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Diabetic kidney disease (DKD) is the primary microvascular complication of

diabetes and a leading cause of chronic kidney disease (CKD) and end-stage

renal disease (ESRD) worldwide, with its prevalence on the rise. Recent evidence

has highlighted the crucial involvement of gut microbiota (GM) dysbiosis in the

pathogenesis and progression of DKD, mediated through the gut-kidney axis. At

the core of this process is a dynamic network involving metabolic, immune, and

barrier dysfunction. Renal impairment—such as that seen in uremia—disrupts gut

microbial composition and metabolic function. In turn, dysbiosis compromises

intestinal barrier integrity, resulting in increased exposure to endotoxins and a

reduction in the production of beneficial metabolites, notably short-chain fatty

acids (SCFAs). This triad manifests as: (1) impaired metabolism, marked by

decreased SCFAs (e.g., acetate), which weaken anti-inflammatory and

immunomodulatory effects, alongside an accumulation of uremic toxins like

trimethylamine N-oxide (TMAO) that trigger inflammatory pathways and renal

fibrosis; (2) immune dysregulation, where increased endotoxin translocation

(e.g., lipopolysaccharide, LPS) provokes systemic inflammation, oxidative stress,

and immune cell infiltration (such as macrophages), contributing to renal

inflammatory and fibrotic responses; and (3) barrier dysfunction, in which

compromised intestinal barrier accelerates the translocation of detrimental

microbial components, perpetuating a vicious cycle that exacerbates

glomerulosclerosis, tubular injury, and renal function decline.Collectively,

metabolic, immune, and barrier alterations reinforce one another and drive

DKD progression via gut-derived metabolites and immune activation. Targeted

interventions aiming to modulate the GM—using probiotics, prebiotics, or
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synbiotics—show promise in improving metabolic profiles, restoring gut barrier

function, and mitigating DKD phenotypes. This review systematically elucidates

the metabolism–immunity–barrier mechanisms by which GM dysbiosis

contributes to DKD and discusses the translational potential of microbiome-

targeted therapies. Further studies are needed to validate these findings and

assess their long-term clinical efficacy.
KEYWORDS

diabetic kidney disease, gut microbiota, gut-kidney axis, metabolism–immunity–barrier
interaction, microbiome-targeted therapy
1 Introduction

DKD, a major microvascular complication of diabetes, remains

the leading cause of ESRD globally (1, 2). Its high prevalence not

only necessitates long-term renal replacement therapy but also

markedly increases the incidence of cardiovascular events in

affected individuals (2, 3). In recent years, mounting evidence has

highlighted the pivotal role of the gut–kidney axis in the

pathogenesis and progression of DKD. Specifically, GM dysbiosis

contributes to DKD evolution through metabolic disturbances,

immune dysregulation, and barrier dysfunction:
1.1 Metabolic dimension

DKD is associated with a distinct gut microbial profile, notably

a decreased abundance of butyrate-producing bacteria, which leads

to reduced synthesis of beneficial SCFAs (4–6). Simultaneously, the

accumulation of uremic toxins, such as indoxyl sulfate, exacerbates

renal injury (2, 7, 8). These changes drive systemic activation of the

renin–angiotensin system (RAS) and foster renal fibrosis (2, 7, 9).
1.2 Immune dimension

SCFA deficiency impairs their anti-inflammatory effects and the

inhibition of histone deacetylases (HDACs) (4, 6, 10). Meanwhile,

accumulation of microbial toxins acts synergistically with

hyperactivation of the TLR4/NF-kB pathway (9, 11), leading to

chronic systemic inflammation and oxidative stress that accelerate

renal damage.
1.3 Barrier dimension

Dysbiosis impairs the integrity of intestinal epithelial tight

junctions—such as zonula occludens-1 (ZO-1)—facilitating

translocation of endotoxins into the bloodstream (8, 12). This
02
establishes a deleterious “leaky gut–renal injury” cycle, which is

further aggravated in DKD by hyperglycemia-induced depletion of

the intestinal mucous layer, setting DKD apart from non-diabetic

kidney diseases (NDKD) (5, 12, 13).

Compared with NDKD, the gut–kidney axis in DKD exhibits

unique metabolic features: chronic hyperglycemia selectively

suppresses butyrate metabolic pathways (6, 14), and the synergy

between advanced glycation end products (AGEs)-RAGE signaling

and gut-derived toxins accelerates the development of renal fibrosis

(2, 7). In this review, we systematically explore the mechanisms

whereby the interplay of metabolism, immunity, and barrier

dysfunction propels DKD progression to ESRD. Additionally, we

critically appraise the translational potential of microbiota-targeted

interventions, such as dietary fiber supplementation to enhance

SCFAs–GPR43 signaling, and probiotic modulation of

Akkermansia to promote barrier restoration.
2 Clinical evidence linking gm
dysbiosis to diabetic nephropathy

2.1 Characteristics of GM in patients with
DN

2.1.1 Alterations in microbial composition
Marked reduction in beneficial bacteria: Patients with DN

exhibit a distinct gut microbial profile characterized by a

significant decrease in SCFA-producing genera, such as

Akkermansia, Roseburia, and Alistipes. Notably, a reduction in

Akkermansia abundance is associated with the progression of

renal fibrosis (p < 0.05), while decreased Alistipes correlates with

heightened systemic inflammatory responses (p < 0.05) (15). These

changes may contribute to compromised intestinal barrier function

and immune dysregulation, thereby accelerating the pathological

progression of nephropathy.

Enrichment of pathogenic bacteria: Conversely, the abundance of

pathogenic bacteria, particularly Escherichia-Shigella, is increased in

DN patients. These bacteria secrete endotoxins, such as LPS, which
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activate proinflammatory pathways in renal tissue (notably the NF-

kB signaling pathway), thereby promoting glomerulosclerosis and

tubular injury. Overall, gut dysbiosis exacerbates systemic

inflammation and renal fibrosis in DN (16, 17).

Several studies have demonstrated a robust association between

changes in microbial composition and renal function parameters.

For instance, reduced Roseburia abundance is linked to an increased

risk of DN (P = 0.00118; OR = 0.513, 95% CI: 0.343–0.768),

suggesting a negative relationship with eGFR decline (18).

Similarly, lower Dialister abundance is inversely correlated with

DN risk (OR = 0.513, P = 0.00118) (18), further substantiating the

detrimental impact of microbial dysbiosis on renal function.

Moreover, Mendelian randomization (MR) analyses have

confirmed a direct, negative causal effect of decreased SCFA-

producing bacteria on DN progression (P < 0.05) (19), associating

gut microbial alterations with renal function deterioration.

2.1.2 Potential as biomarkers
Characteristic microbial profiles hold significant promise for

distinguishing DN from NDKD. For instance, reduced abundance

of Verrucomicrobia in DN patients serves as a phylum-level

discriminator (18, 20). Notably, species-level biomarkers within

the Prevotella genus exhibit strong clinical relevance. Prevotella

copri is markedly enriched in diabetic patients with poor glycemic

control (HbA1c >7.0%) and inversely correlates with healthy

dietary patterns (e.g., fish-vegetable intake) 21. Its diagnostic

power is robust, with an AUC of 0.93 (95% CI: 0.88–0.98) for

distinguishing DN from non-DKD subjects via qPCR

validation (21).

Additionally, Prevotella_9 demonstrates significant alterations

in DKD. Metagenomic analyses reveal that Prevotella_9 species

(e.g., Prevotella sp. MSX73) are enriched in DKD patients and

contribute to a combinatorial biomarker model (AUC = 0.889)

differentiating DN from T2DM without nephropathy 22. The

decline in Prevotella-associated butyrate production further

exacerbates renal dysfunction by impairing anti-inflammatory

pathways (22, 23).

Comprehensive integration of microbial signatures (e.g.,

Prevotella copri, Prevotella_9, and g_Prevotella) with serum

metabolites (e.g., imidazolepropionic acid) enhances early DN

detection (AUC >0.94) (22, 23). This multi-omics approach

underscores the potential for developing non-invasive diagnostic

models leveraging GM dysbiosis (3, 24).
2.2 Unresolved causality: insights from MR
studies

MR has become a crucial approach for establishing causality in

the relationship between GM and DN. While accumulating

evidence from MR analyses suggests the existence of causal links

at the genetic level, several key areas remain contentious,

particularly concerning the directionality of effects and the

clarification of underlying molecular mechanisms.
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2.2.1 Evidence supporting a causal relationship
Multiple two-sample MR studies have provided substantial

evidence supporting a causal relationship between specific gut

microbial taxa and the risk of DN. For instance, studies have

identified potential causal links between certain gut microbial taxa

and DN, which were confirmed through MR analysis (25–27).

Quantitative evaluations have further shown that an increased

abundance of taxa such as Catenibacterium is significantly

associated with a decreased risk of DN (OR =0.513; 95% CI, 0.343–

0.768) (26, 27). Moreover, MR analyses have revealed that genetic

variants influencing the composition of the gut microbiome, ranging

from phylum to genus level, have both positive and negative causal

effects on the risk of DN (27, 28). These data reinforce the view that

gut microbial dysbiosis may act as a potential driver in DN

pathogenesis. Robust causal associations have also been validated

by MR studies employing inverse variance weighted methods (28).

2.2.1.1 Controversy: the bidirectionality of causality

Despite the above findings, one of the major points of contention is

the potential bidirectional nature of the relationship between GM

dysbiosis and DN. On the one hand, dysbiosis may be an initiating

factor in DN: reduced production of SCFAs has been shown to promote

renal inflammation and fibrosis, thereby accelerating DN progression

(9, 12). Experimental studies have demonstrated that SCFA

supplementation can attenuate renal fibrosis in DN models,

supporting the causal role of the GM in DN onset (5). On the other

hand, renal dysfunction itself may influence the gut microbiome: studies

have found that declining renal function, such as a decreased glomerular

filtration rate, can alter microbial diversity (29, 30). As such, reverse

causation becomes a possibility, making it challenging to fully

distinguish causality using MR analysis alone (31). To address this

issue, Li Q has emphasized the need for longitudinal studies, such as

repeated measures of renal function, to clarify the temporal and causal

relationships (3). Additionally, fecal microbiota transplantation (FMT)

experiments provide direct evidence for this interaction: transplantation

of microbiota from patients with DKD increased the urinary albumin-

to-creatinine ratio (UACR) in recipient animals by approximately 2.1-

fold compared with transplantation from healthy donors, further

supporting the role of dysbiosis as a driving factor in DN (32).

2.2.1.2 Controversy: unclear molecular mechanisms

Another unresolved issue lies in the lack of detailed

understanding of the molecular mechanisms underlying GM-host

interactions in DN. Although numerous studies have postulated

that GM-derived metabolites, such as SCFAs, may modulate host

pathways—including the renin-angiotensin system (RAS)—direct

experimental evidence remains limited. For example, Huang L

speculated that SCFAs might influence DN progression via

immunometabolic pathways, but this has yet to be verified.

Similarly, while Das S investigated the protective effects of SCFAs

in DN models, their mechanisms—such as possible regulation of

the RAS—require further elucidation (5, 12). As noted by Jin Y, “the

precise pathways by which dysbiotic microbiota may induce and

exacerbate DN remain undefined,” underscoring the need for
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mechanistic studies in cellular and animal models to move beyond

mere genetic associations (27). Although FMT studies revealing

elevated UACR in recipient animals offer a useful starting point for

exploring these mechanistic links, the downstream pathways—

potentially involving inflammation or metabolic disturbances—

have not yet been clearly defined.
2.3 Cross-disease comparison: microbial
differences between DN and NDKD

Comparative analysis between DN and NDKD reveals disease-

specific patterns of GM dysbiosis, which are critical for

understanding pathogenesis and guiding personalized treatment

strategies. Current evidence indicates that DN and NDKD display

distinct alterations in both metabolic and pathogenic microbial

taxa, resulting in different responses to microbial interventions.

2.3.1 Disease-specific microbial features in DN
2.3.1.1 Metabolic dysfunction

DN is characterized by a notably greater depletion of short-

chain fatty acid (SCFA)-producing bacteria, such as butyrate-

producing Firmicutes species, compared to NDKD. Experimental

studies have shown that DN mouse models exhibit significantly

lower fecal SCFA levels (especially acetic acid), which correlate

positively with the severity of renal fibrosis (6). Furthermore,it has

been summarized that this reduction is strongly associated with

insulin resistance—a relationship more pronounced in DN than in

NDKD—and may impact glucose homeostasis through the “gut-

kidney axis” (17). The observational data further confirm that gut

microbial metabolic disturbances are a fundamental and unique

aspect of DN, with SCFA depletion representing a core feature

rather than a common trait of NDKD (25).

2.3.1.2 Differences in pathogenic bacteria

The enrichment of pathogenic bacteria also differs between DN

and NDKD. In NDKD, dysbiosis mainly affects immune-modulating

bacteria; for instance, enrichment of Clostridium has been shown to

activate immune pathways and contribute to nephritis (1). In contrast,

DN is characterized by an increase in metabolically relevant

pathogenic taxa, notably Enterobacteriaceae (6, 25). Specifically,

studies have identified immune dysregulation-associated dysbiosis in

NDKD (e.g., Clostridium perfringens Clostridium enrichment

disturbing T cell balance), whereas in DN, the dysbiosis is more

strongly related to metabolic pathogens such as Enterobacteriaceae,

which can directly aggravate insulin resistance and renal injury (1).

Systematic review corroborates these findings, indicating that DN

features more pronounced shifts in metabolic taxa, while NDKD

primarily exhibits changes in immune-related microbes (33).

Therapeutic Implications: Microbiota-targeted interventions

appear to be more effective in DN, underscoring the value of disease-

specific strategies. For example, butyrate supplementation significantly

alleviated renal fibrosis in DN models (6), and SCFA treatment was

found to slowDNprogression by correctingmetabolic imbalances (34).

However, similar interventions in NDKD yielded limited results;
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studies (17, 31) point out that the pathogenesis of NDKD is

primarily immune-mediated, making SCFA supplementation less

effective in mitigating immune-driven kidney damage. These findings

emphasize the importance of tailoring microbial interventions to the

underlying pathophysiology of each kidney disease subtype.
2.4 Key controversies and knowledge gaps

Despite significant advances in understanding the gut microbiota -

diabetic nephropathy relationship, several critical controversies and

knowledge gaps persist. First, while MR studies provide genetic

evidence of causality, experimental validation using animal models

remains essential. Integrated studies have demonstrated associations

between clinical GM profiles and DN, yet in vivomodels are necessary

to elucidate causal mechanisms (33). Although FMT represents a

promising therapeutic approach, standardized protocols for DN are

lacking, necessitating additional animal studies to validate causal

relationships through approaches such as transplanting DN-

associated microbiota into healthy recipients (17, 35).

The translation of microbiota-targeted therapies to clinical

practice faces significant challenges. Clinical trials of probiotics

and prebiotics have yielded inconsistent results, likely reflecting

inter-individual microbiota variability and disease heterogeneity.

While short-chain fatty acid (SCFA) supplementation demonstrates

benefits in DN animal models (34), FMT outcomes in human

studies remain variable due to substantial individual microbiome

diversity (35). Recent investigations have proposed personalized

probiotic formulations based on microbiome profiling; however,

population variability and the need for standardized interventions

continue to impede clinical translation (35, 36).

Furthermore, emerging evidence suggests that DN and NDKD

involve distinct dysbiosis-driven immunological mechanisms. DN-

associated gut dysbiosis appears to influence host immunity

through metabolic-immune crosstalk, whereas NDKD may be

more directly linked to immune dysregulation, particularly Th17/

Treg cell axis imbalances (1). Although experimental studies

demonstrate that microbiota modulation can restore Treg/Th17

balance in inflammatory conditions, these models lack kidney

disease specificity. Consequently, comparative mechanistic studies

examining these immunological pathways and their roles in renal

fibrosis across DN and NDKD represent critical research priorities

requiring further investigation.
3 Key Mechanisms by which GM
dysbiosis drives the progression of DN

3.1 Disruption of the intestinal barrier and
translocation of endotoxins

3.1.1 Gut microbiota dysbiosis and intestinal
barrier impairment

In the context of diabetes, GM dysbiosis is typified by a notable

reduction in beneficial bacteria—particularly those producing
frontiersin.org
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SCFAs—accompanied by an overgrowth of Gram-negative

pathogenic taxa (9, 12). This altered microbial composition leads

to the downregulation of critical tight junction proteins within

intestinal epithelial cells, such as ZO-1, occludin, and claudin-1,

thereby compromising the integrity of the intestinal mucosal barrier

(37–39) and resulting in enhanced intestinal permeability (40).

Compelling evidence has demonstrated a depleted abundance of

protective genera, such as Akkermansia, and an increased

proportion of LPS-producing Gram-negative bacteria (Such as

Bacteroides stercoris) in the gut of patients with DN (23). Animal

studies further corroborate that high-fat diet or diabetic status

markedly reduces the expression of tight junction proteins and

exacerbates gut barrier dysfunction (41, 42).

3.3.2 Endotoxemia and activation of systemic
inflammatory responses

Intestinal barrier disruption allows bacterial endotoxins,

particularly LPS, to enter the systemic circulation, leading to

metabolic endotoxemia (40, 43). Circulating LPS engages Toll-like

receptor 4 (TLR4) on monocytes and macrophages, triggering the

MyD88/NF-kB signaling pathway (25, 44, 45). This activation

induces the release of pro-inflammatory cytokines, including

TNF-a and IL-6 (25, 46). Clinical investigations have

demonstrated a positive correlation between serum LPS levels and

the degree of renal injury in DN, including declines in glomerular

filtration rate and aggravation of proteinuria (3).

3.3.3 Renal inflammation and fibrosis
Systemic inflammatory cytokines, including TNF-a and IL-6,

drive the infiltration of immune cells into renal tissue and activate

local inflammatory pathways (17). Inflammatory responses cause

direct damage to glomerular endothelial cells and podocytes,

accelerate the progression of glomerulosclerosis, and promote the

transdifferentiation of tubular epithelial cells into interstitial

fibroblasts, thereby exacerbating tubulointerstitial fibrosis (1, 18).

Experimental evidence suggests that interventions using probiotics

or plant-derived extracts can effectively mitigate renal inflammation

and fibrosis in diabetic models. Specifically, probiotic

supplementation, such as Lactobacillus ATCC 4356, has been

shown to reduce kidney inflammation and fibrosis in diabetic rats

by modulating GM, restoring microbial diversity, and decreasing

markers of DNA damage, as evidenced by histological analyses that

revealed improved kidney structure and reduced fibrosis (47).

Additionally, probiotic combinations including strains like

Lactobacillus TYCA06 and Bifidobacterium BLI-02 attenuate

renal function deterioration and blood-glucose fluctuations in

diabetic CKD models, thereby suppressing inflammatory

pathways (48). For plant-derived extracts, bioactive compounds

from medicinal plants, such as flavonoid-rich preparations,

demonstrate nephroprotective effects by suppressing oxidative

stress and regulating proinflammatory pathways (e.g., through

modulation of sirtuins and claudin-1 expression), thus reducing

renal injury in streptozotocin-induced DN (48, 49). These
Frontiers in Endocrinology 05
interventions work through mechanisms like inhibition of

inflammatory signaling cascades and modulation of the gut-

kidney axis, as they reduce pro-inflammatory cytokines and

oxidative stress markers, contributing to the amelioration of

fibrosis (36, 50). The specific mechanistic process is summarized

in Figure 1.
3.2 Nephrotoxic effects of microbial
metabolites

Gut-derived microbial metabolites, particularly the reduction of

SCFAs and the accumulation of uremic toxins, play critical roles in the

development and progression of DN. Their pathogenic mechanisms

involve oxidative stress, inflammatory responses, and fibrosis, in part

through modulation of key renal signaling pathways (44, 51).

3.2.1 Pathogenic mechanisms of reduced SCFAs
A decrease in SCFAs, such as butyrate and propionate, exacerbates

renal injury primarily by impairing renal antioxidant defense systems

and disrupting immune homeostasis. SCFA deficiency attenuates the

activation of major regulatory pathways, such as nuclear factor

erythroid 2-related factor 2 (Nrf2), leading to the accumulation of

reactive oxygen species (ROS) and enhancing oxidative stress within

the renal microenvironment (52). Reduced SCFA levels impair

immunomodulatory functions by inhibiting regulatory T cell (Treg)

differentiation and decreasing anti-inflammatory cytokines such as IL-

10. This shift promotes the production of pro-inflammatory

mediators, including IL-1b, IL-6, and TNF-a, leading to sustained

renal inflammation and tissue damage (6, 44, 53). This immune

dysregulation is increasingly recognized as a pivotal feature in the

interplay between GM and renal pathology (51, 54).

3.2.2 Nephrotoxic mechanisms of uremic toxin
accumulation

Uremic toxins, such as indoxyl sulfate (IS) and p-cresyl sulfate

(PCS), exhibit a strong inverse correlation with estimated

glomerular filtration rate (eGFR) (total IS: r = -0.819; free PCS: r

= -0.753) (55), further aggravate renal damage in DN by promoting

mitochondrial dysfunction and profibrotic remodeling. IS activates

the aryl hydrocarbon receptor (AhR) pathway in renal tubular

epithelial cells, enhancing oxidative stress, impairing mitochondrial

function, and inducing apoptosis (53, 54, 56).Critically, serum IS

≥50 mmol/L predicts peritoneal dialysis technique failure with

70.4% sensitivity and 87.9% specificity (p<0.0001), highlighting its

clinical relevance in renal functional decline 57. PCS, on the other

hand, drives fibroblast activation and extracellular matrix

deposition, thereby accelerating tubulointerstitial fibrosis (54, 57).

Moreover, IS accumulation downregulates organic anion

transporter 3 (OAT3) expression at the blood-brain barrier,

impairing toxin efflux and exacerbating systemic accumulation

(58). Importantly, IS and PCS can synergistically activate the NF-

kB signaling pathway, upregulating pro-inflammatory cytokines
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such as IL-17 and IL-6, which directly correlate with peritoneal

dialysate IL-6 levels (r = 0.92) (59), perpetuating a vicious cycle of

inflammation and fibrosis (51, 57).

In DKD, GM dysbiosis promotes uremic toxin production (e.g.,

IS/PCS) (60, 61), while AST-120 adsorbent therapy significantly

lowers serum IS (SMD = -1.75, p<0.001) and improves creatinine

clearance (SMD = 0.41, p<0.001) in CKDmodels (62). This dysbiosis

compromises intestinal barrier function, facilitating systemic toxin

entry and exacerbating renal inflammation8,16. Dietary modulation

(e.g., high-fiber diets, resistant starch) reduces toxin generation by

altering microbiota composition (60, 63, 64), effectively lowering

serum total cholesterol (SMD = -0.28, p=0.013) in diabetic CKD

models (62), thereby mitigating DKD progression.

3.2.3 Interventional strategies and therapeutic
potential

Targeted interventions aimed at restoring microbial metabolic

balance have shown promising renoprotective effects, mainly through

pharmacological, nutritional, and non-pharmacological approaches.
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3.2.3.1 Pharmacological and nutritional modulation

Traditional Chinese herbal formulations (e.g., Xiaoyu Xiezhuo

decoction, XXD) have been reported to lower plasma IS and PCS

levels while increasing colonic SCFA (such as butyrate)

concentrations, consequently ameliorating tubular injury and

suppressing pro-inflammatory cytokines such as IL-17 and TNF-

a (65, 66). Specific probiotic strains (e.g., ATCC 4356) facilitate the

re-establishment of microbial diversity and enhance SCFA

b io syn the s i s , t hu s mi t i g a t ing ox ida t i v e s t r e s s and

glomerulosclerosis (47). Similarly, natural compounds like

resveratrol may reshape the GM structure, elevate fecal SCFA

levels, and reduce tubulointerstitial fibrosis (6).

3.2.3.2 Non-pharmacological toxin removal

Use of intestinal adsorbents such as AST-120 effectively reduces

circulating IS by binding its precursors in the gut, while

extracorporeal techniques including hemodialysis and

hemofiltration directly eliminate accumulated IS and PCS from

the bloodstream (54). These interventions, by targeting the gut–
FIGURE 1

Mechanism of gut microbiota dysbiosis-induced systemic inflammation and renal damage in diabetes. Left: Diabetic conditions drive gut microbiota
dysbiosis, characterized by diminished beneficial bacteria (blue) and expansion of pathogenic bacteria (red). This imbalance disrupts intestinal tight
junctions, permitting translocation of bacterial fragments (e.g., LPS) into systemic circulation. Center: Key molecular pathway: Circulating bacterial
fragments activate the TLR4/MyD88/NF-kB signaling cascade (detailed in dashed- line inset), triggering release of pro- inflammatory cytokines (TNF-
a, IL-6). Right: Systemic inflammation propagates renal injury, culminating in inflammatory tubulointerstitial fibrosis. TLR4, Toll-like receptor 4;
MyD88, Myeloid differentiation primary response 88; NF-kB, Nuclear factor kappa-light- chain-enhancer of activated B cells; TNF-a, Tumor necrosis
factor-alpha; IL-6, Interleukin-6; LPS, Lipopolysaccharide.
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kidney axis, present innovative strategies for metabolic regulation

and renoprotection among patients with DN (44, 57).
3.3 Activation of immune-inflammatory
pathways

GM dysbiosis triggers a cascade of immune-inflammatory

responses through both innate and adaptive mechanisms, with

the NLRP3–IL-1b axis serving as a central regulatory hub.

Dysbiosis increases host exposure to endotoxins such as LPS and

uremic toxins, which enter systemic circulation and function as

pathogen-associated or damage-associated molecular patterns (42,

67–69). These molecules initiate innate immune activation through

a two-signal process: LPS activates the TLR4/NF-kB pathway

(Signal 1), inducing transcription of NLRP3 and pro-IL-1b, while
uremic toxins trigger potassium efflux and mitochondrial ROS

production (Signal 2), promoting NLRP3 oligomerization and

caspase-1 activation (69–71).

This activation specifically promotes assembly of the NLRP3–

ASC–pro-caspase-1 complex via the P2X7 receptor, leading to

caspase-1-dependent maturation of IL-1b and IL-18 (68, 69).

Activated caspase-1 cleaves gasdermin D, forming membrane

pores that induce pyroptosis in glomerular endothelial cells—a

form of inflammatory cell death characterized by cellular swelling,

lysis, and massive cytokine release, resulting in direct renal tissue

injury (42, 72, 73). The ensuing inflammatory milieu recruits

neutrophils into the renal parenchyma, amplifying oxidative

stress and contributing to podocyte injury (42, 67, 74).

Concurrently, altered GM disrupts adaptive immune homeostasis.

Reduced beneficial metabolites, particularly SCFAs, skews T cell

differentiation toward excessive Th17 activation while impairing

regulatory T cell (Treg) function (74, 75). Hyperactivated Th17 cells

release elevated IL-17A, which acts on kidney-resident cells to induce

neutrophil chemoattractants (CXCL1, CXCL2) (73, 74). Infiltrating

neutrophils release proteases and ROS that degrade podocyte

cytoskeleton proteins and disrupt the slit diaphragm, culminating in

proteinuria (73, 74). Critically, IL-17A upregulates NLRP3 expression

in glomerular cells, establishing an IL-17A–NLRP3–IL-1b positive

feedback loop that perpetuates renal inflammation (73–75).

The NLRP3–IL-1b axis thus bridges innate and adaptive

immunity in DN pathogenesis. Therapeutically, targeting the

NLRP3/caspase-1 pathway significantly reduces cytokine release

and ameliorates glomerulosclerosis and proteinuria, emerging as a

core target for mitigating GM-driven inflammation in DN (67, 76).

The “gut–kidney axis”—encompassing primary microbiota

alterations, secondary metabolite regulation, and tertiary

pathological effects—is illustrated in Figure 2.
3.4 Role of metabolic dysregulation as a
mediator

GM dysbiosis drives DN progression through interconnected

metabolic pathways involving insulin resistance and lipid
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dysregulation. The disruption of gut microbiota significantly

reduces SCFA synthesis, particularly acetate and butyrate (35, 51).

SCFAs normally engage G protein-coupled receptors (GPR41/43)

on intestinal L cells to promote glucagon-like peptide-1 (GLP-1)

secretion, which is crucial for glycemic control (34). GLP-1

deficiency diminishes its inhibitory effect on hepatic

gluconeogenesis, increasing activity of rate-limiting enzymes like

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-

phosphatase (G6Pase), thereby exacerbating hyperglycemia (34,

77). Notably, when serum butyrate levels fall below 10 mM, renal

IL-6 expression significantly increases (34).

Concurrently, gut dysbiosis facilitates LPS translocation into

systemic circulation, activating TLR4 signaling pathways (78). This

triggers the JNK signaling cascade in macrophages, leading to

increased tumor necrosis factor-alpha (TNF-a) release. TNF-a
promotes serine phosphorylation of insulin receptor substrate-1

(IRS-1), disrupting the downstream PI3K-AKT pathway and

impairing glucose uptake in peripheral tissues (7, 44, 78). The

resulting chronic insulin resistance induces sustained

hyperinsulinemia, which causes afferent arteriolar dilation and

efferent arteriolar constriction, increasing glomerular capillary

pressure. These hemodynamic alterations promote proteinuria

and glomerulosclerosis, accelerating renal injury progression (11).

Parallel to glucose metabolism disruption, gut dysbiosis

profoundly alters lipid homeostasis through impaired bile acid

metabolism. The reduced formation of secondary bile acids,

particularly deoxycholic acid, impairs farnesoid X receptor (FXR)

activation in the intestine (77, 79, 80). Inadequate FXR signaling

upregulates hepatic sterol regulatory element-binding protein 1c

(SREBP-1c), driving transcription of lipogenic enzymes including

fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). This

promotes triglyceride synthesis and hepatic lipid accumulation (77,

79, 81). Under physiological conditions, intestinal FXR activation

stimulates fibroblast growth factor 19 (FGF19) secretion, which

inhibits hepatic CYP7A1-mediated bile acid synthesis and preserves

lipid homeostasis (35, 77). In DN, suppressed FXR signaling

decreases FGF19 levels, leading to insufficient SREBP-1c inhibition

and systemic lipid overload (77, 79, 81).The elevated circulating free

fatty acids (FFA) resulting from this metabolic disruption enhance

renal lipid deposition, triggering mesangial cell lipotoxicity and

mitochondrial oxidative stress. This stimulates release of

inflammatory mediators including IL-6 and monocyte

chemoattractant protein-1 (MCP-1), culminating in mesangial

matrix expansion (19, 81). The synergistic effects of insulin

resistance and lipid dysregulation accelerate renal deterioration

through multiple mechanisms: insulin resistance-induced

intraglomerular hypertension combines with lipotoxicity-mediated

mesangial cell injury to promote glomerular basement membrane

thickening and excessive extracellular matrix accumulation (11, 19).

Furthermore, concomitant activation of the JNK pathway (linked to

insulin resistance) and FFA-driven NLRP3 inflammasome assembly

(associated with lipid dysregulation) synergistically promotes

macrophage infiltration in renal tissue, hastening tubulointerstitial

fibrosis (78). This integrated metabolic dysfunction underscores the

critical role of the gut-kidney axis in DN pathogenesis.
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4 Strategies targeting the GM in the
management of DN
4.1 Probiotics, prebiotics, and synbiotics
and postbiotics

Probiotics, prebiotics, and synbiotics have gained increasing

attention as microbiota-targeted interventions for the management

of DN. An accumulating body of clinical evidence suggests that

these approaches, through modulation of the gut–kidney axis, can

reshape intestinal microbial composition, reduce oxidative stress,

and ultimately improve renal function parameters such as serum

creatinine and blood urea nitrogen (47, 82). Probiotics, by restoring

the balance of the GM, have been shown to lower the risk of renal

injury. Synbiotics, which combine the complementary actions of

probiotics and prebiotics, produce synergistic effects by regulating

the production of key microbial metabolites, such as SCFAs and

secondary bile acids, thereby mitigating systemic inflammatory

responses (35, 83, 84).
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Several randomized controlled trials have demonstrated that

these interventions may also promote glycemic control (evidenced

by reduced HbA1c levels) and improve lipid metabolism (e.g.,

lowering low-density lipoprotein cholesterol), underscoring the

close interplay between the GM and host metabolic pathways (84,

85). Nevertheless, substantial heterogeneity and limitations persist

across studies. The therapeutic efficacy of specific bacterial strains

varies, potentially due to inter-individual differences in baseline gut

microbial communities (47, 82). Furthermore, clinical protocols

regarding optimal dosing, strain selection, and duration of

interventions are not yet standardized, thereby affecting the

reproducibility and robustness of clinical outcomes.

Given these challenges, future research should prioritize large-

scale, multicenter randomized controlled trials to comprehensively

assess the impact of targeted microbiome interventions on hard

endpoints in DN and to facilitate the development of next-

generation precision microbiome therapeutics (86). In summary,

while microbiota-targeted interventions represent a promising

avenue for DN management, further rigorous clinical validation is

warranted to substantiate their efficacy.
FIGURE 2

Downstream pathological effects, encompassing both renal injury and systemic consequences, involve several key processes. First, an amplification
of inflammation occurs as microbial metabolites, such as lipopolysaccharide (LPS) and trimethylamine N-oxide (TMAO), activate renal-resident
immune cells like macrophages. This activation triggers the release of pro-inflammatory cytokines, including TNF-a and IL-1b. Concurrently, the
NLRP3 inflammasome is activated, promoting renal cell apoptosis and fibrosis. Metabolic imbalances also induce oxidative stress through the
accumulation of reactive oxygen species (ROS), which damages the glomerular filtration barrier and leads to tubular epithelial cell injury and
proteinuria under chronic conditions. These effects create a systemic feedback loop; for instance, a decline in the glomerular filtration rate (GFR)
exacerbates toxin accumulation, which in turn worsens gut dysbiosis. This highlights complex inter- organ crosstalk, such as the kidney-brain axis,
driving disease progression.
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4.2 Mechanistic insights into the role of
high-fiber diets in DN

Emerging evidence highlights the therapeutic role of high-fiber

diets in delaying the progression of DN, primarily through

modulation of GM-derived metabolites such as SCFAs and

restoration of intestinal barrier integrity. The underlying

mechanisms are summarized as follows:
4.2.1 Enhancement of SCFA production
High-fiber diets, particularly those rich in fermentable fibers like

pectin and inulin, are metabolized by colonic microbiota, leading to

increased production of SCFAs such as acetate, propionate,

and butyrate (53, 87, 88). These dietary interventions selectively

enrich SCFA-producing bacteria, including Akkermansia

muciniphila and members of the Bacteroides genus, thereby

optimizing the gut microbial landscape (89, 90). Notably, butyrate

has been demonstrated to improve insulin sensitivity and alleviate

renal fibrosis and inflammatory responses by inhibiting HDACs

(14, 34).
4.2.2 Restoration of intestinal barrier function
SCFAs are crucial for intestinal barrier integrity by

enhancing tight junction protein expression, which decreases

endotoxin translocation, such as LPS, into systemic circulation

(10, 34, 91). They activate GPR41/43, aid regulatory T cell (Treg)

differentiation, and increase anti-inflammatory cytokines

like interleukin-10 (IL-10), thereby reducing systemic

inflammation (92–94). In preclinical models, these effects are

associated with marked decreases in proteinuria and tubular

injury (14, 34, 95).
4.2.3 Modulation of the gut–kidney axis
High-fiber dietary interventions have been shown to rebalance

GM composition, characterized by a reduction in pathogenic

bacteria such as Enterobacter and an increase in beneficial taxa

like Bacteroidetes (1, 3, 5). Through the action of SCFAs, these

interventions further inhibit renal RAS activation and attenuate

oxidative stress in renal tissues (14, 96). Clinical studies corroborate

these findings, demonstrating that high-fiber interventions can

significantly decrease glycemic parameters (e.g., reduction in

HbA1c by 0.99%) and inflammatory markers in patients with DN

(97). Nevertheless, individual variability in gut microbiome

composition warrants personalized optimization of fiber type,

with current evidence suggesting that soluble fibers confer greater

efficacy (98).

In summary, high-fiber diets exert multifaceted renoprotective

effects in DN via the microbiota–SCFA–intestinal barrier axis,

ultimately ameliorating pathological progression. Future

directions should focus on the development of individualized

fiber-based dietary strategies and targeted SCFA delivery

approaches to maximize therapeutic benefit.
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4.3 Regulatory effects of microbiota-
derived metabolites: the renoprotective
role of butyrate

Butyrate, a key short-chain fatty acid derived from gut

microbial fermentation, has shown notable renoprotective effects

in multiple animal models of DKD and related renal injuries (34,

99). Studies have demonstrated that butyrate supplementation can

markedly alleviate glomerular hypertrophy, podocyte injury, and

interstitial fibrosis, as well as improve mitochondrial function and

reduce serum creatinine levels in both diabetic and acute kidney

injury models (100, 101). These results suggest that targeting

microbial metabolites like butyrate may offer novel strategies for

preserving kidney function.

Mechanistic investigations indicate that butyrate exerts its

renoprotective roles via several pathways. It effectively suppresses

renal inflammation and oxidative stress by downregulating pro-

inflammatory mediators, such as TNF-a, and inhibits fibrosis by

modulating TGF-b signaling in renal tubular cells and podocytes

through GPR43 and GPR109A receptors (34, 102). In addition,

butyrate acts as a histone deacetylase inhibitor, promoting

beneficial epigenetic modifications and upregulating protective

genes including Klotho and PGC-1a (100, 103), thereby restoring

mitochondrial homeostasis primarily via the AMPK/PGC-1a
pathway (80, 104).

Furthermore, butyrate reinforces the gut–kidney axis by

enhancing intestinal barrier integrity and attenuating systemic

inflammation, with evidence pointing to a receptor-dependent

mechanism and the need for sustained supplementation to

maintain its benefits (105, 106). In an adenine-induced model of

CKD, butyrate has been shown to attenuate renal fibrosis by

suppressing activation of the NLRP3/STING/NF-kB signaling

pathway (107, 108). Collectively, these findings highlight the

therapeutic potential of butyrate in DKD, supporting further

clinical studies to optimize its application in patient care.
4.4 Exploration of novel targeted therapies

In recent years, increasing attention has been paid to the

interaction between DKD and the GM, leading to the exploration

of novel targeted therapeutic strategies. These strategies, primarily

based on natural compounds and traditional Chinese medicine

interventions, aim to regulate gut microbial homeostasis through

multi-target mechanisms. Such interventions not only help restore

microbial balance but also alleviate systemic inflammation and

metabolic disturbances, ultimately contributing to the delay of

DKD progression (109, 110).

4.4.1 Intervention with natural compounds
4.4.1.1 Intervention with natural compounds

Natural compounds demonstrate significant potential in

modulating the gut microbiome and ameliorating DKD progression,
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primarily by regulating microbial-derived metabolites. Clinical and

preclinical studies consistently report decreased abundance of

probiotic genera Bifidobacterium and Lactobacillus (e.g., L.

johnsonii, L. reuteri, B. animalis) in patients with CKD including

DKD, which correlates with impaired renal function and increased

uremic toxins (111, 112). For instance, plant polysaccharides and

related natural products reshape GM composition, enriching SCFA-

producing bacteria such as Bifidobacterium and Lactobacillus

(35, 113, 114). TCM interventions like Moshen granule and specific

compounds (e.g., barleriside A, 5,6,7,8,3’,4’-hexamethoxyflavone,

Thonningianin A) counteract this dysbiosis by selectively increasing

Lactobacillus/Bifidobacterium abundance, restoring microbial balance

and gut barrier integrity (115, 116). This modulation reduces

accumulation of diverse uremic toxins implicated in DKD

pathogenesis, including:

Phenylacetylglutamine (PAGln): Derived from phenylalanine

metabolism by gut microbes (e.g., Clostridium spp.), PAGln

promotes cardiovascular complications and renal fibrosis via

activation of G-protein-coupled receptors, exacerbating DKD

progression (117).

p-Cresyl glucuronide and PCS: Protein-bound toxins produced

from tyrosine metabolism by Bacteroides and Clostridium. They

induce oxidative stress, endothelial dysfunction, and insulin

resistance, accelerating renal injury (118, 119).

Hippuric acid: Generated from polyphenol metabolism (e.g.,

quercetin, chlorogenic acid), it contributes to tubular damage and

inflammation in diabetic kidneys (119).

These interventions further suppress proteobacteria (e.g.,

Escherichia-Shigella) and reduce LPS release, thereby mitigating

systemic inflammation via NLRP3/ASC/Caspase-1 pathway

inhibition (116). TMAO, a gut-derived metabolite, remains a key

contributor to renal injury in DKD. Elevated TMAO levels correlate

strongly with glomerular filtration rate decline (117, 119). Natural

polyphenols (e.g., resveratrol, curcumin) suppress TMAO

generation by inhibiting microbial trimethylamine (TMA)

production and hepatic flavin monooxygenase activity, thereby

mitigating renal oxidative stress and inflammation (17, 114).

Collectively, TCM-based modulation of the gut-kidney axis

operates through a “microbiota-metabolite-inflammation” cascade (1):

Correction of dysbiosis enriches beneficial taxa (2); Restoration of gut

barrier reduces toxin translocation (3); Downregulation of

inflammatory pathways (e.g., NLRP3, AhR) alleviates renal fibrosis

(120, 121). The multitargeted actions of natural compounds constitute

their primary advantage: they concurrently enhance microbial diversity

(e.g., reducing Enterobacteriaceae while increasing SCFA producers),

directly scavenge uremic toxins, and modulate host immune pathways

(e.g., NLRP3 inflammasome suppression). These findings underscore

microbiota–kidney axis-targeted interventions using natural

compounds as a promising strategy for DKDmanagement (3, 114, 118).

4.4.2 Potential of traditional Chinese medicine
interventions

TCM has demonstrated distinct advantages in the regulation of

GM for the management of DN. Mounting evidence highlights that

TCM interventions target intestinal-derived metabolites (e.g.,
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SCFAs, tryptophan derivatives, and LPS) through microbiota

remodeling, thereby ameliorating gut-kidney axis dysregulation

(116, 122). Owing to its multi-component and multi-target

characteristics, TCM can simultaneously enhance intestinal

barrier integrity, suppress the release of inflammatory mediators,

and attenuate renal injury. Accumulating evidence from clinical and

preclinical studies suggests that the therapeutic effects of TCM

compound prescriptions are primarily mediated by modulation of

gut microbial composition and SCFA metabolism.

Recent studies elucidate that TCM formulas significantly modulate

tryptophan metabolism pathways. For instance, Tang Shen Formula

(TSF) reduces accumulation of uremic toxins (IS and p-CS) by enriching

Lactobacillus and Bifidobacterium, while increasing serum indole-3-

aldehyde (IAld)—an AHR ligand that inhibits renal inflammation and

fibrosis (1, 3). Similarly, Shenyan Kangfu Tablet downregulates gut-

derived TMAO and suppresses NLRP3 inflammasome activation via the

LPS-TLR4 pathway (55). For example, Shenqi Dihuang Decoction has

been shown to increase the abundance of Roseburia in the GM, thereby

promoting the production of SCFAs such as butyrate. This modulation

improves intestinal barrier function, reduces pro-inflammatory

cytokines such as TNF-a and IL-6, and effectively alleviates renal

fibrosis (123, 124). Notably, natural compounds like Thonningianin A

(from Penthorum chinense) ameliorate intestinal barrier impairment by

restoring tight junction proteins (claudin-1, occludin, ZO-1),

subsequently reducing fecal and serum LPS levels and inhibiting renal

NLRP3/ASC/caspase-1 signaling (125). In clinical practice, Huangkui

Capsule has demonstrated efficacy in lowering serum creatinine and

blood urea nitrogen levels. The underlying mechanism is closely related

to the inhibition of gut-derived uremic toxin generation, as well as the

suppression of inflammation, consequently mitigating renal damage

(110, 126). A multicenter trial further confirms that Yi-Shen-Hua-Shi

Granule reduces proteinuria by elevating anti-inflammatory indole-3-

propionic acid (IPA) and decreasing pro-fibrotic kynurenine,

highlighting the role of tryptophan metabolism in DN progression

(116). Qiditangshen Granules, by targeting the GM–SCFA axis and

activating receptors such as GPR43, can inhibit overactivation of the

renin-angiotensin system (RAS), thereby reducing glomerulosclerosis

and tubular injury (123, 126).

The holistic approach of TCM thus addresses the multifaceted

pathophysiology of DN through coordinated regulation of gut

microecology, microbial metabolite profiles (SCFAs, tryptophan

derivatives, LPS), and immune homeostasis (123, 124, 126). Such

interventions not only restore microbial diversity but also attenuate

inflammation and oxidative stress by modulating metabolite-

mediated pathways (e.g., AHR/NF-kB, NLRP3, RAS) (55, 116,

122, 125). Future research should aim to further elucidate the

specific molecular mechanisms through which TCM regulates

GM, with the goal of optimizing clinical interventions. (For

details of relevant clinical TCM studies, see Table 1).
4.5 Potential value of FMT in DN

FMT has demonstrated significant therapeutic potential in the

management of DN by facilitating the reconstruction of a healthy
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gut microbial ecosystem and modulating relevant metabolic and

immune pathways (36, 127). The current evidence is summarized

below from aspects of efficacy in animal models and the progress

and challenges of clinical translation.

4.5.1 Efficacy in animal models
Experimental studies have provided robust evidence that FMT

can improve renal outcomes and restore intestinal microbial

homeostasis in DN models. For instance, in DN animal models

such as 5/6 nephrectomized rats, FMT intervention has been shown

to remodel gut microbial composition, ameliorate dysbiosis, and

attenuate glomerulosclerosis and interstitial fibrosis by regulating

metabolic pathways such as serum amino acid metabolism (128,

129). Similarly, in type 1 diabetes models, FMT improved the

overall metabolic profile through modulation of the gut-metabolic

axis, which indirectly reduced the risk of renal injury (130, 131).

These findings underscore the role of FMT in restoring microbial

diversity and suppressing DN progression, while also providing

mechanistic insights for future investigations (17, 129).

4.5.2 Clinical translation: advances and
challenges

Preliminary clinical data suggest that FMT may delay the

progression of CKD, including diabetes-related CKD, highlighting

its potential as an alternative approach to restore GM balance (132,

133). However, several key obstacles remain to be overcome in

clinical practice:

(1) Safety concerns: The risk of infection associated with FMT

procedures and uncertainty regarding long-term safety profiles

represent major challenges that require careful evaluation and

ongoing surveillance (128, 134). (2) Standardization: The absence

of unified protocols for the preparation and delivery of FMT, such

as microbial capsules, hampers the reproducibility and consistency

of therapeutic outcomes across studies (135, 136). (3) Mechanistic

ambiguity: Immunoregulatory and metabolic benefits observed in

preclinical models need further substantiation, as the causal

pathways and long-term efficacy in humans remain unexplored.

High-quality randomized controlled trials are warranted to address

these gaps (18).

In summary, while FMT holds considerable promise for the

treatment of DN—as substantiated by preclinical evidence—its

broader application requires further optimization of safety,

standardization of protocols, and mechanistic clarification. Future

research combining multi-omics approaches with large-scale

clinical studies will be essential to advance the development of

precise FMT-based interventions for DN management.
5 Current limitations and challenges in
research

5.1 Ambiguity of causal relationships

The ambiguity of causal relationships stands as a central

bottleneck in current research on DN and GM, significantly
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impeding clinical translation. This ambiguity arises from several

layers of complexity.

Firstly, most available evidence is derived from observational

studies, which inherently lack the ability to establish definitive

causal links. For example, cross-sectional designs have reported

alterations in GM abundance among DN patients (such as

fluctuations in specific microbial taxa) (26, 28). However, such

methodologies are inherently limited in clarifying the directionality

of causation or adequately accounting for confounding factors such

as dietary patterns or pharmacotherapy (18). As highlighted in the

literature, “despite emerging evidence supporting an association,

the causal relationship between them hasn’t been clarified yet”,

underscoring that correlational findings alone are insufficient to

define the underlying mechanism of causality (18).

Secondly, the confounding effect of extraneous variables and the

possibility of reverse causality further exacerbate this uncertainty.

Factors such as metabolic status may generate spurious associations

(137), while reverse causality—whereby DN may induce gut

microbial dysbiosis—complicates the interpretation of the

microbiota as either a pathogenic driver or a biomarker (18, 137).

This is exemplified by reverse MR analyses: as reported in the

literature (18), such analyses assessing the impact of DN on GM

“did not identify any significant associations”, suggesting that

observed correlations could be driven by reverse causality rather

than direct causative effects.

Finally, while MR represents a promising tool for disentangling

causality, practical limitations persist. MR leverages genetic variants

(e.g., GM-related SNPs) tominimize confounding (18, 138); however,

its utility is constrained by the strength and heterogeneity of the

instrumental variables. For instance, forward MR analyses have

identified putative causal effects of certain gut microbes (18, 124),

yet reverse MR analyses often yield null results, highlighting ongoing

difficulties in resolving the precise directionality of the relationship. In

summary, such causal ambiguity remains a major limitation

hindering the development of microbiota-targeted therapies in DN,

emphasizing the need to integrate more robust MR approaches for

advanced causal inference.
5.2 Fragmentation of mechanistic studies:
a systemic lack of integration among
metabolic, immune, and barrier pathways

Despite considerable advances in DN research, the mechanistic

understanding remains fragmented, particularly regarding the

integration of metabolic, immune, and barrier pathways. Current

studies predominantly address these axes independently, resulting

in a lack of comprehensive and unified framework for

DN pathogenesis.

Research on metabolic pathways exemplifies this segregation.

While GM-derived metabolites such as pyrroline and glycine-

conjugated bile acids have been causally linked to DN progression

(139), these investigations focus primarily on the microbiota–

metabolite axis without addressing interactions with immune

responses or barrier integrity. Potential synergistic mechanisms
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TABLE 1 Summary of literature on the modulation of gut microbiota by natural compounds and Traditional Chinese Medicine (TCM).

Corresponding
author

Year Study type Sample
size

Intervention
type

Core mechanism Key evidence
source

Pan LM 2024 Review Not Stated Traditional Chinese
Medicine (TCM)

Modulation of gut microbiota Literature review and
summary

Wang Y 2024 Review Not Stated No intervention Gut microbiota dysbiosis, altered
metabolites, immune-inflammation

Literature review and
mechanistic discussion

Li X 2024 Review Not Stated TCM Modulation of gut microbiota,
metabolites, and related signaling
pathways

Literature review and
summary

Tian Z 2023 Bibliometric
Analysis

1009
publications

No intervention No intervention VOSviewer analysis of
literature data

Dong Y 2025 Bibliometric
Analysis

1289
publications

No intervention No intervention CiteSpace & VOSviewer
analysis of literature data

Zhang G 2024 Review with
Evidence
Mapping

139 studies TCM No intervention Summary and analysis of
clinical evidence

Gong YX 2025 Review Not Stated Active components
of TCM

Inhibition of renal tubular epithelial
cell apoptosis

Literature review and
summary

Feng Z 2025 Bibliometric
Analysis

1585
publications

TCM-mediated gut
microbiota
regulation

No intervention CiteSpace & VOSviewer
analysis of literature data

Du J 2024 Bibliometric
Analysis

711
publications

TCM No intervention VOSviewer & CiteSpace
analysis of literature data

Wang Y 2024 Review Not Stated TCM, Gut
microbiota

Gut-lung axis regulation Literature review and
mechanistic discussion

Wu J 2023 Preclinical Study Non-obese
diabetic (NOD)
mice

Abelmoschus
manihot

Modulation of gut microbiota and
circulating metabolites

16S rRNA sequencing,
metabolomics

Chang H 2024 Review Not Stated Chinese herbal
medicine

No intervention Review of clinical evidence
and potential mechanisms

Xue M 2025 Preclinical Study db/db mice Danggui Buxue
decoction

Regulation of autophagy via the
miR-27a/PI3K/AKT pathway

Animal model experiments

Liu Y 2022 Network
Pharmacology

N/A Yishen capsules Multi-target, multi-pathway
regulation

Analysis of network
pharmacology databases and
software

Xu J 2024 Review Not Stated Edible TCM Modulation of gut microbiota
metabolites

Literature review and
summary

Xu D 2024 Review Not Stated TCM Modulation of gut microbiota and
the microbiota-gut-x axis

Literature review and
summary

Han J 2022 Review Not Stated Herbal medicine Modulation of gut microbiota Literature review and
summary

Qin Y 2024 Systematic
Review & Meta-
analysis

30 RCTs (2306
patients)

TCM decoction No intervention Meta-analysis of randomized
controlled trials (RCTs)

Gao S 2024 Preclinical Study db/db mice Jiang Tang San Hao
Formula

Affecting the gut-microbiota-brain
axis

16S rRNA sequencing,
metabolomics, behavioral
tests

Zhang L 2024 Review Not Stated TCM Adjusting gut microbiota to improve
immune imbalance

Literature review and
summary

Chen Y 2023 Review Not Stated TCM Gut microbiota-based therapy
against bacteria

Literature review and
summary

(Continued)
F
rontiers in Endocrinolo
gy
 12
 frontiersin.org

https://doi.org/10.3389/fendo.2025.1661037
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Jiang et al. 10.3389/fendo.2025.1661037
remain largely unexplored (51, 139). Similarly, immunoinflammatory

activation, including NLRP3 inflammasome activation and

macrophage infiltration, represents a well-established driver of DN

(140, 141). However, most studies assess immune factors in isolation,

seldom considering how immune cell dynamics interact with

intestinal or renal barrier disturbances or fluctuations in microbial

metabolites (139, 142). Although gut-kidney axis activation has been

shown to modulate immunity (143), comprehensive elucidation of

how metabolites modulate immune signaling through TLR pathways

leading to barrier dysfunction remains lacking (139, 141). The

investigation of barrier integrity follows a similarly narrow

approach. Impairment of tight junction proteins and resulting

dysfunctions of intestinal and glomerular barriers are hallmarks of

DN (144, 145). Yet current research often fails to dissect how barrier

injury is co-regulated by both microbial metabolites (such as

acylcarnitines) and immune-inflammatory signals (such as NF-kB
activation) (146, 147). For instance, while glomerular barrier damage

is associated with dysregulated endothelial S1pR1 signaling (145) and

certain gut-derived metabolites can restore intestinal barrier function

via the AHR receptor (148), integrated models addressing cross-talk

between barriers in DN are still missing.

This fragmented approach generates significant limitations in

both mechanistic understanding and therapeutic development.

Single-pathway analyses, while facilitating understanding of

specific molecular events—such as brown adipose tissue-derived

NRG4 suppressing podocyte apoptosis through the Akt-GSK3b
pathway (149) —overlook the broader impact of cross-talk among

metabolic, immune, and barrier pathways (150, 151). Consequently,

therapies targeting isolated pathways, such as PI3K-Akt or HIF-1

signaling, often fail to achieve optimal efficacy due to neglect of

feedback and interaction between pathways (152, 153). For

example, while PFKFB3 contributes to glomerular barrier

protection (145), its interactions with microbial metabolic

profiles, including circulating acylcarnitine levels (139), remain

absent from therapeutic considerations.

In summary, the current fragmented approach constrains both

mechanistic insights and identification of effective therapeutic

targets. Comprehensive, multi-dimensional studies integrating

metabolism, immunity, and barrier biology are urgently needed to

clarify DN pathogenesis and guide the development of more

effective interventions.
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5.3 Barriers to clinical translation

The clinical translation of GM-based interventions for DN faces

significant hurdles, primarily arising from the disconnect between

findings in animal models and human clinical realities, as well as the

lack of longitudinal, stage-specific data in disease progression.

These barriers substantially impede the transition from bench

to bedside.

One core challenge lies in the differences between animal and

human GM, which restrict the reproducibility and translatability of

preclinical findings. The GM composition in common animal

models—such as rodents—differs markedly from that of humans,

resulting in inconsistencies in intervention efficacy. Mechanisms

such as short-chain fatty acid metabolism or intestinal barrier

repair, which often demonstrate efficacy in animal studies, may

not be directly reproduced in clinical studies due to these

interspecies differences (154, 155). This limitation raises concerns

regarding the extrapolation of preclinical results to human

disease contexts.

Additionally, there is a conspicuous lack of systematic,

longitudinal data capturing the dynamic shifts of GM throughout

the various stages of DN. Most current studies are cross-sectional in

design, typically comparing diabetic patients to healthy controls,

and fail to longitudinally track changes in GM across clinical stages

—from microalbuminuria to established renal failure (156, 157).

This gap obscures the understanding of how microbial

communities evolve with disease progression and limits the

identification of stage-specific therapeutic targets.

The absence of robust, disease stage-oriented microbial

evolution data hinders the development of tailored intervention

strategies—for example, metabolic modulation in early-stage DN

versus barrier restoration in advanced stages. Consequently, the

true potential of personalized, microbiota-based therapies remains

largely unrealized. The clinical translation workflow is summarized

in Figure 3.
6 Innovation and future directions

With the growing recognition of the GM’s pivotal role in DN,

innovative research is increasingly oriented toward integrating
TABLE 1 Continued

Corresponding
author

Year Study type Sample
size

Intervention
type

Core mechanism Key evidence
source

Tao P 2025 Network
Pharmacology

N/A Gut microbiota
metabolites

Synergistic effects of multi-
component, multi-target interactions

Analysis of databases such as
TCMSP and DrugBank

Yang J 2023 Review Not Stated Gut microbiota
metabolites

No intervention Literature review and
mechanistic discussion

Hui S 2024 Preclinical Study db/db mice Resveratrol Modulation of the gut microbiota-
short-chain fatty acids (SCFAs) axis

16S rRNA sequencing,
targeted metabolomics
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mechanistic insights, multi-omics approaches, and personalized

interventions. The following subsections systematically summarize

key innovations and emerging trends in this field.
6.1 Integration of gut–kidney axis
mechanisms and targeted interventions

At the mechanistic level, recent studies have, for the first time,

systematically linked gut dysbiosis in DN with targeted intervention

strategies. Specifically, current literature has demonstrated that gut

microbial imbalance exacerbates glomerulosclerosis and tubular

injury through both metabolic products (e.g., uremic toxins) and

immune-inflammatory pathways (e.g., activation of Toll-like

receptors) (17, 44). On this basis, targeted interventions aimed at

restoring the gut–kidney axis—such as probiotics and prebiotics—
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may modulate microbial metabolism (e.g., enhancing short-chain

fatty acid synthesis) and improve renal injury biomarkers, thereby

attenuating kidney damage (158, 159).
6.2 Multi-omics research paradigms across
scales

Multi-omics approaches have ushered in a new framework for

dissecting the mechanisms of GM in DN. Metagenomics can reveal

shifts in microbial community structure among DN patients, such

as alterations in the abundance of specific genera (23, 51). However,

coupling with metabolomics is required to delineate the specific

nephrotoxic effects of microbial metabolites like indoxyl sulfate

(79). Moreover, metatranscriptomics allows for the identification of

key microbe–host interaction pathways, including the regulation of
FIGURE 3

Roadmap for translating microbiota- kidney research into clinical applications, with key barriers identified. This schematic outlines a three-tiered
framework for advancing gut-kidney axis research. Left panel highlights translational barriers (red boxes): (i) Animal model limitations (non-human
microbiota complexity; limited probiotic efficacy in renal contexts), (ii) Staging data gaps (predominance of cross- sectional studies; longitudinal data
scarcity), and (iii) Unresolved microbial dynamics (species-specific variations; undefined longitudinal trajectories). Center depicts gut- kidney
anatomical targets. Right vertical axis details progressive research phases: Basic research (multi-omics integration; mechanistic network validation) →
Clinical research (stage- stratified cohorts; individualized interventions) → Application (diagnostic biomarkers; precision therapies). Blue arrows
denote barrier impact on translational stages. Kidney protection seen in animal models using probiotics, antibiotics, or fecal transplants often proves
less effective in human trials. This is partly because animal models inadequately capture the complexity of the human gut- kidney axis and host-
microbe co-evolution, making therapeutic targets identified in animals less reliable for clinical application.
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inflammatory responses via the AhR pathway (18, 160), while

single-cell techniques enable detailed analysis of intestinal

immune cells (e.g., Th17/Treg) and their association with renal

immune infiltration (160, 161). Collectively, integrated multi-omics

approaches hold promise for elucidating cross-scale regulatory

networks linking microbial structure, function, and host

physiology (79, 162).
6.3 Stage-specific and precision
intervention strategies

Strategic interventions must be tailored to distinct DN stages. In

early DN, supplementation with short-chain fatty acid-producing

bacteria (such as Butyricicoccus) or their metabolic products (such

as butyrate) has the potential to improve insulin resistance and

alleviate glomerular hyperfiltration (158, 159). In contrast, late-

stage interventions require the elimination of toxin-producing

bacteria (such as Escherichia species) and blockade of toxin

absorption (44). Nonetheless, major obstacles remain, including

inter-individual variability in response to microbiota-based

therapies due to genetic and dietary factors, as well as incomplete

evidence regarding long-term safety (35, 163).
6.4 Potential of advanced technologies

Frontier technologies offer new avenues for GM-targeted

therapy. Phage therapy can specifically lyse pathogenic bacteria

(such as endotoxin-producing Klebsiella), and animal models have

confirmed its ability to reduce serum LPS levels and proteinuria

(25). Meanwhile, engineered probiotic therapies—where symbiotic

bacteria are modified to express therapeutic molecules such as

antioxidant enzymes—demonstrate potential in locally mitigating

renal oxidative stress (45, 159). Going forward, the development of

synergistic systems (e.g., coordinated phage–engineered bacteria

interventions) may enable dynamic modulation of gut microbial

ecology (25).

In terms of clinical translation, future directions include

stratified and personalized probiotic regimens based on

enterotype (161, 162), incorporation of microbiota-derived

biomarkers (such as fecal butyrate) as efficacy indicators (164),

and the application of artificial intelligence models to integrate

multi-omics data for predictive risk assessment of DN

progression (162).
7 Conclusion

The gut-kidney axis plays a pivotal role in DN pathogenesis

through distinct yet interconnected mechanisms. Gut dysbiosis

drives DN progression via three pathways: metabolic dysfunction

through loss of protective SCFAs and accumulation of nephrotoxic

compounds like indoxyl sulfate; compromised intestinal barrier

integrity leading to endotoxin translocation and systemic
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inflammation; and immune dysregulation affecting Th17/Treg

balance and macrophage polarization. MR studies have validated

specific microbial signatures associated with DN risk, including

protective effects of Bacteroidota and detrimental impacts of

reduced Akkermansia abundance.

Current therapeutic approaches demonstrate promise but

require optimization. Probiotic supplementation and TCM

interventions have shown benefits in improving renal function

markers and restoring gut barrier integrity, yet standardization of

protocols remains a critical challenge. Future research priorities

include elucidating molecular mechanisms linking specific bacterial

strains and their metabolites to renal pathology, integrating multi-

omics approaches for patient stratification, and developing DN-

specific microbial biomarkers for early diagnosis.

Advancing the field necessitates interdisciplinary collaboration

between microbiome researchers, nephrologists, and nutrition

scientists to develop personalized therapeutic strategies. Key

challenges include addressing regional microbiota heterogeneity

and the complexity of host-microbe interactions through large-

scale prospective cohorts and mechanistically driven randomized

controlled trials. As our understanding of the gut-kidney axis

deepens, microbiota-targeted interventions represent a promising

frontier for DN management, offering potential for both prevention

and treatment through precision medicine approaches.
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