can cause Piezol overactivation, leading to Ca®>* overload and
chondrocyte apoptosis (51). Dissecting the molecular switches that
govern this imbalance is critical for targeted intervention.

Piezol also interacts with other mechanosensing systems. Evidence
suggests potential cross-talk with focal adhesion complexes and
proteins such as Kindlin-2, as well as with other ion channels like
connexin 43 hemichannels, but the specific molecular cascades remain

10.3389/fendo.2025.1658967

largely unknown. In addition, Piezol plays a role in coordinating
systemic regulatory axes, including the vascular-immune-bone and
gut-bone axes. However, their dynamic integration is incompletely
understood. For example, Piezol regulates macrophage polarization,
VEGFA release, and vascular regeneration, yet how these processes
interact during bone repair remains unclear. Similarly, intestine-
specific deletion enhances osteogenesis by reducing circulating
serotonin, which paradoxically contrasts with Piezol’s direct pro-
osteogenic role in bone tissue—single-cell sequencing can be used to
analyze differences in downstream target genes of Piezol between
intestinal epithelial cells and osteocytes, clarifying the regulatory
hierarchy of serotonin-dependent and independent pathways (69,
70). Clarifying the hierarchy of such inter-organ signals is an urgent
research priority.

Finally, pharmacological limitations represent a major bottleneck.
Current Piezol agonists, such as Yodal, have been tested primarily in
animal models, but specific bone-targeted delivery systems are
lacking. Given Piezol’s broad expression across multiple tissues,
concerns about off-target effects remain significant. Furthermore,
the regulatory mechanisms controlling Piezol’s dynamic expression
during aging and disease progression are poorly characterized,
complicating the selection of therapeutic timing (7).

9 Summary and perspectives

Piezol has emerged as the central mechanotransducer in bone
tissue, converting external mechanical stimuli such as fluid shear
stress and mechanical stretch into Ca®" influx and activating

TABLE 1 Evidence summary of exercise and physical interventions targeting Piezo1 for osteoporosis rehabilitation.

Intervention method Study population Mechanism/effect Reference

Whole-body Vibration Training (WBV) PostmenoPausal women with Increase b(AnAqe mineral density, improve muscle strength and (106)
osteoporosis balance ability
Rat model of hindlimb unloadi

Pulsed Electromagnetic Field (PEMF) at mode _0 indimb unfoading Inhibit osteoclastogenesis and reduce bone loss (107)
osteoporosis

Weight-bearing Training Elderly population (265 years old) Stimulate bone formation through mechanical loading (108, 109)

Enh le strength and i b taboli
Resistance Training Patients with osteoporosis i n -ance muscie strength and improve bone metabotic (110)
indicators

Multicomponent Training Program Patients \"Vith osteoporosis-related Integrate multiple exercise modes to synergistically improve the (1)
sarcopenia musculoskeletal system

High-intensity Impact Training Postmenopausal women Stimulate bone remodeling through high mechanical stress (112)

Proprioceptive Training Elderly patients with osteoporosis Improve body balance ability and reduce the risk of falls (108)

Electrical Stimulation Therapy Disuse osteoporosis model Substitute for mechanical loading to stimulate bone formation (113)

Vibration Combined with Exerci

ora 1on‘ ombined with Bxercise Patients with osteoporotic fractures Synergistically enhance bone density and muscle function (114)

Intervention

Mix'ld-body Comprehensive Training (Tai Elderly patients with osteoporosis Improye l?ody control ability through neuromuscular (115)

Chi, Yoga, etc.) coordination
Patients with ost i licated

Progressive Resistance Training ﬁl rents wi ‘,)S coporosis compheate Synchronously improve bone density and muscle mass (111)
with sarcopenia

Aquatic Exercise Therapy Patients inAthe rehabilitation period of Safe}y enhance bone loading in a weight-bearing-reduced (116)
osteoporosis environment
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TABLE 2 Piezol Therapeutic strategies.

10.3389/fendo.2025.1658967

Intervention Mechanism Efficacy Safety Phase Reference
Long-t
Yodal (classic Binds Piezol, opens channel, Synergistic with vibration; reverses °“f°’ erm Hse @ay cause Research tool/
. . 24 .1 . cortical perforation; low-dose . (23)
agonist) activates Ca™" signaling dexamethasone-induced bone loss safe Preclinical
MCB-22-174 (novel Activates Piezol — Ca®* — 1 Bone volume 36-43%; 1 Strength Good cardiovascular profile; no | Preclinical 33)
agonist) ERK/CaMKII 35% organ toxicity stage
Thiadiazol-2-yl Piezol ist (ECsg 2.2 uUM), Preclinical
( m, o . Y? le,z © agon;i (ECs0 2.2 M) Reduces bone loss by 27% in rats Good safety margin in animals recimied (117)
pyrazine derivatives activates Ca™"—ERK stage
SJTU BXA seri Novel bone-targeted Piezol Preclinical
J series ove. one a.rge ¢ i 1ez0 Better oral exposure vs Yodal GLP tox studies ongoing reciimica (118)
compounds agonists (details undisclosed) stage
Lo . . . 2+ . . . Technology
HIU (High-intensity Stimulates Piezol-Ca™"-ERK1/2 Accelerates fracture healing (+33%); = No soft tissue injury; long-term translati (12)
ranslation
ultrasound) axis 1 Bone density safety TBD
stage
ESW (Radial Indicati
f (Radia Activates Piezol — Ca®* — Promotes BMSC osteogenesis & CE/FDA approved device; good ndiea '1on
extracorporeal CaMKII/CREB angiogenesis; 1 Bone density +25% safety record expansion (105)
shockwave) 8108 ? ty N ty research
LMV/APMVSA(LO‘AN— Activates Piezol — miR-29a — Restores BMD+18%; | CTX.1 No adverse effects; parameters Nealr cliAnical (119)
magnitude vibration) =~ Wnt3a safe application
Yodal-loaded bone- Nanocarriers deliver Yodal to Effective synchronous bone-vascular | Reduced systemic toxicity; no Proof-of- (120)
targeted nanocarrier bone, sustain Piezol activation repair in rats major organ damage concept stage
Early
Lipidated peptidi dulat
Peptide regulators P;E;oac;arifflsl (;Z::t)u ate No osteoporosis data yet Safety data unavailable :i;[;:ratory (33)

downstream signaling pathways including PI3K/Akt, ERK, YAP/
TAZ, and Wnt/B-catenin. Through these mechanisms, Piezol
orchestrates the balance between osteoblast and osteoclast activity,
regulates BMSC differentiation, and coordinates vascular-immune
interactions, thereby playing a pivotal role in the pathogenesis and
progression of osteoporosis. Declining Piezol expression with age or
under pathological conditions such as estrogen deficiency directly
impairs skeletal mechanoresponsiveness, contributing to reduced
osteogenesis, increased bone resorption, and ultimately bone fragility.

Therapeutically, Piezol offers a promising target for intervention.
Agonists such as Yodal and MCB-22-174 restore mechanotransduction
and ameliorate bone loss in disuse, glucocorticoid-induced, and aging-
related osteoporosis models. Mechanical therapies—including exercise,
vibration, ultrasound, and shock wave treatment—also act through
Piezol to promote osteogenesis, providing a theoretical basis for
rehabilitation strategies. Furthermore, Piezol’s systemic roles extend
beyond bone tissue. In the gut-bone axis, intestine-specific Piezol
deletion reduces circulating serotonin, indirectly enhancing osteoblast
proliferation, while in the vascular-immune axis, Piezol regulates
macrophage polarization and angiogenic factor release, contributing to
bone repair. These findings suggest that Piezol functions not only as a
local mechanosensor but also as a systemic regulator of
skeletal homeostasis.

Future research should focus on several key directions. First, the
development of selective Piezol agonists with optimized
pharmacokinetic properties and bone-targeted delivery systems—
e.g., modifying nanocarriers with bisphosphonates (high affinity for
bone hydroxyapatite) or designing pH-sensitive carriers (bone
microenvironment pH = 5.5)—is crucial to reduce off-target risks
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(120). Second, building a database of individualized mechanical
parameters based on genotype, age, and hormonal status could
enable precision therapies using mechanical interventions or Piezol
modulators. Third, advanced tools such as single-cell sequencing and
in vivo Ca®* imaging are needed to map Piezol’s spatiotemporal
activation patterns and to clarify its crosstalk with other key signaling
pathways. Fourth, resolving the paradox between intestinal Piezol
and bone Piezol, as well as delineating the hierarchy of inter-organ
regulatory networks, will be essential for fully understanding its
systemic roles. Finally, the integration of Piezol agonists with
established osteoporosis drugs, such as bisphosphonates—their
combination may synergistically enhance BMD via Wnt/B-catenin
(agonists: promote osteogenesis; bisphosphonates: inhibit
resorption), with caution for Piezol overactivation-induced Ca%t
overload (51)—and the development of wearable mechanosensing
devices for real-time feedback may provide novel strategies for long-
term management and personalized rehabilitation (6, 121).

In summary, Piezol represents a pivotal molecular hub at the
interface of biomechanics and bone biology. By bridging mechanical
loading, cellular signaling, and systemic regulation, it not only
provides new insights into the pathogenesis of osteoporosis but also
opens avenues for innovative therapeutic strategies that combine
pharmacological, mechanical, and bioengineering approaches.
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