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Background: Colorectal cancer (CRC) remains one of the leading causes of
cancer-related mortality worldwide, primarily due to delayed diagnosis. There is
an urgent need for sensitive, noninvasive biomarkers that can facilitate early
detection and improve clinical outcomes.

Methods: In this study, we performed untargeted metabolomic profiling of
serum samples from 715 participants (248 CRC patients and 467 noncancer
controls, NCC) using liquid chromatography-mass spectrometry (LC-MS).
Differential metabolites were identified through statistical filtering and
multivariate analysis, followed by pathway enrichment to elucidate biologically
relevant dysregulations. Subsequently, machine learning algorithms, including
Support Vector Machine (SVM), Random Forest (RF), eXtreme Gradient Boosting
(XGBoost), and Logistic Regression (LR), were applied to construct predictive
models. As a complementary approach, we also profiled cfDNA methylation
patterns in a subset of samples and developed a multi-omics classifier integrating
metabolite and epigenetic features.

Results: We identified 26 CRC-associated serum metabolites, many of which
mapped to dysregulated pathways such as primary bile acid biosynthesis and
taurine/hypotaurine metabolism, suggesting active reprogramming of host-
microbiota metabolic axes in CRC pathogenesis. A metabolomics-based
diagnostic model built using ten selected metabolites demonstrated excellent
discriminatory performance, achieving area under the receiver operaring
characteristic curve (AUROC) of 0.96-0.97 and accuracies up to 92.5% across
multiple machine learning methods. Integration of cell-free DNA (cfDNA)
methylation markers yielded a multi-omics model with slightly enhanced
performance (AUROC=0.98), but the gain over the metabolomics-only model
was modest.
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Conclusion: This study reveals distinct serum metabolic signatures and pathway
disruptions in CRC patients and presents a high-performance, minimally invasive
diagnostic model based solely on metabolomics data. While the integration of
methylation features offers incremental benefit, metabolomics remains the
dominant predictor, underscoring its potential as a standalone platform for
early CRC screening and precision medicine.

colorectal cancer, metabolomics, biomarker, machine learning, diagnostic model

Introduction

Colorectal cancer (CRC) ranks as the third most commonly
diagnosed cancer and the second leading cause of cancer-related
deaths globally, accounting for 9.6% of all cancer cases and 9.3% of
cancer-related deaths worldwide (1). In China, the latest annual cancer
report published by the National Cancer Centre indicates that CRC is
the second most frequently diagnosed cancer and the fourth leading
cause of cancer death in 2022. Trends in incidence and mortality reveal
gender disparities: among women, both incidence and mortality rates
are declining, whereas among men, these rates are on the rise. Overall,
CRC poses a significant threat to public health and imposes a
substantial disease burden, both in China and globally.

Traditional methods for early cancer screening include medical
imaging, genetic testing, and tissue biopsy. These approaches are
often limited by low sensitivity, high cost, and invasiveness. In
addition, the United States Preventive Services Task Force
(USPSTF) recommends several screening tests for colorectal
cancer, including the fecal occult blood test (annually),
multitarget fecal DNA test (every 3 years), colonoscopy (every 10
years), and computed tomographic colonography (every 5 years) (2,
3), which leads to time-consuming and labor-intensive screening,
resulting in low patient compliance. Therefore, identifying more
sensitive and specific biomarkers and developing noninvasive, easy-
to-operate screening methods capable of simultaneously screening
for CRC is essential. These advancements can expand tumor
screening coverage, facilitate early diagnosis and treatment, and
help curb the increasing cancer burden.

In recent years, metabolomics has emerged as a promising
approach for cancer screening, including colorectal cancer (CRC)
(4, 5). This field involves the systematic study of small-molecule
metabolites in biological fluids, cells, and tissues. Research into its
potential applications for discovering cancer biomarkers is rapidly
expanding (6-9). Several studies have reported metabolite-based
signatures associated with CRC (10, 11), however, most suffer from
small sample sizes, lack of independent validation, or limited
integration of advanced computational modeling (12-14).
Moreover, while multi-omics approaches, such as integrating
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metabolomics with epigenetic profiling, hold promise for
enhancing diagnostic accuracy, the relative contribution of each
modality remains underexplored. In particular, the standalone
diagnostic power of serum metabolomics has yet to be fully
delineated in large, clinic-based diagnostic cohorts using rigorous
machine learning frameworks.

In this study, we aimed to identify serum metabolite signatures
associated with CRC and construct robust diagnostic models using
multiple machine learning algorithms. We further interpreted the
biological relevance of the dysregulated metabolites through
pathway analysis, with a particular focus on host-microbiota
metabolic interactions. Finally, we incorporated ¢fDNA
methylation markers in a subset of samples to evaluate the
potential benefit of a multi-omics strategy, while maintaining
serum metabolomics as the central diagnostic platform.

Materials and methods
Clinical samples

A total of 715 serum samples were collected from the Zhuhai
People's Hospital (the First Affiliated Hospital of Macau University
of Science and Technology) between 2020 and 2023, including 248
patients diagnosed with CRC and 467 noncancer controls (NCCs)
(Table 1). CRC diagnoses were confirmed histopathologically.
Control participants underwent routine colonoscopy and were
confirmed to be free of malignant or precancerous lesions. All
participants provided informed consent, and the study protocol was
approved by the institutional ethics committee.

Blood samples were collected by venipuncture, and the patient
was required to fast for at least 8 hours but not more than 16 hours,
preferably 12-14 hours. The serum was separated within 2h and
centrifuged at 3000 rpm for 10min at room temperature. The
supernatant was transferred to a centrifuge tube and centrifuged
again at 14,000 rpm for 10min at 4 °C. Serum was obtained from the
supernatant, and the serum samples were frozen and stored at —80 °
C until sample processing.
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TABLE 1 Baseline characteristics of the study participants.

10.3389/fendo.2025.1663938

Characteristic P value
Gender, No. (%) 0.505
female 325 (45.5) 108 (43.5) 217 (46.5)
male 390 (54.5) 140 (56.5) 250 (53.5)

Age, Mean (SD) 59.5 (10.6) 60.5 (10.9) 58.9 (10.4) 0.065
BMI (kg/m?) 228 (221) 23.0 (2.30) 227 (2.16) 0.077
I: 50
II: 71
TNM stage NA I1I: 82 NA

IV: 33
No record: 12

Sample preparation for metabolomics

All the serum samples stored at —80 °C were first thawed on ice
before preparation. After the samples were vortexed for 30 s,a 10 UL
aliquot of serum from each sample (including all patients with
tumors and healthy controls) was mixed thoroughly for quality
control (QC). Both the serum and QC samples were extracted at a
volume ratio of 100 pL, and 400 puL of MeOH was added to each
sample to initiate protein precipitation and metabolite extraction.
After being vortexed for 30 s, the mixture was centrifuged at 14,000
rpm for 10min at 4°C. Two hundred microliters of the supernatant
were transferred to new Eppendorf (EP) tubes, and the samples
were subsequently dried on a speed vac for 150min at 37°C and
stored at —80°C. Before UPLC-MS analysis, the dried samples were
redissolved in 50 UL of ultrapure water. The samples were vortexed
for 30 s and subsequently sonicated in a water bath for 30 s,
followed by centrifugation at 14,000 rpm for 10min at 4°C. Finally,
20 uL of the supernatant was collected and analyzed immediately.
The pooled QC sample was injected five times at the beginning of
the analysis to ensure system equilibrium, after which it was
injected every ten samples during serum sample detection to
further monitor system stability.

UPLC-MS experiments

Untargeted LC-MS profile analysis of polar metabolites was
performed on a UPLC system (ACQUITY UPLC I-Class system,
Waters Corp.) coupled with tandem ESI-QTOF mass spectrometry
(Synapt G2-Si, Waters Corp.). A 2 pL sample was injected into the
chromatograph and separated on an ACQUITY UPLC HSS T3 1.8
pm, 2.1x 100mm i.d. column (Waters Corp.). The column
temperature was controlled at 30°C. Mobile phase A was H,O
containing 0.1% formic acid, and mobile phase B was 0.1% formic
acid in CAN. During the entire analysis, the autosampler
temperature was maintained at 4°C to avoid sample degradation.
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Two injections were performed for each sample to collect positive
and negative data in full scan mode with a mass range of 50 to m/z
at a resolution of 10,000. The electrospray ionization (EI) capillary
voltages and cone voltages were set as 2.0 kV and 20V, respectively.
The source temperature was 100°C, and the desolvation
temperature was 200°C. The desolvation gas flow rate was 500 L/h.

Metabolic data processing and statistical
analysis

The raw MS data were converted to mzXML format using
MSConvert in the ProteoWizard software package (v3.0.23089) (15)
and processed using the R-based XCMS package (16) for peak
extraction, peak optimization, retention time alignment, feature
formation, feature grouping, aggregation, spectrum extraction,
spectrum aggregation, compound identification, and quantitative
data generation. The following parameters were used: peak width =
¢ (5, 20), noise = 1000, snthresh = 3, ppm = 20, binSize = 6,
minFraction = 0.4, bw =20. The compound annotations of the
metabolites were matched with the Human Metabolome Database
(HMDB) (17) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (18) database by metID (19). The parameters used were
msl.matchh.ppm = 15, rt. match.tol = 30, threads = 30, column = rp
(20). The ‘metid’ package was used for metabolite identification
based on public databases.Candidates with the highest spectral
similarity to fragmentation patterns from databases (HMDB and
KEGG) were prioritezed. Candidates present in two databases were
given higher priority, reducing reliance on single-database matches.
Annotations consistent with expected adduct patterns (e.g., [M+H]
+, [M+Na]+) were retained, while ambiguous matches were flagged
for manual review. Redundant annotated metabolites are removed
based on Level and score, retaining compounds with the smallest
level and highest similarity score (SS). Before statistical analysis, the
serum metabolomics peak intensity data were log2-transformed.
QC-based robust LOESS signal correction (QC-RLSC) (21) was
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utilized for data normalization to correct for systematic bias, and
features with relative standard deviations (RSDs) of more than 35%
in the QC sample were filtered out.

After normalization, the data were analyzed using the R package
ropls for multivariate statistical analysis and modeling, including
principal component analysis (PCA) and orthogonal partial least
squares discriminant analysis (OPLS-DA). The quality of the model
was tested by 7-fold cross-validation, and 20 permutation tests
further tested the validity of the model. R2 and Q2 represent the
explanatory and predictive abilities of the model, respectively.
The variable importance for projection (VIP) value denotes the
contribution of the feature peaks to the classification. The
Wilcoxon rank-sum test was used to compare the metabolite
levels between patients with tumors and healthy controls, and the
false discovery rate (FDR) was used for p-value correction. FDR <
0.05 and VIP > 1 were used to screen significantly changed
metabolites. Spearman’s correlation analysis was performed
to analyze the associations between metabolites. Enrichment
pathway analysis was performed using the web-based
MetaboAnalyst 6.0 software.

Screening of endogenous metabolites

Classification was strictly based on annotations from two
authoritative databases: HNDB and MedChemExpress. HMDB’s
“Biological Role” and “Origin” fields served as key references, with
metabolites classified as endogenous if annotated as “endogenous”
(i.e., produced by human cells or resident microbiota) and detected
in “blood” or “plasma” according to the database’s tissue
localization data. For metabolites with limited annotation in
HMDB, MCE’s “Compound Type” classification was utilized,
excluding those explicitly labeled as “exogenous” (e.g., dietary
phytochemicals, pharmaceutical drugs, or environmental
pollutants). Additionally, literature evidence was consulted to
identify the main sources of metabolites.

Methylation experiment

To explore the potential added value of integrating epigenetic
information, ¢fDNA methylation profiling was conducted on a
subset of 197 samples (68 CRC, 129 NCC). Targeted bisulfite
sequencing was used to detect CRC-associated hypermethylated
loci. fDNA was isolated from the serum using a Magen cfDNA
extraction kit following the manufacturer’s instructions and then
ligated to a methylation adaptor using an NEBNext Ultra IT DNA
library Prep Kit for Illumina from NEB. Adaptor-ligated cfDNA
was 12-to-1 mixed and hybridized with customized probes
(Integrated DNA Technologies) using an xGen hybridization
capture DNA libraries Kit (Integrated DNA Technologies).
Hybridized mixture samples were eluted using the reagents and
steps of the “Second Elution” part of the TruSeq Methyl Capture
EPIC Library Prep Kit (FC-151-1003, Illumina) and then bisulfite
converted using an EZ-96 DNA Methylation-Lightning Mag Prep
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Kit (D5047, ZYMO RESEARCH). Bisulfate-converted samples were
amplified using the reagents and steps of the “Amplify Enriched
Library” section of the TruSeq Methyl Capture EPIC Library Prep
Kit (FC-151-1003, Illumina). The concentration of the prepared
libraries was determined with a Qubit 2.0 fluorometer (Invitrogen,
Life Technologies), and the library quality was assessed by capillary
electrophoresis (Qsep100, Bioptic). The qualified libraries were
sequenced on the Illumina Nova-seq platform (Illumina).

Methylation data processing and statistical
analysis

Features with more than 50% missing values and samples with
more than 20% missing values were filtered out, and then the
median of abundance was used to fill in the missing values. After
data filtering and normalization, the limma function performed a
difference analysis on the normalized data. Benjamini-Hochberg
correction was performed to reduce the bias caused by multiple
tests, and the probes with p-values < 0.05 were filtered. Probes with
AB > 0.1 or AB < -0.1 were considered hypermethylated or
hypomethylated, respectively. The genes corresponding to the
differential probes were annotated using the org.Hs.eg.db R
package with UCSC.hgl9 as the reference genome file.

Metabolomic and methylation features
integration

Feature-level integration concatenated filtered metabolomic
and methylation features into a unified matrix. To ensure
compatibility between the two omics layers, composite data were
normalized using M-value transformation for better interpretability
in linear models. The datasets were scaled to zero mean and unit
variance to prevent bias toward higher-magnitude features. The
final integrated feature set was then input into the downstream
diagnostic model.

Construction of machine learning
diagnostic models

In our study, all participants were randomly stratified and
sampled into training and test datasets at a ratio of 7:3. Feature
selection and model construction were performed on the training
set, and hyperparameters were optimized through cross-validation.
Subsequently, validation was carried out on the test set.

Features were selected using the least absolute shrinkage and
selection operator (LASSO) and random forest (RF) algorithms. We
performed LASSO regression on the training dataset to select the
features with nonzero coefficients as a small number of features
capable of identifying patients with tumors based on the average
misclassification error of 10 random cross-validations (according to
default settings). Then, the RF algorithm was used to calculate the
relation importance of individual differential features, and the
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differential features were rounded off by performing 5-fold cross-
validation five times (according to default settings). Finally, a Venn
diagram was used to identify the common features. LASSO
regression and RF modeling were implemented using the R
packages ‘glmnet’ and ‘randomForest’, respectively.

Following feature acquisition, different machine learning
methods, including support vector machine (SVM), RF, eXtreme
Gradient Boosting (XGBoost), and logistic regression (LR)
algorithms, were employed to create a model that could
differentiate between cancer and noncancer individuals. The R
packages ‘€1071°, ‘randomForest’, ‘xgboost’, and ‘caTools’ were
utilized to implement SVM, RF, XGBoost, and LR, respectively.
The models were trained with hyper-parameters tuned by 5-fold
cross-validations. The final models were validated on the test set. To
address potential biases in the optimization process that might arise
from the specific splits employed, we replicated the above-described
procedure five times, each time using a distinct splitting seed. This
approach yielded five alternative optimized models to evaluate the
initial model to ensure robustness. Ultimately, the efficacy of the

il iy — . —

NCC CRC

10.3389/fendo.2025.1663938

four models was evaluated in test sets by AUROC, area under the
precision-recall curve (AUPRC), sensitivity, specificity, accuracy,
precision, recall and F1 score.

Results
Study overview

The overall workflow of this study and participant recruitment
information are illustrated in Figure 1. A total of 715 participants
were included in this study, comprising 248 CRC patients and 467
NCCs. The baseline characteristics of the study participants were
summarized in Table 1. No statistical differences in gender, age, and
BMI among the two groups (p > 0.05). The patients consisted of 50
stage I, 71 stage II, 82 stage I, 33 stage IV, and 12 unidentified stage
(Table 1). Serum samples were collected and subjected to
untargeted metabolomic profiling using LC-MS. Based on
rigorous quality control and statistical filtering, differential

serum
n=467 n=248
Functional analysis of CRC biomarkers and || Multi-omics diagnostic
key metabolites in CRC diagnostic models model for CRC
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FIGURE 1

Overview of the research design. Serum samples from CRC patients and NCC individuals were collected and subjected to untargeted metabolomics.
Machine learning algorithms were used to determine diagnostic biomarkers for CRC. A multi-omics model based on metabolomics was constructed
to enhance the performance of the diagnostic model. This figure was created with BioGDP.com (https://BioGDP.com).
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metabolites between CRC patients and noncancer controls (NCCs)
were identified and functionally annotated through pathway
enrichment analysis. To assess their diagnostic potential, we
applied multiple machine learning algorithms to construct
predictive models using a selected panel of metabolites. In a
subset of 197 participants, cfDNA methylation data were further
integrated to evaluate the added value of a multi-omics
classification strategy.

Identification of differential serum
metabolites in CRC

To characterize metabolic reprogramming associated with
colorectal cancer, untargeted serum metabolomic profiling was
performed on samples from CRC patients and NCCs. Following
raw data conversion to mzXML format, preprocessing was carried
out using XCMS, including peak detection, retention time
correction, outlier removal, and imputation of missing values. A
total of 4,030 ion features were identified in serum positive

A
OPLS-DA
°
°
© °
501 ¢ 4 @
< 0 group
L | Case
/A Control
-50
R2Y:0.932
Q2:0.764
-10 10
P1(2%)
c > oD W, A N o © D 10 O A (O N
R
o S
QSRS & R NS
AFJTIFIIIIR IAITIIIIEIRY ROy
HMDB0060274 [
HMDB0006733 - [l Correlation
HMDB0002012 || 1
HMDB0001448 | |
HMDBO0000138 | ]
HMDB0000036 |
HMDB0059637 | |
HMDB0029422 | | 0.5
HMDB0000054 | | )
HMDB0000897 ||
HMDB0000181
HMDBO000631 x x|xx x|xx x|l
HMDBO000237 x x x X x xx -l 0
« o xx ]
HMDB0059636 x < o o [ [ x [ x ..

HMDB0003555 x x x
HMDB0001143
HMDB0001898
HMDB0000145
HMDB0004969 x
HMDB0002346 x

x [ [o[x[o] x
x
x

. 05

x x x x

HMDB0003419 x x x[oa]x

HMDB0010337 x x x 1
HMDB0004649 x  x

HMDB0062631 x

HMDB0013464 x x

FIGURE 2

10.3389/fendo.2025.1663938

electrospray ionization (ESI+), while 674 features were identified
in serum negative electrospray ionization (ESI-). Additionally,
putative features were identified based on the Human
Metabolome Database (HMDB) and KEGG, resulting in 2,793
annotated metabolites in ESI+ and 407 in ESI- mode.

Univariate analysis using the Wilcoxon rank-sum test and fold
change (FC) filtering was performed across all identified
metabolites. In parallel, multivariate modeling with orthogonal
partial least squares discriminant analysis (OPLS-DA) revealed
clear separation between CRC and NCC samples (Figure 2A).
The OPLS-DA model demonstrated strong performance with R?
= 0.932 and Q> = 0.764, and permutation testing confirmed the
absence of overfitting (Supplementary Figure 1). These results
indicated robust global metabolic differences between the
two groups.

A total of 75 metabolites were significantly altered in CRC (FDR
<0.05 and VIP > 1) (Supplementary Table 1), among which 65 were
upregulated (log,FC > 1) and 10 were downregulated (log,FC < -1),
as shown in the volcano plot (Figure 2B). Metabolite classification
includes benzenoids: 8, homogeneous non-metal compounds: 2,
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Metabolic characteristics of patients with CRC. (A) OPLS-DA score plot of metabolomic data from CRC (blue) and NCC (purple) samples. (B) Volcano
plot of the detected metabolites in the serum of patients with CRC patients and NCC. Significantly differentially abundant metabolites are colored in
red (upregulated) and blue (downregulated), and the others are colored in gray. A two-sided Wilcoxon rank sum test followed by the Benjamini—
Hochberg (BH) multiple comparisons test was performed with FDR < 0.05, log2FC > 1 or log2FC < -1, and VIP > 1. (C) Correlations between 26
differentially abundant metabolites. The color represents Spearman’s correlation. Red indicates a positive correlation, and blue indicates a negative
correlation. X" indicates an insignificant correlation. (D) KEGG metabolic pathways enriched with significantly differentially abundant metabolites

between patients with CRC patients and NCC.
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lipids and lipid-like molecules: 20, nucleosides, nucleotides, and
analogues: 4, organic acids and derivatives: 10, organic nitrogen
compounds: 2, organic oxygen compounds: 5, Organic Polymers: 1,
Organic salts: 1, organoheterocyclic compounds: 16,
Phenylpropanoids and polyketides: 5. To identify cancer-specific
endogenous markers, we excluded exogenous metabolites, such as
dietary components and drug metabolites, resulting in a refined
panel of 26 differentially abundant endogenous metabolites
(Supplementary Table 2).

To explore their interrelationships, Spearman correlation
analysis was performed (Figure 2C), revealing extensive co-
regulation among several metabolites. Notably, lipoyl-AMP
(HMDB0059635), a precursor involved in lysine lipoylation, a
rare but evolutionarily conserved post-translational modification,
was significantly upregulated. In mammals, only four core
metabolic enzymes undergo lipoylation, and dysregulation of
these enzymes has been implicated in various metabolic disorders.
While the role of lipoyl-AMP in cancer remains unclear, its
involvement in central energy pathways highlights its potential
clinical relevance (22).

Pathway enrichment analysis based on KEGG annotations
further revealed that several dysregulated metabolites were
enriched in biologically significant pathways, including primary
bile acid biosynthesis and taurine and hypotaurine metabolism
(Figure 2D). These pathways are known to be modulated by the
intestinal microbiota and play pivotal roles in CRC pathogenesis
(23). In particular, taurocholic acid and its derivatives may alter
microbial composition and promote the production of genotoxic
substances such as hydrogen sulfide and deoxycholic acid (24).
These findings underscore the close interplay between host
metabolism and microbiota-derived metabolites in colorectal
cancer development and support the translational value of these
metabolic alterations as potential diagnostic biomarkers.

Metabolomic biomarker panels enable CRC
patients diagnosis

To optimize the diagnostic utility of serum metabolites, we
applied feature selection methods to reduce redundancy among the
26 differentially abundant metabolites. Random Forest (RF)
importance ranking identified 11 top-ranked metabolites
(Supplementary Figure 2A), while Least Absolute Shrinkage and
Selection Operator (LASSO) regression identified 21 metabolites
with minimal binomial deviance (Supplementary Figure 2B). The
intersection of both methods yielded 10 candidate biomarkers for
model construction (Supplementary Figure 2C), including sulfate,
ubiquinone-1, deoxycholic acid glycine conjugate,
demethylphylloquinone, 3-(3,5-diiodo-4-hydroxyphenyl)lactate,
vitamin K1, O-decanoyl-L-carnitine, sedoheptulose 1,7-
bisphosphate, CE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)), and lipoyl-AMP
(Supplementary Table 3).

To evaluate the diagnostic performance of these metabolites, we
constructed binary classification models using both linear (logistic
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regression, LR) and nonlinear algorithms, including support vector
machine (SVM), RF, and eXtreme Gradient Boosting (XGBoost).
All samples were randomly split into a training set (70%) and a test
set (30%), and the hyperparameters were selected based on tenfold
cross-validation on the training set. Evaluation metrics included
area under the receiver operating characteristic curve (AUROC),
sensitivity, specificity, and overall accuracy (Figure 3). Compared to
SVM (Figures 3A-C) and LR (Figures 3]-L) models, the RF (Figures
3D-F) and XGBoost (Figures 3G-I) models achieved better
predictive performance. In the test cohort (74 CRC, 140 NCC),
the RF model achieved robust performance, with an AUROC of
0.97, sensitivity of 83.78%, and specificity of 94.29% (Figures 3E, F).
Similarly, the XGBoost model achieved an AUROC of 0.96 in the
test set, with 89.19% sensitivity and 95.71% specificity (Figures 3H,
I). These results demonstrate that the selected serum metabolite
panel enables accurate discrimination between CRC patients and
healthy controls, supporting its potential for noninvasive clinical
screening applications. The results of 5 models, obtained through
setting different seeds, are consistent with our initial model, which
we ensure the robustness of the model (Supplementary Table 4).

In addition, we conducted additional analysis to evaluate
whether the model distinguishes Stage I CRC from controls. The
AUROC of SVM, RF, XGBoost and LR models is 0.84 (95% CI:
0.73,0.95), 0.87 (95% CI: 0.80, 0.94), 0.95 (95% CI: 0.88, 1.00) and
0.79 (95% CI: 0.66, 0.93), respectively, with low sensitivity and
AUPRC (Supplementary Figure 3). Because of the number of Stage I
CRC cases in our current dataset is limited, which may introduce
variability and limit the generalizability of these findings. These
results should be provided as preliminary evidence of the model’s
potential in early-stage detection.

Develop a multimodal model based on
metabolomics data to enhance predictive
performance

To investigate whether DNA methylation features could
complement metabolomic biomarkers and further improve
diagnostic accuracy, we performed targeted cfDNA methylation
profiling in a subset of participants (CRC, n = 68; NCC, n = 129)
(Figure 4A, Table 2). Among the 3,816 high-quality CpG probes
retained after preprocessing, 426 sites (11.16%) were found to be
differentially methylated between CRC patients and controls (FDR
< 0.05), including 110 hypermethylated (log,FC > 0.1) and 316
hypomethylated sites (log,FC < -0.1) (Figure 4B, Supplementary
Table 5). Chromosomal distribution analysis revealed enrichment
of differentially methylated CpG sites (DMCs) on chromosome 8,
while relatively few were observed on chromosome 18 (Figure 4C).
Given the regulatory importance of promoter methylation in gene
expression, we focused our downstream analysis on DMCs located
within promoter regions (Supplementary Table 6).

Unsupervised hierarchical clustering of these promoter DMCs
effectively discriminated CRC patients from controls (Figure 4D),
suggesting their potential diagnostic utility. To identify a robust
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FIGURE 3

Machine learning-derived diagnostic model based on serum metabolome for CRC diagnosis. (A—C) Confusion tables and ROC curves of the SVM
diagnostic model in the training (A) and testing (B) datasets. (D—F) Confusion tables and ROC curves of the RF diagnostic model in the training (D)
and testing (E) datasets. (G-I) Confusion tables and ROC curves of the XGBoost diagnostic model in the training (G) and testing (H) datasets. (3-L)

Confusion tables and ROC curves of the LR diagnostic model in the training (J) and testing (L) datasets.

diagnostic methylation panel, we applied RF and LASSO regression
to the training cohort (n = 138), resulting in the selection of 11 high-
priority DMCs (Supplementary Figures 2D-F, Supplementary
Table 7). Using these 11 features, we built classification models
with SVM, RF, XGBoost, and LR algorithms (Figure 5). In the
training cohort (48CRC, 90NCC), the sensitivity of SVM and LR
models is 83.33%, with AUROC values of 0.993 and 0.96,
respectively (Figures 5A, C, ], L). However, both RF and XGBoost
models achieved 100% sensitivity and excellent AUROC values
(Figures 5D, G, F, I). In the independent test cohort (20 CRC and 39
non-cancer controls), the SVM model achieved the highest
sensitivity, reaching 85% (Figure 5B). Although the sensitivity of
the RF and XGBoost models decreased to 75% and 80%,
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respectively, both maintained high specificity (Figures 5E, H). “In
contrast, the Logistic Regression (LR) model demonstrated both
sensitivity and specificity below 80% (Figure 5K). These results
confirm the diagnostic relevance of cfDNA methylation markers
but also highlight limitations in sensitivity, likely due to the smaller
sample size and biological heterogeneity.

To evaluate the potential benefit of combining modalities, we
next integrated the selected 10 serum metabolites with the 11
methylation markers to construct a multi-omics classifier,
denoted as META&METHY. For benchmarking, we also retained
the metabolomics-only (META) and methylation-only (METHY)
models. Using four machine learning algorithms, RF, SVM,
XGBoost, and LR, we systematically compared the performance
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CRC-specific differential methylation sites as diagnostic biomarkers. (A) Cell-free DNA (cfDNA) was isolated from serum samples to perform
methylation profiling, enabling the identification of differentially methylated sites. Subsequently, epigenetic markers and previously characterized
differential metabolites were integrated to develop multi-omics diagnostic models. (B) Volcano plot of the methylation sites in the serum of CRC
patients and NCC. (C) Proportions of differential CpG sites in different chromosomes. (D) Unsupervised hierarchical clustering of 83 methylation
markers in promoter regions. Figure A was created with BioGDP.com (https://BioGDP.com).

of single-omics and multi-omics classifiers. As shown in Figure 6A
and Supplementary Table 7, the META&KMETHY model achieved
the highest diagnostic performance, with AUROCs of 0.98, AUPRC
of 0.97 and 100% sensitivity and precision in the test set when using
either the RF or XGBoost classifiers. F1 score comparisons further
demonstrated the superiority of the META&METHY model over
both the META and METHY models (Figure 6B). Notably, the
metabolomics-only models consistently outperformed the
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methylation-only models, with AUROCs ranging from 0.87 to
0.97 versus 0.84 to 0.88, respectively (Supplementary Table 8).
These findings suggest that while methylation features provide
valuable supplementary information, serum metabolites are the
dominant contributors to model performance.

In summary, the integration of cfDNA methylation with serum
metabolomics modestly enhances predictive power, particularly in
terms of sensitivity and classification confidence. However, the high
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TABLE 2 Baseline characteristics of participants in methylation testing.

Characteristic

10.3389/fendo.2025.1663938

P value

Gender, No. (%) 0.077
female 85 (43.1%) 23 (33.8%) 62 (48.1%)
male 112 (56.9%) 45 (66.2%) 67 (51.9%)

Age, Mean (SD) 59.1 (10.7) 60.9 (11.5) 58.2 (10.1) 0.107
BMI (kg/m?) 23.0 (2.13) 23.1 (2.20) 23.0 (2.10) 0.778
I 12
1I: 21
TNM stage NA NA

III: 30
IV: 5

performance of metabolomics-based models alone underscores
their potential as a standalone, noninvasive diagnostic tool for
colorectal cancer. Future studies with expanded cohorts are
warranted to further validate and optimize this multi-omics
approach for clinical application.

Discussion

In this study, we conducted a large-scale investigation involving
715 participants to explore serum metabolic alterations associated
with colorectal cancer (CRC) and to identify noninvasive
biomarkers for early detection. Using untargeted metabolomics
coupled with high-resolution LC-MS, we identified 75 distinct
metabolic signatures that differentiated CRC patients from
noncancer controls (NCC). Through a comparative analysis with
the metabolomic biomarkers reported in Yu’s 2024 study (5), we
noted that, despite the identification of distinct metabolite entities
in the two studies, both cohorts exhibited analogous alterations in
key metabolic categories, including sulfates, histidine derivatives,
bile acids, and lipids. These observations underscore the existence of
shared metabolic reprogramming pathways integral to the
pathogenesis of colorectal cancer, thereby providing a robust
foundation for subsequent mechanistic investigations.

Feature selection and machine learning-based modeling
enabled the construction of a robust diagnostic classifier based on
10 key metabolites. These metabolites play an important role in the
occurrence and development of cancer. Ubiquinone plays a pivotal
role in modulating mitochondrial oxidative phosphorylation
(OXPHOS) activation and reactive oxygen species (ROS)
generation. It can facilitate the progression of CRC by activating
the PI3K/AKT signaling pathway in a ROS-dependent manner (25,
26). Demethylphylloquinone is a late biosynthetic intermediate of
vitamin K1 (27). Recent research has unveiled novel functions of
vitamin K within cancer cells, encompassing the activation of the
steroid and xenobiotic receptor (SXR), as well as the modulation of
oxidative stress responses, apoptotic pathways, and autophagic
processes (28). Lipoyl-AMP is essential for the lipoylation
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reaction which is a rare but highly conserved post-translational
modification of lysine. Only four polymer-metabolizing enzymes
are known to undergo lipid acylation in mammals, and these
proteins are major constituents of core metabolism. Dysregulation
of these proteins is associated with a variety of human metabolic
disorders. Thus lipoyl-AMP is strongly implicated in the
maintenance of health and the development of disease, although
the exact mechanisms remain to be elucidated (29).

In a subset of participants, we further incorporated cfDNA
methylation data to build an integrated multi-omics diagnostic
model. While both single-omics and multi-omics models
demonstrated high diagnostic accuracy, the metabolomics-based
models consistently outperformed methylation-only models,
highlighting the central role of metabolic alterations in
CRC detection.

CRC remains a major global health challenge, and patient
outcomes are strongly influenced by the stage at diagnosis.
Traditional diagnostic methods such as colonoscopy, although
accurate, are invasive and often poorly accepted by patients.
Liquid biopsy has emerged as a promising alternative, and recent
studies have focused on circulating nucleic acids and proteins as
diagnostic biomarkers (30-33). However, metabolomics remains
underutilized despite its unique advantages. Our study reinforces
the value of serum metabolites as clinically accessible biomarkers
for CRC. Compared to proteomic or genomic approaches,
metabolomics offers several advantages, including relatively low
cost, simpler sample preparation, and greater patient compliance
due to its noninvasive nature.

To translate these metabolomic insights into practical
diagnostic tools, we applied machine learning algorithms, RF,
XGBoost, SVM, and LR, to build predictive models. The
combination of RF and LASSO was used to reduce feature
dimensionality and eliminate noise. Among the four classifiers
tested, RF and XGBoost consistently exhibited the highest
performance across training and test datasets, achieving AUROCs
up to 0.97 in independent validation. These results support the
utility of metabolomics for developing accurate, reproducible, and
interpretable models for CRC detection.
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Machine learning-derived diagnostic model based on differential methylation sites for GC diagnosis. (A-C) Confusion tables and ROC curves of the
SVM diagnostic model in the training (A) and testing (B) datasets. (D—F) Confusion tables and ROC curves of the RF diagnostic model in the training
(D) and testing (E) datasets. (G—I) Confusion tables and ROC curves of the XGBoost diagnostic model in the training (G) and testing (H) datasets. (J—

L) Confusion tables and ROC curves of the LR diagnostic model in the training (J) and testing (L) datasets.

In addition to evaluating the metabolomics-derived models, we
explored whether ¢fDNA methylation data could provide
complementary diagnostic information. A panel of 11
differentially methylated CpG sites was identified, and models
based solely on methylation features showed moderate
performance. However, when integrated with metabolite features
in a multi-omics model (META&METHY), predictive performance
was further enhanced, achieving an AUROC of 0.98 (95% CI: 0.95,
1.00) and high precision in the test set. While these findings suggest
that DNA methylation may contribute additional information, our
data clearly demonstrate that serum metabolomics remains the
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dominant contributor to classification accuracy, and may suffice as
a standalone diagnostic modality in many clinical scenarios.
Despite the promising results, we acknowledge several
limitations. First, although this study includes a relatively large
overall cohort, the subset used for multi-omics analysis remains
limited. We fully recognize that reliance on a single clinical site
may limit the generalizability of our findings due to inherent
demographic, geographic, or procedural variations. We will recruit
participants from different geographical and socio-economic
backgrounds, standardize metabolomics analysis plans for different
locations to minimize technical differences, and perform stratified
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analysis to evaluate whether the observed metabolic changes are
consistent across subgroups (e.g. by age, gender, or cancer stage). By
conducting this multi-center analysis, we anticipate strengthening the
evidence for the generalizability of our observations and addressing
potential sampling biases inherent in the initial single-center design.
Second, to enable clinical application, future work will focus on
functional studies (e.g., cell/animal models) to elucidate the roles of
poorly characterized metabolites in CRC. Targeted quantification of
key metabolites using isotope-labeled standards in multicenter
cohorts, establishing clinical thresholds and reference ranges.
Validate assay performance (sensitivity, specificity) in independent
cohorts. Assess cost-effectiveness and scalability compared to existing
CRC screening methods (e.g., colonoscopy). Third, while our study
incorporated both metabolomic and methylation data for diagnostic
modeling, their mechanistic interactions in CRC biology were only
briefly explored and merit more in-depth investigation in future
studies. Elucidating the crosstalk between these molecular layers may
offer deeper insights into tumor biology and identify therapeutic
targets. Fourth, although our cohort reflects clinical patients
undergoing diagnostic evaluation for CRC, its CRC prevalence
(34.7%) exceeds that of asymptomatic screening populations (<1%).
Therefore, future validation in large asymptomatic cohorts is required
to confirm its utility in screening settings. Lastly, potential
confounding factors such as diet, medication, and lifestyle were not
fully controlled and warrant further investigation.

Conclusion

In summary, we conducted a comprehensive serum metabolomics
study to identify diagnostic biomarkers for colorectal cancer. Our
findings demonstrate significant metabolic dysregulation in CRC
patients and highlight a panel of metabolites with strong diagnostic
potential. Machine learning-based models built on these features
exhibited high accuracy, sensitivity, and specificity. The integration of
DNA methylation data provided additional value, although the
metabolomics signature alone retained superior performance. These
results support the clinical utility of metabolomics as a noninvasive,
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cost-effective liquid biopsy tool for CRC screening and lay the
foundation for future translational applications through targeted
validation in large, multicenter studies.
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