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Purpose: Relative fat mass (RFM) is a new metric used for obesity assessment. We
aim to investigate the association between RFM and vitamin D deficiency in
patients with diabetes.

Methods: A total of 5,128 participants with diabetes mellitus from the NHANES
2007-2018 and an external Chinese validation cohort of 238 subjects from the
Affiliated Wujin Hospital of Jiangsu University were analyzed. Logistic and linear
regression, subgroup and curve fitting analyses were performed to assess the
relationships between RFM and vitamin D deficiency risk as well as serum 25(OH)
D levels. Receiver operating characteristic (ROC) and decision curve analysis
(DCA) were applied to compare diagnostic efficacy among RFM, body mass index
(BMI), waist circumference (WC), and height.

Results: Vitamin D deficiency prevalence increased with rising RFM levels
(P<0.001). Higher RFM was significantly associated with increased risk of
vitamin D deficiency (OR = 1.056, 95%Cl= (1.039, 1.073), P<0.001) and lower
25(OH)D levels (B=-0.662, 95%Cl= (-0.852, -0.471), P<0.001) in patients with
diabetes. ROC and DCA indicated that RFM yielded the highest discrimination for
vitamin D deficiency (AUC = 0.626), outperforming BMI (0.592), WC (0.567), and
height (0.492). The associations remained robust in various subgroups and were
confirmed in the external Chinese population.

Conclusions: RFM is superior to conventional obesity measures in identifying
individuals with diabetes at high risk for vitamin D deficiency. RFM may help to
improve clinical risk stratification and management.
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1 Introduction

Obesity, marked by excessive fat accumulation, has emerged as
a leading global health concern in the 21st century (1). This chronic
and multifaceted condition greatly increases the risk of non-
communicable diseases such as hypertension, cardiovascular
disorders, type 2 diabetes, and certain cancers, thereby escalating
healthcare costs and diminishing patients’ quality of life (2-4).

Although body mass index (BMI) is frequently used for its ease
of calculation, it indirectly assesses body composition and cannot
differentiate between lean tissue and adipose tissue or provide
information on fat distribution (5). These shortcomings may
result in inaccurate assessment of metabolic risk (6). While
advanced imaging techniques such as Computed Tomography
(CT) and Magnetic Resonance Imaging (MRI) offer greater
accuracy, their cost, accessibility, and radiation risks limit their
routine clinical application (7, 8). Therefore, there is an ongoing
need for more accurate and practical approaches to measure body
fat. The Relative fat mass (RFM) index, based on accessible
measures of height and waist circumference (WC), has proven to
correlate well with body fat percentage as determined by Dual-
energy X-ray Absorptiometry (DXA) scans (9, 10). Existing
literature also suggests that RFM demonstrates a stronger
association with metabolic disease risks-including diabetes, non-
alcoholic fatty liver disease (NAFLD), cardiovascular diseases, and
depression-than either BMI or WC (11-15).

On the other hand, apart from its established functions in
maintaining calcium balance and bone health, vitamin D is now
recognized for its significant roles in immune modulation,
inflammatory processes, and metabolism (16, 17). Globally, more
than one-third of the population is estimated to be vitamin D
deficient, likely amplified by modern lifestyles. Numerous
observational studies have identified a consistent inverse
association between serum 25-hydroxyvitamin D [25(OH)D]
concentrations and obesity, typically measured by BMI (18-20).
Serum 25(OH)D varies with BMI and absolute body weight (21). In
pooled multivariable models, a per—kg—per—day vitamin D dose
explained ~34.5% of circulating 25(OH)D variance, yielding clear
BMI-related disparities (21). Obese and overweight adults averaged
~20 and ~8 nmol/L lower concentration of 25(OH)D, respectively,
necessitating ~2.6 and 1.47 times higher vitamin D
supplementation (21). Nonetheless, relying on BMI as the
primary index may obscure the complex relationship between
true adiposity and vitamin D status. Unlike BMI, which primarily
reflects overall body mass, the RFM incorporates waist
circumference, height, and sex, and therefore aligns more closely
with adipose depots-particularly central fat distribution-that are
biologically relevant to vitamin D metabolism. Conceptually, this
should enhance its ability to identify individuals at high risk of
vitamin D deficiency (10). Thus, the present study seeks to elucidate
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the association between RFM and vitamin D deficiency in
individuals with diabetes mellitus.

2 Materials and methods
2.1 Participants

This study draws on data from the National Health and Nutrition
Examination Survey (NHANES), a reputable and publicly accessible
source extensively used in health research worldwide. NHANES
protocols were approved by the National Center for Health
Statistics Research Ethics Review Board, and informed consent was
obtained from participants at the time of the original NHANES data
collection (22). Our study is a secondary analysis of de-identified
public-use NHANES data. The analysis includes combined data from
six NHANES cycles (2007-2018), encompassing 59,842 individuals.
Participants were excluded if they were under 20 years old, pregnant,
did not have diabetes, or lacked REM or vitamin D data. Diabetes was
identified through self-reported diagnosis, fasting plasma glucose
(FPG) 27.0 mmol/L, hemoglobin Alc (HbAlc) 26.5%, or current
antidiabetic medication use. After applying these criteria, 5,128
participants with diabetes mellitus were included in the final analysis.

External validation utilized data from diabetes patients enrolled
in health education programs at the Department of Endocrinology,
the Affiliated Wujing Hospital of Jiangsu University, from January
2024 to January 2025. Diagnosis was confirmed using to the
American Diabetes Association criteria (23). The validation cohort
consisted of 238 participants (124 men and 114 women), aged 31-88
years (median age 62). The study received Ethics Committee approval
of Affiliated Wujin Hospital of Jiangsu University (Protocol: 2025-
SR-086), and all participants provided written consent.

2.2 Exposure and outcome

This study considered RFM as the exposure, determined by the
formula REM = 64 — (20 X height/WC) + (12 x sex), where sex is 0
for males and 1 for females (10). The formula was empirically
derived using DXA-measured body fat percentage as the criterion
measure and validated in independent cohorts (10). Serum 25(OH)
D (sum of 25(OH)D2 and 25(0OH)D3) was the outcome variable
(24). For patients with diabetes from NHANES 2007-2018, 25(OH)
D levels were obtained using liquid chromatography-tandem mass
spectrometry (LC-MS/MS). For diabetic patients from the Affiliated
Wujin Hospital of Jiangsu University, serum 25(OH)D levels were
measured using a chemiluminescence assay (Siemens ADVIA
Centaur XP, Germany). The criterion for vitamin D deficiency
was a serum 25(OH)D concentration under 50 nmol/L (20 ng/mL),
according to Endocrine Society guidelines (25).
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2.3 Covariates

Covariates in the NHANES included demographics (age, sex,
race, poverty to income ratio [PIR], education, smoking status,
alcohol use), physical metrics (BMI, height, WC), laboratory results
(hemoglobin Alc [HbAlc], triglycerides [TG], total cholesterol
[TC], high- and low-density lipoprotein cholesterol [HDL-c,
LDL-c], serum creatinine [SCr]), and medical history
(hypertension, cardiovascular disease [CVD]). Race was grouped
as Mexican American, non-Hispanic Black, non-Hispanic White,
other Hispanic, and other. Education was classified as <high school,
high school, or >high school. Smoking (former/current) and alcohol
use (212 drinks per year) were recorded. Hypertension was defined
by self-report, average systolic blood pressure (SBP) 2140 mmHg,
diastolic blood pressure (DBP) 290 mmHg, or antihypertensive use.
CVD was based on self-reported heart attack, stroke, heart failure,
coronary artery disease, or angina. The cohort of the Affiliated
Wujing Hospital of Jiangsu University collected similar data:
demographics (age, sex, smoking, alcohol use), medical history
(hypertension, CVD), physical measurements (BMI, WC, height),
and labs (HbA1c, blood lipids [TC, TG, HDL-c, LDL-c], SCr) from
fasting samples.

2.5 Statistical analysis

In line with the Centers for Disease Control and Prevention
recommendations, NHANES analyses utilized population weights
and addressed the complex survey design. Medians with
interquartile range described continuous data, while categorical
variables were shown as unweighted counts and weighted
percentages. Missing data, assumed to be missing at random,
were imputed using the random forest method implemented in
the R package missForest. The algorithm was run for 10 iterations
with forests of 100 trees. Out-of-bag evaluation indicated adequate
performance (NRMSE = 0.0003, PFC = 0.0812). Group differences
were analyzed using the Kruskal-Wallis test and the chi-square test.
Logistic regression provided odds ratios (ORs) and 95% confidence
intervals (CIs) for the relationship between RFM and vitamin D
deficiency across three models, incrementally adjusting for
demographic, socioeconomic, lifestyle, and clinical factors.
SHapley Additive exPlanations (SHAP) values were applied to
interpret model behavior and quantify the contribution of each
feature. Based on the Shapley value concept from game theory,
SHAP fairly distributes the contribution of predictors for individual
predictions. Visualizations for feature importance and swarm plots
were produced. Additionally, linear regression was used to assess
the association between RFM and 25(OH) D levels. Smooth curve
fitting evaluated possible nonlinear links. Stratification was
performed by major effect modifiers, such as age, sex, BMI,
hypertension, and CVD. The predictive value of REM for vitamin
D deficiency was tested using receiver operating characteristic
(ROC) and decision curve analysis (DCA) curves. A diabetes
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cohort from the Affiliated Wujing Hospital of Jiangsu University
served for external validation and to examine links between RFM
and vitamin D deficiency. Analyses were performed in R version
4.2.0; significance set at P<0.05.

3 Results
3.1 Baseline characteristics

Supplementary Table 1 presents baseline characteristics of
diabetic participants grouped by vitamin D deficiency status.
Compared with those without vitamin D deficiency, individuals
with deficiency tended to be younger, with a higher proportion of
Non-Hispanic Black and Mexican American participants
(P<0.001). The vitamin D deficient group also generally had
lower PIR and educational attainment (P<0.01). Regarding
metabolic risk factors, those with vitamin D deficiency showed
higher BMI, WC, HbAlc, TG, TC, LDL-c, and RFM, but lower
HDL-c and SCr (P<0.001). Additionally, alcohol use was less
common among those with vitamin D deficiency (P<0.01).
Baseline characteristics of diabetic participants were analyzed
across quartiles of RFM (Supplementary Table 2). Higher RFM
quartiles were associated with younger age, a higher proportion of
females, and significant differences in race, education, PIR, smoking
and alcohol use, as well as increased prevalence of hypertension and
CVDs (all P < 0.05). Furthermore, anthropometric, and biochemical
parameters-including BMI, WC, height, lipid profiles, SCr, and 25
(OH)D levels-showed significant variation, with a greater
prevalence of vitamin D deficiency observed in participants with
higher REM (all P < 0.01).

3.2 RFM and vitamin D deficiency

Supplementary Table 3 presents the results of three logistic
regression models evaluating the association between RFM levels
and vitamin D deficiency risk. Models 1 (non-adjusted) and Model
2 (adjusted for age, sex, race, PIR, education, smoking status, and
alcohol use) demonstrate a significant positive trend in vitamin D
deficiency with increasing REM levels (all P for < 0.001). In Model 3,
after adjusting for potential confounders, including age, sex, race,
PIR, education, smoking status, and alcohol use, hypertension,
CVDs, HbAlc, TG, LDL-c, HDL-c, and SCr, the ORs and 95%
CIs for QI, Q2, Q3, and Q4 were 1.000, 1.385 (1.153-1.663), 1.707
(1.280-2.278), and 2.642 (1.883-3.708), respectively, with a trend
test P-value < 0.001. SHAP analysis identified age as the most
influential predictor of vitamin D deficiency, with RFM ranking
third in feature importance (Figure 1A). The swarm plot
demonstrated that higher RFM values (highlighted in yellow)
were associated with increased SHAP scores, indicating a greater
risk of vitamin D deficiency (Figure 1B). In conducting a linear
regression analysis with serum 25(OH)D levels as the dependent
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FIGURE 1

SHAP analysis of feature importance. (A, Ranking of features based on mean absolute SHAP values; B, Swarm plot illustrating the distribution of SHAP

values and their relationship with feature magnitudes).

variable, we similarly discovered a close correlation between REM
and 25(OH)D levels in Model 1 (B= -0.115, 95%CI= (-0.212,
-0.017), P<0.022), Model 2 (B=-0.708, 95%CI= (-0.888, -0.528),
P<0.001), and Model 3 (B=-0.662, 95%CI= (-0.852, -0.471),
P<0.001) (Supplementary Table 4). Smooth curve fitting analysis
revealed a linear trend between RFM and the risk of vitamin D
deficiency and 25(OH)D levels, with no turning point
found (Figure 2).

3.3 Stratified analyses

To verify the robustness of the observed correlation between
RFM and Vitamin D deficiency, subgroup analyses were conducted
based on various stratification variables (Figure 3). The results
indicated consistent associations across subgroups, including age
(<60 years/=60 years), sex (female/male), BMI (<25 kg/m2/25-30
kg/m2/230 kg/m2), hypertension (No/Yes), and CVD (No/Yes),
with all P for interaction values exceeding 0.05.

3.4 Clinical utility of RFM
According to the results of the DCA and ROC analysis, REM

showed superior diagnostic and predictive ability for Vitamin D
deficiency compared to BMI, WC, and height (Figures 4A, B).

Frontiers in Endocrinology

According to ROC analysis, the area under the curve (AUC) values
were 62.6% for RFM, 59.2% for BMI, 56.7% for WC, and 49.2% for
height (DeLong’s test: REM vs. BMI, P < 0.001; RFM vs. WC, P <
0.001; REM vs. height, P < 0.001) (Figure 4A). DCA demonstrated
that RFM had a higher net benefit threshold compared to BMIL, WC,
and height (Figure 4B).

3.5 Validation of external dataset

In addition, the association between RFM level and the risk of
vitamin D deficiency was further evaluated based on adult diabetic
patients from the Affiliated Wujin Hospital to Jiangsu University
(Supplementary Material). Vitamin D deficiency prevalence also
increased with rising RFM levels in Chinese diabetic cohort
(P<0.001). In Model 1 (no adjusted), Model 2 (adjusting for age,
sex, smoking status, and alcohol use), and Model 3 (adjusting for
age, sex, smoking status, alcohol use, hypertension, CVDs, HbAlc,
TG, LDL-c, HDL-c, and Scr), Logistic regression indicated the ORs
and 95% ClIs for vitamin D deficiency risk were 1.111 (1.066-1.158),
1.188 (1.089-1.296), and 1.183 (1.080-1.295), respectively
(Supplementary Material). Additionally, linear regression analysis
also discovered a close correlation between RFM and 25(OH)D
levels (Model 1: B=-0.261, 95%CI= -0.396-0.126, P<0.001; Model 2:
B= -0.510, 95%CI= -0.769- -0.251, P<0.001; Model 3: B= -0.532,
95%ClI= -0.809-0.256, P<0.001) (Supplementary Material).
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Vitamin D deficiency

FIGURE 2
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Smooth curve fitting of RFM with risk of vitamin D deficiency and serum 25(OH)D Levels.

4 Discussion

This study comprehensively explored the association between
RFM and vitamin D deficiency among adults with diabetes, utilizing
large-scale national survey data and independent external

2025.1659361

validation. Our key findings indicate that higher RFM is
significantly associated with an increased risk of vitamin D

within diabetic populations.

deficiency, and that RFM outperforms traditional anthropometric
indicators such as BMI and WC in identifying vitamin D deficiency
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FIGURE 3

Consistency of the relationship between RFM and vitamin D deficiency across subgroups.
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Clinical utility comparison of RFM, BMI, WC, and height. (A, The results of ROC analysis; B, The results of DCA analysis).

Accurately deciphering the “obesity paradox” continues to
challenge epidemiological studies, primarily due to the
complicated interrelations among measures of body fat (5, 26,
27). REM is simpler to calculate than other mathematically
complex obesity indicators, making it more practical for use in
broad public health contexts (28). Evidence from earlier studies
suggests that RFM is effective in estimating body composition and
predicting conditions associated with obesity (10, 14). Especially in
patients with type 2 diabetes, characterized by increased visceral
and ectopic fat deposits, RFM provides superior sensitivity and
specificity in identifying individuals with higher fat mass (29).
Since vitamin D is sequestered in fat tissue due to its fat solubility,
higher fat mass frequently results in reduced serum vitamin D (30).
By more precisely quantifying actual body fat, RFM shows a
stronger link to serum 25(OH)D concentration. To enhance
interpretability, we applied SHAP, which assigns each predictor a
participant-level contribution score indicating whether it raises or
lowers risk relative to the average. In our analysis, RFM showed
high relative importance and contributed positively, consistent
with the higher predicted risk of vitamin D deficiency.
Additionally, results from both ROC and DCA analyses support
the notion that RFM is a more effective tool than BMI or WC in
evaluating vitamin D deficiency. An AUC of 0.626 for RFM
denotes modest discrimination, supporting its use to aid risk
stratification and testing prioritization for 25(OH)D rather than
as a stand—alone screening or diagnostic tool. Notably, our study
reveals an inverse relationship between age and the likelihood of
vitamin D deficiency, differing from earlier research that identified
older adults as more susceptible. Age and vitamin D deficiency
might be prone to nonlinear associations. Similar findings have
also been reported in studies focusing on the U.S. population (31-
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34). According to Hongfei Mo et al., younger individuals exhibit a
higher deficiency risk due to faster metabolism and increased
vitamin D utilization (31). Elevated adiposity levels may intensify
vitamin D deficiency through multiple pathways. Firstly, as
mentioned above, as a lipophilic compound, vitamin D tends to
sequester in adipose tissue, thereby reducing its circulating
bioavailability (35, 36). Secondly, higher REM often reflects lower
levels of physical activity and less exposure to sunlight in
individuals, both of which are essential for the body’s
endogenous production of vitamin D (36). Chronic low-grade
inflammation and insulin resistance may act as mediators of the
above 2 factors (37-39). On the other hand, Roizen et al. propose
that, in obesity, decreased hepatic expression of CYP2RI, the key
enzyme for vitamin D 25-hydroxylation, impairs the conversion of
vitamin D to 25(OH)D and thus contributes to vitamin D
deficiency (40).

Although this study utilized large cross-sectional datasets such
as NHANES and incorporated external validation in a Chinese
diabetes cohort, indicating a certain degree of representativeness
and generalizability, several limitations remain. First, the cross-
sectional design precludes any causal inference between RFM and
vitamin D deficiency, allowing only an assessment of association.
Prospective cohort studies are required to further establish
causality. Second, there is no universal consensus on serum 25
(OH) D cutoffs. Major organizations-including the Institute of
Medicine, the Endocrine Society, the American Geriatrics Society,
and others-apply differing thresholds and decision frameworks (21).
This lack of standardization complicates cross-study comparisons
and may partly account for variability in reported prevalence and
effect sizes. Third, although RFM performed better than BMI and
WC in our analyses, it is not a gold standard for body composition
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and does not capture visceral fat or muscle mass. Moreover, we did
not fully adjust for key confounders-seasonal variation in vitamin D
levels, latitude, vitamin D supplementation, outdoor activity,
dietary patterns, and skin exposure-which may have affected
the results.

5 Conclusion

In conclusion, REM’s advantage over BMI and WC in assessing
vitamin D deficiency risk supports adopting more precise fat
indicators, especially in diabetic populations.
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