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Background: Colorectal cancer (CRC) remains one of the leading causes of

cancer-related mortality worldwide, primarily due to delayed diagnosis. There is

an urgent need for sensitive, noninvasive biomarkers that can facilitate early

detection and improve clinical outcomes.

Methods: In this study, we performed untargeted metabolomic profiling of

serum samples from 715 participants (248 CRC patients and 467 noncancer

controls, NCC) using liquid chromatography-mass spectrometry (LC-MS).

Differential metabolites were identified through statistical filtering and

multivariate analysis, followed by pathway enrichment to elucidate biologically

relevant dysregulations. Subsequently, machine learning algorithms, including

Support Vector Machine (SVM), Random Forest (RF), eXtreme Gradient Boosting

(XGBoost), and Logistic Regression (LR), were applied to construct predictive

models. As a complementary approach, we also profiled cfDNA methylation

patterns in a subset of samples and developed amulti-omics classifier integrating

metabolite and epigenetic features.

Results: We identified 26 CRC-associated serum metabolites, many of which

mapped to dysregulated pathways such as primary bile acid biosynthesis and

taurine/hypotaurine metabolism, suggesting active reprogramming of host-

microbiota metabolic axes in CRC pathogenesis. A metabolomics-based

diagnostic model built using ten selected metabolites demonstrated excellent

discriminatory performance, achieving area under the receiver operaring

characteristic curve (AUROC) of 0.96-0.97 and accuracies up to 92.5% across

multiple machine learning methods. Integration of cell-free DNA (cfDNA)

methylation markers yielded a multi-omics model with slightly enhanced

performance (AUROC=0.98), but the gain over the metabolomics-only model

was modest.
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Conclusion: This study reveals distinct serum metabolic signatures and pathway

disruptions in CRC patients and presents a high-performance, minimally invasive

diagnostic model based solely on metabolomics data. While the integration of

methylation features offers incremental benefit, metabolomics remains the

dominant predictor, underscoring its potential as a standalone platform for

early CRC screening and precision medicine.
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Introduction

Colorectal cancer (CRC) ranks as the third most commonly

diagnosed cancer and the second leading cause of cancer-related

deaths globally, accounting for 9.6% of all cancer cases and 9.3% of

cancer-related deaths worldwide (1). In China, the latest annual cancer

report published by the National Cancer Centre indicates that CRC is

the second most frequently diagnosed cancer and the fourth leading

cause of cancer death in 2022. Trends in incidence and mortality reveal

gender disparities: among women, both incidence and mortality rates

are declining, whereas among men, these rates are on the rise. Overall,

CRC poses a significant threat to public health and imposes a

substantial disease burden, both in China and globally.

Traditional methods for early cancer screening include medical

imaging, genetic testing, and tissue biopsy. These approaches are

often limited by low sensitivity, high cost, and invasiveness. In

addition, the United States Preventive Services Task Force

(USPSTF) recommends several screening tests for colorectal

cancer, including the fecal occult blood test (annually),

multitarget fecal DNA test (every 3 years), colonoscopy (every 10

years), and computed tomographic colonography (every 5 years) (2,

3), which leads to time-consuming and labor-intensive screening,

resulting in low patient compliance. Therefore, identifying more

sensitive and specific biomarkers and developing noninvasive, easy-

to-operate screening methods capable of simultaneously screening

for CRC is essential. These advancements can expand tumor

screening coverage, facilitate early diagnosis and treatment, and

help curb the increasing cancer burden.

In recent years, metabolomics has emerged as a promising

approach for cancer screening, including colorectal cancer (CRC)

(4, 5). This field involves the systematic study of small-molecule

metabolites in biological fluids, cells, and tissues. Research into its

potential applications for discovering cancer biomarkers is rapidly

expanding (6–9). Several studies have reported metabolite-based

signatures associated with CRC (10, 11), however, most suffer from

small sample sizes, lack of independent validation, or limited

integration of advanced computational modeling (12–14).

Moreover, while multi-omics approaches, such as integrating
02
metabolomics with epigenetic profiling, hold promise for

enhancing diagnostic accuracy, the relative contribution of each

modality remains underexplored. In particular, the standalone

diagnostic power of serum metabolomics has yet to be fully

delineated in large, clinic-based diagnostic cohorts using rigorous

machine learning frameworks.

In this study, we aimed to identify serum metabolite signatures

associated with CRC and construct robust diagnostic models using

multiple machine learning algorithms. We further interpreted the

biological relevance of the dysregulated metabolites through

pathway analysis, with a particular focus on host-microbiota

metabolic interactions. Finally, we incorporated cfDNA

methylation markers in a subset of samples to evaluate the

potential benefit of a multi-omics strategy, while maintaining

serum metabolomics as the central diagnostic platform.
Materials and methods

Clinical samples

A total of 715 serum samples were collected from the Zhuhai

People's Hospital (the First Affiliated Hospital of Macau University

of Science and Technology) between 2020 and 2023, including 248

patients diagnosed with CRC and 467 noncancer controls (NCCs)

(Table 1). CRC diagnoses were confirmed histopathologically.

Control participants underwent routine colonoscopy and were

confirmed to be free of malignant or precancerous lesions. All

participants provided informed consent, and the study protocol was

approved by the institutional ethics committee.

Blood samples were collected by venipuncture, and the patient

was required to fast for at least 8 hours but not more than 16 hours,

preferably 12–14 hours. The serum was separated within 2h and

centrifuged at 3000 rpm for 10min at room temperature. The

supernatant was transferred to a centrifuge tube and centrifuged

again at 14,000 rpm for 10min at 4 °C. Serum was obtained from the

supernatant, and the serum samples were frozen and stored at −80 °

C until sample processing.
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Sample preparation for metabolomics

All the serum samples stored at −80 °C were first thawed on ice

before preparation. After the samples were vortexed for 30 s, a 10 mL
aliquot of serum from each sample (including all patients with

tumors and healthy controls) was mixed thoroughly for quality

control (QC). Both the serum and QC samples were extracted at a

volume ratio of 100 mL, and 400 mL of MeOH was added to each

sample to initiate protein precipitation and metabolite extraction.

After being vortexed for 30 s, the mixture was centrifuged at 14,000

rpm for 10min at 4°C. Two hundred microliters of the supernatant

were transferred to new Eppendorf (EP) tubes, and the samples

were subsequently dried on a speed vac for 150min at 37°C and

stored at −80°C. Before UPLC-MS analysis, the dried samples were

redissolved in 50 mL of ultrapure water. The samples were vortexed

for 30 s and subsequently sonicated in a water bath for 30 s,

followed by centrifugation at 14,000 rpm for 10min at 4°C. Finally,

20 mL of the supernatant was collected and analyzed immediately.

The pooled QC sample was injected five times at the beginning of

the analysis to ensure system equilibrium, after which it was

injected every ten samples during serum sample detection to

further monitor system stability.
UPLC-MS experiments

Untargeted LC-MS profile analysis of polar metabolites was

performed on a UPLC system (ACQUITY UPLC I-Class system,

Waters Corp.) coupled with tandem ESI–QTOF mass spectrometry

(Synapt G2-Si, Waters Corp.). A 2 mL sample was injected into the

chromatograph and separated on an ACQUITY UPLC HSS T3 1.8

mm, 2.1× 100mm i.d. column (Waters Corp.). The column

temperature was controlled at 30°C. Mobile phase A was H2O

containing 0.1% formic acid, and mobile phase B was 0.1% formic

acid in CAN. During the entire analysis, the autosampler

temperature was maintained at 4°C to avoid sample degradation.
Frontiers in Endocrinology 03
Two injections were performed for each sample to collect positive

and negative data in full scan mode with a mass range of 50 to m/z

at a resolution of 10,000. The electrospray ionization (EI) capillary

voltages and cone voltages were set as 2.0 kV and 20V, respectively.

The source temperature was 100°C, and the desolvation

temperature was 200°C. The desolvation gas flow rate was 500 L/h.
Metabolic data processing and statistical
analysis

The raw MS data were converted to mzXML format using

MSConvert in the ProteoWizard software package (v3.0.23089) (15)

and processed using the R-based XCMS package (16) for peak

extraction, peak optimization, retention time alignment, feature

formation, feature grouping, aggregation, spectrum extraction,

spectrum aggregation, compound identification, and quantitative

data generation. The following parameters were used: peak width =

c (5, 20), noise = 1000, snthresh = 3, ppm = 20, binSize = 6,

minFraction = 0.4, bw =20. The compound annotations of the

metabolites were matched with the Human Metabolome Database

(HMDB) (17) and the Kyoto Encyclopedia of Genes and Genomes

(KEGG) (18) database by metID (19). The parameters used were

ms1.matchh.ppm = 15, rt. match.tol = 30, threads = 30, column = rp

(20). The ‘metid’ package was used for metabolite identification

based on public databases.Candidates with the highest spectral

similarity to fragmentation patterns from databases (HMDB and

KEGG) were prioritezed. Candidates present in two databases were

given higher priority, reducing reliance on single-database matches.

Annotations consistent with expected adduct patterns (e.g., [M+H]

+, [M+Na]+) were retained, while ambiguous matches were flagged

for manual review. Redundant annotated metabolites are removed

based on Level and score, retaining compounds with the smallest

level and highest similarity score (SS). Before statistical analysis, the

serum metabolomics peak intensity data were log2-transformed.

QC-based robust LOESS signal correction (QC-RLSC) (21) was
TABLE 1 Baseline characteristics of the study participants.

Characteristic
ALL CRC NCC

P value
N=715 N=248 N=467

Gender, No. (%) 0.505

female 325 (45.5) 108 (43.5) 217 (46.5)

male 390 (54.5) 140 (56.5) 250 (53.5)

Age, Mean (SD) 59.5 (10.6) 60.5 (10.9) 58.9 (10.4) 0.065

BMI (kg/m2) 22.8 (2.21) 23.0 (2.30) 22.7 (2.16) 0.077

TNM stage NA

I: 50

NA

II: 71

III: 82

IV: 33

No record: 12
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utilized for data normalization to correct for systematic bias, and

features with relative standard deviations (RSDs) of more than 35%

in the QC sample were filtered out.

After normalization, the data were analyzed using the R package

ropls for multivariate statistical analysis and modeling, including

principal component analysis (PCA) and orthogonal partial least

squares discriminant analysis (OPLS-DA). The quality of the model

was tested by 7-fold cross-validation, and 20 permutation tests

further tested the validity of the model. R2 and Q2 represent the

explanatory and predictive abilities of the model, respectively.

The variable importance for projection (VIP) value denotes the

contribution of the feature peaks to the classification. The

Wilcoxon rank-sum test was used to compare the metabolite

levels between patients with tumors and healthy controls, and the

false discovery rate (FDR) was used for p-value correction. FDR <

0.05 and VIP > 1 were used to screen significantly changed

metabolites. Spearman’s correlation analysis was performed

to analyze the associations between metabolites. Enrichment

pathway analysis was performed using the web-based

MetaboAnalyst 6.0 software.
Screening of endogenous metabolites

Classification was strictly based on annotations from two

authoritative databases: HNDB and MedChemExpress. HMDB’s

“Biological Role” and “Origin” fields served as key references, with

metabolites classified as endogenous if annotated as “endogenous”

(i.e., produced by human cells or resident microbiota) and detected

in “blood” or “plasma” according to the database’s tissue

localization data. For metabolites with limited annotation in

HMDB, MCE’s “Compound Type” classification was utilized,

excluding those explicitly labeled as “exogenous” (e.g., dietary

phytochemicals, pharmaceutical drugs, or environmental

pollutants). Additionally, literature evidence was consulted to

identify the main sources of metabolites.
Methylation experiment

To explore the potential added value of integrating epigenetic

information, cfDNA methylation profiling was conducted on a

subset of 197 samples (68 CRC, 129 NCC). Targeted bisulfite

sequencing was used to detect CRC-associated hypermethylated

loci. cfDNA was isolated from the serum using a Magen cfDNA

extraction kit following the manufacturer’s instructions and then

ligated to a methylation adaptor using an NEBNext Ultra II DNA

library Prep Kit for Illumina from NEB. Adaptor-ligated cfDNA

was 12-to-1 mixed and hybridized with customized probes

(Integrated DNA Technologies) using an xGen hybridization

capture DNA libraries Kit (Integrated DNA Technologies).

Hybridized mixture samples were eluted using the reagents and

steps of the ‘‘Second Elution’’ part of the TruSeq Methyl Capture

EPIC Library Prep Kit (FC-151-1003, Illumina) and then bisulfite

converted using an EZ-96 DNA Methylation-Lightning Mag Prep
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Kit (D5047, ZYMO RESEARCH). Bisulfate-converted samples were

amplified using the reagents and steps of the ‘‘Amplify Enriched

Library’’ section of the TruSeq Methyl Capture EPIC Library Prep

Kit (FC-151-1003, Illumina). The concentration of the prepared

libraries was determined with a Qubit 2.0 fluorometer (Invitrogen,

Life Technologies), and the library quality was assessed by capillary

electrophoresis (Qsep100, Bioptic). The qualified libraries were

sequenced on the Illumina Nova-seq platform (Illumina).
Methylation data processing and statistical
analysis

Features with more than 50% missing values and samples with

more than 20% missing values were filtered out, and then the

median of abundance was used to fill in the missing values. After

data filtering and normalization, the limma function performed a

difference analysis on the normalized data. Benjamini-Hochberg

correction was performed to reduce the bias caused by multiple

tests, and the probes with p-values < 0.05 were filtered. Probes with

Db > 0.1 or Db < -0.1 were considered hypermethylated or

hypomethylated, respectively. The genes corresponding to the

differential probes were annotated using the org.Hs.eg.db R

package with UCSC.hg19 as the reference genome file.
Metabolomic and methylation features
integration

Feature-level integration concatenated filtered metabolomic

and methylation features into a unified matrix. To ensure

compatibility between the two omics layers, composite data were

normalized using M-value transformation for better interpretability

in linear models. The datasets were scaled to zero mean and unit

variance to prevent bias toward higher-magnitude features. The

final integrated feature set was then input into the downstream

diagnostic model.
Construction of machine learning
diagnostic models

In our study, all participants were randomly stratified and

sampled into training and test datasets at a ratio of 7:3. Feature

selection and model construction were performed on the training

set, and hyperparameters were optimized through cross-validation.

Subsequently, validation was carried out on the test set.

Features were selected using the least absolute shrinkage and

selection operator (LASSO) and random forest (RF) algorithms. We

performed LASSO regression on the training dataset to select the

features with nonzero coefficients as a small number of features

capable of identifying patients with tumors based on the average

misclassification error of 10 random cross-validations (according to

default settings). Then, the RF algorithm was used to calculate the

relation importance of individual differential features, and the
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differential features were rounded off by performing 5-fold cross-

validation five times (according to default settings). Finally, a Venn

diagram was used to identify the common features. LASSO

regression and RF modeling were implemented using the R

packages ‘glmnet’ and ‘randomForest’, respectively.

Following feature acquisition, different machine learning

methods, including support vector machine (SVM), RF, eXtreme

Gradient Boosting (XGBoost), and logistic regression (LR)

algorithms, were employed to create a model that could

differentiate between cancer and noncancer individuals. The R

packages ‘e1071’, ‘randomForest’, ‘xgboost’, and ‘caTools’ were

utilized to implement SVM, RF, XGBoost, and LR, respectively.

The models were trained with hyper-parameters tuned by 5-fold

cross-validations. The final models were validated on the test set. To

address potential biases in the optimization process that might arise

from the specific splits employed, we replicated the above-described

procedure five times, each time using a distinct splitting seed. This

approach yielded five alternative optimized models to evaluate the

initial model to ensure robustness. Ultimately, the efficacy of the
Frontiers in Endocrinology 05
four models was evaluated in test sets by AUROC, area under the

precision–recall curve (AUPRC), sensitivity, specificity, accuracy,

precision, recall and F1 score.
Results

Study overview

The overall workflow of this study and participant recruitment

information are illustrated in Figure 1. A total of 715 participants

were included in this study, comprising 248 CRC patients and 467

NCCs. The baseline characteristics of the study participants were

summarized in Table 1. No statistical differences in gender, age, and

BMI among the two groups (p > 0.05). The patients consisted of 50

stage I, 71 stage II, 82 stage III, 33 stage IV, and 12 unidentified stage

(Table 1). Serum samples were collected and subjected to

untargeted metabolomic profiling using LC-MS. Based on

rigorous quality control and statistical filtering, differential
FIGURE 1

Overview of the research design. Serum samples from CRC patients and NCC individuals were collected and subjected to untargeted metabolomics.
Machine learning algorithms were used to determine diagnostic biomarkers for CRC. A multi-omics model based on metabolomics was constructed
to enhance the performance of the diagnostic model. This figure was created with BioGDP.com (https://BioGDP.com).
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metabolites between CRC patients and noncancer controls (NCCs)

were identified and functionally annotated through pathway

enrichment analysis. To assess their diagnostic potential, we

applied multiple machine learning algorithms to construct

predictive models using a selected panel of metabolites. In a

subset of 197 participants, cfDNA methylation data were further

integrated to evaluate the added value of a multi-omics

classification strategy.
Identification of differential serum
metabolites in CRC

To characterize metabolic reprogramming associated with

colorectal cancer, untargeted serum metabolomic profiling was

performed on samples from CRC patients and NCCs. Following

raw data conversion to mzXML format, preprocessing was carried

out using XCMS, including peak detection, retention time

correction, outlier removal, and imputation of missing values. A

total of 4,030 ion features were identified in serum positive
Frontiers in Endocrinology 06
electrospray ionization (ESI+), while 674 features were identified

in serum negative electrospray ionization (ESI−). Additionally,

putative features were identified based on the Human

Metabolome Database (HMDB) and KEGG, resulting in 2,793

annotated metabolites in ESI+ and 407 in ESI− mode.

Univariate analysis using the Wilcoxon rank-sum test and fold

change (FC) filtering was performed across all identified

metabolites. In parallel, multivariate modeling with orthogonal

partial least squares discriminant analysis (OPLS-DA) revealed

clear separation between CRC and NCC samples (Figure 2A).

The OPLS-DA model demonstrated strong performance with R²

= 0.932 and Q² = 0.764, and permutation testing confirmed the

absence of overfitting (Supplementary Figure 1). These results

indicated robust global metabolic differences between the

two groups.

A total of 75 metabolites were significantly altered in CRC (FDR

< 0.05 and VIP > 1) (Supplementary Table 1), among which 65 were

upregulated (log2FC > 1) and 10 were downregulated (log2FC < –1),

as shown in the volcano plot (Figure 2B). Metabolite classification

includes benzenoids: 8, homogeneous non-metal compounds: 2,
FIGURE 2

Metabolic characteristics of patients with CRC. (A) OPLS-DA score plot of metabolomic data from CRC (blue) and NCC (purple) samples. (B) Volcano
plot of the detected metabolites in the serum of patients with CRC patients and NCC. Significantly differentially abundant metabolites are colored in
red (upregulated) and blue (downregulated), and the others are colored in gray. A two-sided Wilcoxon rank sum test followed by the Benjamini–
Hochberg (BH) multiple comparisons test was performed with FDR < 0.05, log2FC > 1 or log2FC < -1, and VIP > 1. (C) Correlations between 26
differentially abundant metabolites. The color represents Spearman’s correlation. Red indicates a positive correlation, and blue indicates a negative
correlation. ‘×’ indicates an insignificant correlation. (D) KEGG metabolic pathways enriched with significantly differentially abundant metabolites
between patients with CRC patients and NCC.
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lipids and lipid-like molecules: 20, nucleosides, nucleotides, and

analogues: 4, organic acids and derivatives: 10, organic nitrogen

compounds: 2, organic oxygen compounds: 5, Organic Polymers: 1,

Organic sal ts : 1 , organoheterocycl ic compounds : 16,

Phenylpropanoids and polyketides: 5. To identify cancer-specific

endogenous markers, we excluded exogenous metabolites, such as

dietary components and drug metabolites, resulting in a refined

panel of 26 differentially abundant endogenous metabolites

(Supplementary Table 2).

To explore their interrelationships, Spearman correlation

analysis was performed (Figure 2C), revealing extensive co-

regulation among several metabolites. Notably, lipoyl-AMP

(HMDB0059635), a precursor involved in lysine lipoylation, a

rare but evolutionarily conserved post-translational modification,

was significantly upregulated. In mammals, only four core

metabolic enzymes undergo lipoylation, and dysregulation of

these enzymes has been implicated in various metabolic disorders.

While the role of lipoyl-AMP in cancer remains unclear, its

involvement in central energy pathways highlights its potential

clinical relevance (22).

Pathway enrichment analysis based on KEGG annotations

further revealed that several dysregulated metabolites were

enriched in biologically significant pathways, including primary

bile acid biosynthesis and taurine and hypotaurine metabolism

(Figure 2D). These pathways are known to be modulated by the

intestinal microbiota and play pivotal roles in CRC pathogenesis

(23). In particular, taurocholic acid and its derivatives may alter

microbial composition and promote the production of genotoxic

substances such as hydrogen sulfide and deoxycholic acid (24).

These findings underscore the close interplay between host

metabolism and microbiota-derived metabolites in colorectal

cancer development and support the translational value of these

metabolic alterations as potential diagnostic biomarkers.
Metabolomic biomarker panels enable CRC
patients diagnosis

To optimize the diagnostic utility of serum metabolites, we

applied feature selection methods to reduce redundancy among the

26 differentially abundant metabolites. Random Forest (RF)

importance ranking identified 11 top-ranked metabolites

(Supplementary Figure 2A), while Least Absolute Shrinkage and

Selection Operator (LASSO) regression identified 21 metabolites

with minimal binomial deviance (Supplementary Figure 2B). The

intersection of both methods yielded 10 candidate biomarkers for

model construction (Supplementary Figure 2C), including sulfate,

ub iqu inone -1 , deoxycho l i c a c id g l y c ine con juga t e ,

demethylphylloquinone, 3-(3,5-diiodo-4-hydroxyphenyl)lactate,

vitamin K1, O-decanoyl-L-carnitine, sedoheptulose 1,7-

bisphosphate, CE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)), and lipoyl-AMP

(Supplementary Table 3).

To evaluate the diagnostic performance of these metabolites, we

constructed binary classification models using both linear (logistic
Frontiers in Endocrinology 07
regression, LR) and nonlinear algorithms, including support vector

machine (SVM), RF, and eXtreme Gradient Boosting (XGBoost).

All samples were randomly split into a training set (70%) and a test

set (30%), and the hyperparameters were selected based on tenfold

cross-validation on the training set. Evaluation metrics included

area under the receiver operating characteristic curve (AUROC),

sensitivity, specificity, and overall accuracy (Figure 3). Compared to

SVM (Figures 3A–C) and LR (Figures 3J–L) models, the RF (Figures

3D–F) and XGBoost (Figures 3G–I) models achieved better

predictive performance. In the test cohort (74 CRC, 140 NCC),

the RF model achieved robust performance, with an AUROC of

0.97, sensitivity of 83.78%, and specificity of 94.29% (Figures 3E, F).

Similarly, the XGBoost model achieved an AUROC of 0.96 in the

test set, with 89.19% sensitivity and 95.71% specificity (Figures 3H,

I). These results demonstrate that the selected serum metabolite

panel enables accurate discrimination between CRC patients and

healthy controls, supporting its potential for noninvasive clinical

screening applications. The results of 5 models, obtained through

setting different seeds, are consistent with our initial model, which

we ensure the robustness of the model (Supplementary Table 4).

In addition, we conducted additional analysis to evaluate

whether the model distinguishes Stage I CRC from controls. The

AUROC of SVM, RF, XGBoost and LR models is 0.84 (95% CI:

0.73,0.95), 0.87 (95% CI: 0.80, 0.94), 0.95 (95% CI: 0.88, 1.00) and

0.79 (95% CI: 0.66, 0.93), respectively, with low sensitivity and

AUPRC (Supplementary Figure 3). Because of the number of Stage I

CRC cases in our current dataset is limited, which may introduce

variability and limit the generalizability of these findings. These

results should be provided as preliminary evidence of the model’s

potential in early-stage detection.
Develop a multimodal model based on
metabolomics data to enhance predictive
performance

To investigate whether DNA methylation features could

complement metabolomic biomarkers and further improve

diagnostic accuracy, we performed targeted cfDNA methylation

profiling in a subset of participants (CRC, n = 68; NCC, n = 129)

(Figure 4A, Table 2). Among the 3,816 high-quality CpG probes

retained after preprocessing, 426 sites (11.16%) were found to be

differentially methylated between CRC patients and controls (FDR

< 0.05), including 110 hypermethylated (log2FC > 0.1) and 316

hypomethylated sites (log2FC < –0.1) (Figure 4B, Supplementary

Table 5). Chromosomal distribution analysis revealed enrichment

of differentially methylated CpG sites (DMCs) on chromosome 8,

while relatively few were observed on chromosome 18 (Figure 4C).

Given the regulatory importance of promoter methylation in gene

expression, we focused our downstream analysis on DMCs located

within promoter regions (Supplementary Table 6).

Unsupervised hierarchical clustering of these promoter DMCs

effectively discriminated CRC patients from controls (Figure 4D),

suggesting their potential diagnostic utility. To identify a robust
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diagnostic methylation panel, we applied RF and LASSO regression

to the training cohort (n = 138), resulting in the selection of 11 high-

priority DMCs (Supplementary Figures 2D-F, Supplementary

Table 7). Using these 11 features, we built classification models

with SVM, RF, XGBoost, and LR algorithms (Figure 5). In the

training cohort (48CRC, 90NCC), the sensitivity of SVM and LR

models is 83.33%, with AUROC values of 0.993 and 0.96,

respectively (Figures 5A, C, J, L). However, both RF and XGBoost

models achieved 100% sensitivity and excellent AUROC values

(Figures 5D, G, F, I). In the independent test cohort (20 CRC and 39

non-cancer controls), the SVM model achieved the highest

sensitivity, reaching 85% (Figure 5B). Although the sensitivity of

the RF and XGBoost models decreased to 75% and 80%,
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respectively, both maintained high specificity (Figures 5E, H). “In

contrast, the Logistic Regression (LR) model demonstrated both

sensitivity and specificity below 80% (Figure 5K). These results

confirm the diagnostic relevance of cfDNA methylation markers

but also highlight limitations in sensitivity, likely due to the smaller

sample size and biological heterogeneity.

To evaluate the potential benefit of combining modalities, we

next integrated the selected 10 serum metabolites with the 11

methylation markers to construct a multi-omics classifier,

denoted as META&METHY. For benchmarking, we also retained

the metabolomics-only (META) and methylation-only (METHY)

models. Using four machine learning algorithms, RF, SVM,

XGBoost, and LR, we systematically compared the performance
FIGURE 3

Machine learning-derived diagnostic model based on serum metabolome for CRC diagnosis. (A–C) Confusion tables and ROC curves of the SVM
diagnostic model in the training (A) and testing (B) datasets. (D–F) Confusion tables and ROC curves of the RF diagnostic model in the training (D)
and testing (E) datasets. (G–I) Confusion tables and ROC curves of the XGBoost diagnostic model in the training (G) and testing (H) datasets. (J–L)
Confusion tables and ROC curves of the LR diagnostic model in the training (J) and testing (L) datasets.
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of single-omics and multi-omics classifiers. As shown in Figure 6A

and Supplementary Table 7, the META&METHY model achieved

the highest diagnostic performance, with AUROCs of 0.98, AUPRC

of 0.97 and 100% sensitivity and precision in the test set when using

either the RF or XGBoost classifiers. F1 score comparisons further

demonstrated the superiority of the META&METHY model over

both the META and METHY models (Figure 6B). Notably, the

metabolomics-only models consistently outperformed the
Frontiers in Endocrinology 09
methylation-only models, with AUROCs ranging from 0.87 to

0.97 versus 0.84 to 0.88, respectively (Supplementary Table 8).

These findings suggest that while methylation features provide

valuable supplementary information, serum metabolites are the

dominant contributors to model performance.

In summary, the integration of cfDNA methylation with serum

metabolomics modestly enhances predictive power, particularly in

terms of sensitivity and classification confidence. However, the high
FIGURE 4

CRC-specific differential methylation sites as diagnostic biomarkers. (A) Cell-free DNA (cfDNA) was isolated from serum samples to perform
methylation profiling, enabling the identification of differentially methylated sites. Subsequently, epigenetic markers and previously characterized
differential metabolites were integrated to develop multi-omics diagnostic models. (B) Volcano plot of the methylation sites in the serum of CRC
patients and NCC. (C) Proportions of differential CpG sites in different chromosomes. (D) Unsupervised hierarchical clustering of 83 methylation
markers in promoter regions. Figure A was created with BioGDP.com (https://BioGDP.com).
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performance of metabolomics-based models alone underscores

their potential as a standalone, noninvasive diagnostic tool for

colorectal cancer. Future studies with expanded cohorts are

warranted to further validate and optimize this multi-omics

approach for clinical application.
Discussion

In this study, we conducted a large-scale investigation involving

715 participants to explore serum metabolic alterations associated

with colorectal cancer (CRC) and to identify noninvasive

biomarkers for early detection. Using untargeted metabolomics

coupled with high-resolution LC-MS, we identified 75 distinct

metabolic signatures that differentiated CRC patients from

noncancer controls (NCC). Through a comparative analysis with

the metabolomic biomarkers reported in Yu’s 2024 study (5), we

noted that, despite the identification of distinct metabolite entities

in the two studies, both cohorts exhibited analogous alterations in

key metabolic categories, including sulfates, histidine derivatives,

bile acids, and lipids. These observations underscore the existence of

shared metabolic reprogramming pathways integral to the

pathogenesis of colorectal cancer, thereby providing a robust

foundation for subsequent mechanistic investigations.

Feature selection and machine learning-based modeling

enabled the construction of a robust diagnostic classifier based on

10 key metabolites. These metabolites play an important role in the

occurrence and development of cancer. Ubiquinone plays a pivotal

role in modulating mitochondrial oxidative phosphorylation

(OXPHOS) activation and reactive oxygen species (ROS)

generation. It can facilitate the progression of CRC by activating

the PI3K/AKT signaling pathway in a ROS-dependent manner (25,

26). Demethylphylloquinone is a late biosynthetic intermediate of

vitamin K1 (27). Recent research has unveiled novel functions of

vitamin K within cancer cells, encompassing the activation of the

steroid and xenobiotic receptor (SXR), as well as the modulation of

oxidative stress responses, apoptotic pathways, and autophagic

processes (28). Lipoyl-AMP is essential for the lipoylation
Frontiers in Endocrinology 10
reaction which is a rare but highly conserved post-translational

modification of lysine. Only four polymer-metabolizing enzymes

are known to undergo lipid acylation in mammals, and these

proteins are major constituents of core metabolism. Dysregulation

of these proteins is associated with a variety of human metabolic

disorders. Thus lipoyl-AMP is strongly implicated in the

maintenance of health and the development of disease, although

the exact mechanisms remain to be elucidated (29).

In a subset of participants, we further incorporated cfDNA

methylation data to build an integrated multi-omics diagnostic

model. While both single-omics and multi-omics models

demonstrated high diagnostic accuracy, the metabolomics-based

models consistently outperformed methylation-only models,

highlighting the central role of metabolic alterations in

CRC detection.

CRC remains a major global health challenge, and patient

outcomes are strongly influenced by the stage at diagnosis.

Traditional diagnostic methods such as colonoscopy, although

accurate, are invasive and often poorly accepted by patients.

Liquid biopsy has emerged as a promising alternative, and recent

studies have focused on circulating nucleic acids and proteins as

diagnostic biomarkers (30–33). However, metabolomics remains

underutilized despite its unique advantages. Our study reinforces

the value of serum metabolites as clinically accessible biomarkers

for CRC. Compared to proteomic or genomic approaches,

metabolomics offers several advantages, including relatively low

cost, simpler sample preparation, and greater patient compliance

due to its noninvasive nature.

To translate these metabolomic insights into practical

diagnostic tools, we applied machine learning algorithms, RF,

XGBoost, SVM, and LR, to build predictive models. The

combination of RF and LASSO was used to reduce feature

dimensionality and eliminate noise. Among the four classifiers

tested, RF and XGBoost consistently exhibited the highest

performance across training and test datasets, achieving AUROCs

up to 0.97 in independent validation. These results support the

utility of metabolomics for developing accurate, reproducible, and

interpretable models for CRC detection.
TABLE 2 Baseline characteristics of participants in methylation testing.

Characteristic
ALL CRC NCC

P value
N=197 N=68 N=129

Gender, No. (%) 0.077

female 85 (43.1%) 23 (33.8%) 62 (48.1%)

male 112 (56.9%) 45 (66.2%) 67 (51.9%)

Age, Mean (SD) 59.1 (10.7) 60.9 (11.5) 58.2 (10.1) 0.107

BMI (kg/m2) 23.0 (2.13) 23.1 (2.20) 23.0 (2.10) 0.778

TNM stage NA

I: 12

NA
II: 21

III: 30

IV: 5
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In addition to evaluating the metabolomics-derived models, we

explored whether cfDNA methylation data could provide

complementary diagnostic information. A panel of 11

differentially methylated CpG sites was identified, and models

based solely on methylation features showed moderate

performance. However, when integrated with metabolite features

in a multi-omics model (META&METHY), predictive performance

was further enhanced, achieving an AUROC of 0.98 (95% CI: 0.95,

1.00) and high precision in the test set. While these findings suggest

that DNA methylation may contribute additional information, our

data clearly demonstrate that serum metabolomics remains the
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dominant contributor to classification accuracy, and may suffice as

a standalone diagnostic modality in many clinical scenarios.

Despite the promising results, we acknowledge several

limitations. First, although this study includes a relatively large

overall cohort, the subset used for multi-omics analysis remains

limited. We fully recognize that reliance on a single clinical site

may limit the generalizability of our findings due to inherent

demographic, geographic, or procedural variations. We will recruit

participants from different geographical and socio-economic

backgrounds, standardize metabolomics analysis plans for different

locations to minimize technical differences, and perform stratified
FIGURE 5

Machine learning-derived diagnostic model based on differential methylation sites for GC diagnosis. (A-C) Confusion tables and ROC curves of the
SVM diagnostic model in the training (A) and testing (B) datasets. (D–F) Confusion tables and ROC curves of the RF diagnostic model in the training
(D) and testing (E) datasets. (G–I) Confusion tables and ROC curves of the XGBoost diagnostic model in the training (G) and testing (H) datasets. (J–
L) Confusion tables and ROC curves of the LR diagnostic model in the training (J) and testing (L) datasets.
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analysis to evaluate whether the observed metabolic changes are

consistent across subgroups (e.g. by age, gender, or cancer stage). By

conducting this multi-center analysis, we anticipate strengthening the

evidence for the generalizability of our observations and addressing

potential sampling biases inherent in the initial single-center design.

Second, to enable clinical application, future work will focus on

functional studies (e.g., cell/animal models) to elucidate the roles of

poorly characterized metabolites in CRC. Targeted quantification of

key metabolites using isotope-labeled standards in multicenter

cohorts, establishing clinical thresholds and reference ranges.

Validate assay performance (sensitivity, specificity) in independent

cohorts. Assess cost-effectiveness and scalability compared to existing

CRC screening methods (e.g., colonoscopy). Third, while our study

incorporated both metabolomic and methylation data for diagnostic

modeling, their mechanistic interactions in CRC biology were only

briefly explored and merit more in-depth investigation in future

studies. Elucidating the crosstalk between these molecular layers may

offer deeper insights into tumor biology and identify therapeutic

targets. Fourth, although our cohort reflects clinical patients

undergoing diagnostic evaluation for CRC, its CRC prevalence

(34.7%) exceeds that of asymptomatic screening populations (<1%).

Therefore, future validation in large asymptomatic cohorts is required

to confirm its utility in screening settings. Lastly, potential

confounding factors such as diet, medication, and lifestyle were not

fully controlled and warrant further investigation.
Conclusion

In summary, we conducted a comprehensive serum metabolomics

study to identify diagnostic biomarkers for colorectal cancer. Our

findings demonstrate significant metabolic dysregulation in CRC

patients and highlight a panel of metabolites with strong diagnostic

potential. Machine learning-based models built on these features

exhibited high accuracy, sensitivity, and specificity. The integration of

DNA methylation data provided additional value, although the

metabolomics signature alone retained superior performance. These

results support the clinical utility of metabolomics as a noninvasive,
Frontiers in Endocrinology 12
cost-effective liquid biopsy tool for CRC screening and lay the

foundation for future translational applications through targeted

validation in large, multicenter studies.
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