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Relative fat mass is associated
with vitamin D deficiency in
individuals with diabetes:
evidence from NHANES and a
Chinese cohort
Qichao Yang, Mengjiao Xu, Lu Qin, Xuejing Shao*

and Han Yan*

Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Affiliated Wujin
Hospital of Jiangsu University, Changzhou, Jiangsu, China
Purpose: Relative fat mass (RFM) is a newmetric used for obesity assessment. We

aim to investigate the association between RFM and vitamin D deficiency in

patients with diabetes.

Methods: A total of 5,128 participants with diabetes mellitus from the NHANES

2007–2018 and an external Chinese validation cohort of 238 subjects from the

Affiliated Wujin Hospital of Jiangsu University were analyzed. Logistic and linear

regression, subgroup and curve fitting analyses were performed to assess the

relationships between RFM and vitamin D deficiency risk as well as serum 25(OH)

D levels. Receiver operating characteristic (ROC) and decision curve analysis

(DCA) were applied to compare diagnostic efficacy among RFM, bodymass index

(BMI), waist circumference (WC), and height.

Results: Vitamin D deficiency prevalence increased with rising RFM levels

(P<0.001). Higher RFM was significantly associated with increased risk of

vitamin D deficiency (OR = 1.056, 95%CI= (1.039, 1.073), P<0.001) and lower

25(OH)D levels (b=-0.662, 95%CI= (-0.852, -0.471), P<0.001) in patients with

diabetes. ROC and DCA indicated that RFM yielded the highest discrimination for

vitamin D deficiency (AUC = 0.626), outperforming BMI (0.592), WC (0.567), and

height (0.492). The associations remained robust in various subgroups and were

confirmed in the external Chinese population.

Conclusions: RFM is superior to conventional obesity measures in identifying

individuals with diabetes at high risk for vitamin D deficiency. RFM may help to

improve clinical risk stratification and management.
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1 Introduction

Obesity, marked by excessive fat accumulation, has emerged as

a leading global health concern in the 21st century (1). This chronic

and multifaceted condition greatly increases the risk of non-

communicable diseases such as hypertension, cardiovascular

disorders, type 2 diabetes, and certain cancers, thereby escalating

healthcare costs and diminishing patients’ quality of life (2–4).

Although body mass index (BMI) is frequently used for its ease

of calculation, it indirectly assesses body composition and cannot

differentiate between lean tissue and adipose tissue or provide

information on fat distribution (5). These shortcomings may

result in inaccurate assessment of metabolic risk (6). While

advanced imaging techniques such as Computed Tomography

(CT) and Magnetic Resonance Imaging (MRI) offer greater

accuracy, their cost, accessibility, and radiation risks limit their

routine clinical application (7, 8). Therefore, there is an ongoing

need for more accurate and practical approaches to measure body

fat. The Relative fat mass (RFM) index, based on accessible

measures of height and waist circumference (WC), has proven to

correlate well with body fat percentage as determined by Dual-

energy X-ray Absorptiometry (DXA) scans (9, 10). Existing

literature also suggests that RFM demonstrates a stronger

association with metabolic disease risks-including diabetes, non-

alcoholic fatty liver disease (NAFLD), cardiovascular diseases, and

depression-than either BMI or WC (11–15).

On the other hand, apart from its established functions in

maintaining calcium balance and bone health, vitamin D is now

recognized for its significant roles in immune modulation,

inflammatory processes, and metabolism (16, 17). Globally, more

than one-third of the population is estimated to be vitamin D

deficient, likely amplified by modern lifestyles. Numerous

observational studies have identified a consistent inverse

association between serum 25-hydroxyvitamin D [25(OH)D]

concentrations and obesity, typically measured by BMI (18–20).

Serum 25(OH)D varies with BMI and absolute body weight (21). In

pooled multivariable models, a per−kg−per−day vitamin D dose

explained ~34.5% of circulating 25(OH)D variance, yielding clear

BMI-related disparities (21). Obese and overweight adults averaged

~20 and ~8 nmol/L lower concentration of 25(OH)D, respectively,

necess i tat ing ~2.6 and 1.47 times higher vi tamin D

supplementation (21). Nonetheless, relying on BMI as the

primary index may obscure the complex relationship between

true adiposity and vitamin D status. Unlike BMI, which primarily

reflects overall body mass, the RFM incorporates waist

circumference, height, and sex, and therefore aligns more closely

with adipose depots-particularly central fat distribution-that are

biologically relevant to vitamin D metabolism. Conceptually, this

should enhance its ability to identify individuals at high risk of

vitamin D deficiency (10). Thus, the present study seeks to elucidate
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the association between RFM and vitamin D deficiency in

individuals with diabetes mellitus.
2 Materials and methods

2.1 Participants

This study draws on data from the National Health and Nutrition

Examination Survey (NHANES), a reputable and publicly accessible

source extensively used in health research worldwide. NHANES

protocols were approved by the National Center for Health

Statistics Research Ethics Review Board, and informed consent was

obtained from participants at the time of the original NHANES data

collection (22). Our study is a secondary analysis of de-identified

public-use NHANES data. The analysis includes combined data from

six NHANES cycles (2007-2018), encompassing 59,842 individuals.

Participants were excluded if they were under 20 years old, pregnant,

did not have diabetes, or lacked RFM or vitamin D data. Diabetes was

identified through self-reported diagnosis, fasting plasma glucose

(FPG) ≥7.0 mmol/L, hemoglobin A1c (HbA1c) ≥6.5%, or current

antidiabetic medication use. After applying these criteria, 5,128

participants with diabetes mellitus were included in the final analysis.

External validation utilized data from diabetes patients enrolled

in health education programs at the Department of Endocrinology,

the Affiliated Wujing Hospital of Jiangsu University, from January

2024 to January 2025. Diagnosis was confirmed using to the

American Diabetes Association criteria (23). The validation cohort

consisted of 238 participants (124 men and 114 women), aged 31–88

years (median age 62). The study received Ethics Committee approval

of Affiliated Wujin Hospital of Jiangsu University (Protocol: 2025-

SR-086), and all participants provided written consent.
2.2 Exposure and outcome

This study considered RFM as the exposure, determined by the

formula RFM = 64 − (20 × height/WC) + (12 × sex), where sex is 0

for males and 1 for females (10). The formula was empirically

derived using DXA-measured body fat percentage as the criterion

measure and validated in independent cohorts (10). Serum 25(OH)

D (sum of 25(OH)D2 and 25(OH)D3) was the outcome variable

(24). For patients with diabetes from NHANES 2007-2018, 25(OH)

D levels were obtained using liquid chromatography-tandem mass

spectrometry (LC-MS/MS). For diabetic patients from the Affiliated

Wujin Hospital of Jiangsu University, serum 25(OH)D levels were

measured using a chemiluminescence assay (Siemens ADVIA

Centaur XP, Germany). The criterion for vitamin D deficiency

was a serum 25(OH)D concentration under 50 nmol/L (20 ng/mL),

according to Endocrine Society guidelines (25).
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2.3 Covariates

Covariates in the NHANES included demographics (age, sex,

race, poverty to income ratio [PIR], education, smoking status,

alcohol use), physical metrics (BMI, height, WC), laboratory results

(hemoglobin A1c [HbA1c], triglycerides [TG], total cholesterol

[TC], high- and low-density lipoprotein cholesterol [HDL-c,

LDL-c], serum creatinine [SCr]), and medical history

(hypertension, cardiovascular disease [CVD]). Race was grouped

as Mexican American, non-Hispanic Black, non-Hispanic White,

other Hispanic, and other. Education was classified as <high school,

high school, or >high school. Smoking (former/current) and alcohol

use (≥12 drinks per year) were recorded. Hypertension was defined

by self-report, average systolic blood pressure (SBP) ≥140 mmHg,

diastolic blood pressure (DBP) ≥90 mmHg, or antihypertensive use.

CVD was based on self-reported heart attack, stroke, heart failure,

coronary artery disease, or angina. The cohort of the Affiliated

Wujing Hospital of Jiangsu University collected similar data:

demographics (age, sex, smoking, alcohol use), medical history

(hypertension, CVD), physical measurements (BMI, WC, height),

and labs (HbA1c, blood lipids [TC, TG, HDL-c, LDL-c], SCr) from

fasting samples.
2.5 Statistical analysis

In line with the Centers for Disease Control and Prevention

recommendations, NHANES analyses utilized population weights

and addressed the complex survey design. Medians with

interquartile range described continuous data, while categorical

variables were shown as unweighted counts and weighted

percentages. Missing data, assumed to be missing at random,

were imputed using the random forest method implemented in

the R package missForest. The algorithm was run for 10 iterations

with forests of 100 trees. Out-of-bag evaluation indicated adequate

performance (NRMSE = 0.0003, PFC = 0.0812). Group differences

were analyzed using the Kruskal-Wallis test and the chi-square test.

Logistic regression provided odds ratios (ORs) and 95% confidence

intervals (CIs) for the relationship between RFM and vitamin D

deficiency across three models, incrementally adjusting for

demographic, socioeconomic, lifestyle, and clinical factors.

SHapley Additive exPlanations (SHAP) values were applied to

interpret model behavior and quantify the contribution of each

feature. Based on the Shapley value concept from game theory,

SHAP fairly distributes the contribution of predictors for individual

predictions. Visualizations for feature importance and swarm plots

were produced. Additionally, linear regression was used to assess

the association between RFM and 25(OH) D levels. Smooth curve

fitting evaluated possible nonlinear links. Stratification was

performed by major effect modifiers, such as age, sex, BMI,

hypertension, and CVD. The predictive value of RFM for vitamin

D deficiency was tested using receiver operating characteristic

(ROC) and decision curve analysis (DCA) curves. A diabetes
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served for external validation and to examine links between RFM

and vitamin D deficiency. Analyses were performed in R version

4.2.0; significance set at P<0.05.
3 Results

3.1 Baseline characteristics

Supplementary Table 1 presents baseline characteristics of

diabetic participants grouped by vitamin D deficiency status.

Compared with those without vitamin D deficiency, individuals

with deficiency tended to be younger, with a higher proportion of

Non-Hispanic Black and Mexican American participants

(P<0.001). The vitamin D deficient group also generally had

lower PIR and educational attainment (P<0.01). Regarding

metabolic risk factors, those with vitamin D deficiency showed

higher BMI, WC, HbA1c, TG, TC, LDL-c, and RFM, but lower

HDL-c and SCr (P<0.001). Additionally, alcohol use was less

common among those with vitamin D deficiency (P<0.01).

Baseline characteristics of diabetic participants were analyzed

across quartiles of RFM (Supplementary Table 2). Higher RFM

quartiles were associated with younger age, a higher proportion of

females, and significant differences in race, education, PIR, smoking

and alcohol use, as well as increased prevalence of hypertension and

CVDs (all P < 0.05). Furthermore, anthropometric, and biochemical

parameters-including BMI, WC, height, lipid profiles, SCr, and 25

(OH)D levels-showed significant variation, with a greater

prevalence of vitamin D deficiency observed in participants with

higher RFM (all P < 0.01).
3.2 RFM and vitamin D deficiency

Supplementary Table 3 presents the results of three logistic

regression models evaluating the association between RFM levels

and vitamin D deficiency risk. Models 1 (non-adjusted) and Model

2 (adjusted for age, sex, race, PIR, education, smoking status, and

alcohol use) demonstrate a significant positive trend in vitamin D

deficiency with increasing RFM levels (all P for < 0.001). In Model 3,

after adjusting for potential confounders, including age, sex, race,

PIR, education, smoking status, and alcohol use, hypertension,

CVDs, HbA1c, TG, LDL-c, HDL-c, and SCr, the ORs and 95%

CIs for Q1, Q2, Q3, and Q4 were 1.000, 1.385 (1.153-1.663), 1.707

(1.280-2.278), and 2.642 (1.883-3.708), respectively, with a trend

test P-value < 0.001. SHAP analysis identified age as the most

influential predictor of vitamin D deficiency, with RFM ranking

third in feature importance (Figure 1A). The swarm plot

demonstrated that higher RFM values (highlighted in yellow)

were associated with increased SHAP scores, indicating a greater

risk of vitamin D deficiency (Figure 1B). In conducting a linear

regression analysis with serum 25(OH)D levels as the dependent
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variable, we similarly discovered a close correlation between RFM

and 25(OH)D levels in Model 1 (b= -0.115, 95%CI= (-0.212,

-0.017), P<0.022), Model 2 (b=-0.708, 95%CI= (-0.888, -0.528),

P<0.001), and Model 3 (b=-0.662, 95%CI= (-0.852, -0.471),

P<0.001) (Supplementary Table 4). Smooth curve fitting analysis

revealed a linear trend between RFM and the risk of vitamin D

deficiency and 25(OH)D levels, with no turning point

found (Figure 2).
3.3 Stratified analyses

To verify the robustness of the observed correlation between

RFM and Vitamin D deficiency, subgroup analyses were conducted

based on various stratification variables (Figure 3). The results

indicated consistent associations across subgroups, including age

(<60 years/≥60 years), sex (female/male), BMI (<25 kg/m2/25–30

kg/m2/≥30 kg/m2), hypertension (No/Yes), and CVD (No/Yes),

with all P for interaction values exceeding 0.05.
3.4 Clinical utility of RFM

According to the results of the DCA and ROC analysis, RFM

showed superior diagnostic and predictive ability for Vitamin D

deficiency compared to BMI, WC, and height (Figures 4A, B).
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According to ROC analysis, the area under the curve (AUC) values

were 62.6% for RFM, 59.2% for BMI, 56.7% for WC, and 49.2% for

height (DeLong’s test: RFM vs. BMI, P < 0.001; RFM vs. WC, P <

0.001; RFM vs. height, P < 0.001) (Figure 4A). DCA demonstrated

that RFM had a higher net benefit threshold compared to BMI, WC,

and height (Figure 4B).
3.5 Validation of external dataset

In addition, the association between RFM level and the risk of

vitamin D deficiency was further evaluated based on adult diabetic

patients from the Affiliated Wujin Hospital to Jiangsu University

(Supplementary Material). Vitamin D deficiency prevalence also

increased with rising RFM levels in Chinese diabetic cohort

(P<0.001). In Model 1 (no adjusted), Model 2 (adjusting for age,

sex, smoking status, and alcohol use), and Model 3 (adjusting for

age, sex, smoking status, alcohol use, hypertension, CVDs, HbA1c,

TG, LDL-c, HDL-c, and Scr), Logistic regression indicated the ORs

and 95% CIs for vitamin D deficiency risk were 1.111 (1.066-1.158),

1.188 (1.089-1.296), and 1.183 (1.080-1.295), respectively

(Supplementary Material). Additionally, linear regression analysis

also discovered a close correlation between RFM and 25(OH)D

levels (Model 1: b= -0.261, 95%CI= -0.396–0.126, P<0.001; Model 2:

b= -0.510, 95%CI= -0.769- -0.251, P<0.001; Model 3: b= -0.532,

95%CI= -0.809–0.256, P<0.001) (Supplementary Material).
FIGURE 1

SHAP analysis of feature importance. (A, Ranking of features based on mean absolute SHAP values; B, Swarm plot illustrating the distribution of SHAP
values and their relationship with feature magnitudes).
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4 Discussion

This study comprehensively explored the association between

RFM and vitamin D deficiency among adults with diabetes, utilizing

large-scale national survey data and independent external
Frontiers in Endocrinology 05
validation. Our key findings indicate that higher RFM is

significantly associated with an increased risk of vitamin D

deficiency, and that RFM outperforms traditional anthropometric

indicators such as BMI and WC in identifying vitamin D deficiency

within diabetic populations.
FIGURE 2

Smooth curve fitting of RFM with risk of vitamin D deficiency and serum 25(OH)D Levels.
URE 3FIG

Consistency of the relationship between RFM and vitamin D deficiency across subgroups.
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Accurately deciphering the “obesity paradox” continues to

challenge epidemiological studies, primarily due to the

complicated interrelations among measures of body fat (5, 26,

27). RFM is simpler to calculate than other mathematically

complex obesity indicators, making it more practical for use in

broad public health contexts (28). Evidence from earlier studies

suggests that RFM is effective in estimating body composition and

predicting conditions associated with obesity (10, 14). Especially in

patients with type 2 diabetes, characterized by increased visceral

and ectopic fat deposits, RFM provides superior sensitivity and

specificity in identifying individuals with higher fat mass (29).

Since vitamin D is sequestered in fat tissue due to its fat solubility,

higher fat mass frequently results in reduced serum vitamin D (30).

By more precisely quantifying actual body fat, RFM shows a

stronger link to serum 25(OH)D concentration. To enhance

interpretability, we applied SHAP, which assigns each predictor a

participant-level contribution score indicating whether it raises or

lowers risk relative to the average. In our analysis, RFM showed

high relative importance and contributed positively, consistent

with the higher predicted risk of vitamin D deficiency.

Additionally, results from both ROC and DCA analyses support

the notion that RFM is a more effective tool than BMI or WC in

evaluating vitamin D deficiency. An AUC of 0.626 for RFM

denotes modest discrimination, supporting its use to aid risk

stratification and testing prioritization for 25(OH)D rather than

as a stand−alone screening or diagnostic tool. Notably, our study

reveals an inverse relationship between age and the likelihood of

vitamin D deficiency, differing from earlier research that identified

older adults as more susceptible. Age and vitamin D deficiency

might be prone to nonlinear associations. Similar findings have

also been reported in studies focusing on the U.S. population (31–
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34). According to Hongfei Mo et al., younger individuals exhibit a

higher deficiency risk due to faster metabolism and increased

vitamin D utilization (31). Elevated adiposity levels may intensify

vitamin D deficiency through multiple pathways. Firstly, as

mentioned above, as a lipophilic compound, vitamin D tends to

sequester in adipose tissue, thereby reducing its circulating

bioavailability (35, 36). Secondly, higher RFM often reflects lower

levels of physical activity and less exposure to sunlight in

individuals, both of which are essential for the body ’s

endogenous production of vitamin D (36). Chronic low-grade

inflammation and insulin resistance may act as mediators of the

above 2 factors (37–39). On the other hand, Roizen et al. propose

that, in obesity, decreased hepatic expression of CYP2R1, the key

enzyme for vitamin D 25-hydroxylation, impairs the conversion of

vitamin D to 25(OH)D and thus contributes to vitamin D

deficiency (40).

Although this study utilized large cross-sectional datasets such

as NHANES and incorporated external validation in a Chinese

diabetes cohort, indicating a certain degree of representativeness

and generalizability, several limitations remain. First, the cross-

sectional design precludes any causal inference between RFM and

vitamin D deficiency, allowing only an assessment of association.

Prospective cohort studies are required to further establish

causality. Second, there is no universal consensus on serum 25

(OH) D cutoffs. Major organizations-including the Institute of

Medicine, the Endocrine Society, the American Geriatrics Society,

and others-apply differing thresholds and decision frameworks (21).

This lack of standardization complicates cross-study comparisons

and may partly account for variability in reported prevalence and

effect sizes. Third, although RFM performed better than BMI and

WC in our analyses, it is not a gold standard for body composition
FIGURE 4

Clinical utility comparison of RFM, BMI, WC, and height. (A, The results of ROC analysis; B, The results of DCA analysis).
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and does not capture visceral fat or muscle mass. Moreover, we did

not fully adjust for key confounders-seasonal variation in vitamin D

levels, latitude, vitamin D supplementation, outdoor activity,

dietary patterns, and skin exposure-which may have affected

the results.
5 Conclusion

In conclusion, RFM’s advantage over BMI and WC in assessing

vitamin D deficiency risk supports adopting more precise fat

indicators, especially in diabetic populations.
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