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Targeting microRNAs
in diabetic retinopathy:
from pathogenic mechanisms
to therapeutic potentials
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Long Tao1, Shasha Xue1 and Fenglei Wang1*
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2Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University,
Qingdao, China
Diabetic retinopathy (DR), a prevalent microvascular complication affecting diabetic

patients, imposes a significant global burden. Current therapies like anti-vascular

endothelial growth factor (anti-VEGF) agents, offering limited efficacy in early stages

and posing challenges related to invasiveness and recurrence. This underscores the

urgent need for novel strategies targeting early intervention. This review proposes a

unifying hypothesis: microRNAs (miRNAs) function as master regulators that

integrate and amplify hyperglycemia-induced damage across multiple

pathological axes—oxidative stress, inflammation, neurodegeneration, and

vascular dysfunction. Dysregulation of specific miRNAs not only contribute to DR

pathogenesis through multi-target modulation of key pathways but also exhibit

stage-specific expression patterns in biofluids, positioning them as promising non-

invasive biomarkers. Furthermore, miRNA-based therapeutic interventions,

leveraging tools like quantitative reverse transcriptase PCR (qRT-PCR), droplet-

based digital PCR (ddPCR), and microarrays for profiling, hold revolutionary

potential to modulate key pathological cascades, and ultimately enable precision

management strategies for early intervention and prevention of DR progression.
KEYWORDS
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1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder pathologically defined by

persistent hyperglycemia resulting from peripheral insulin resistance (hallmark of type 2

diabetes mellitus, T2DM) or insulin deficiency (characteristic of type 1 diabetes mellitus,

T1DM). According to the International Diabetes Federation Diabetes Atlas (10th Edition),

DM affected 10.5% of the global population aged 20–79 years (536.6 million individuals) in

the baseline year, with epidemiological modeling projecting an alarming 16.2% relative

increase to 12.2% (783.2 million cases) by 2045 (1). Diabetic retinopathy (DR), the most
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prevalent microvascular complication of DM, affects approximately

90% of T1DM patients and 60% of T2DM patients within 20 years

of diagnosis (2).

Hyperglycemia impairs the integrity of retinal microvasculature

and induces pathological angiogenesis (3). As a consequence of these

vascular pathologies, the progression of DR unfolds in a stepwise

manner. Initially, non - proliferative DR (NPDR), characterized by the

presence of microaneurysms and intraretinal hemorrhages, gradually

evolves into proliferative DR (PDR), marked by the emergence of

neovascularization (4). Despite current therapies such as anti-vascular

endothelial growth factor (anti-VEGF) therapy offering clinical

benefits, their invasive nature and adverse effects—including

vitreous hemorrhage, endophthalmitis, and retinal detachment from

repeated injections (5)—highlight the pressing need to vigorously

explore therapeutic strategies that either intervene at the early stage of

DR or effectively prevent its development.

MicroRNAs (miRNAs), a class of small non-coding RNAs, are

evolutionarily conserved post-transcriptional regulators that fine-

tune gene expression by binding to target mRNAs, leading to

translational repression or degradation (6). These molecules are

integral to diverse biological processes such as cellular growth,

apoptosis, fibrosis, and senescence, and their dysregulation has been

implicated in numerous diseases, including cancer, diabetes, and

cardiovascular disorders (7, 8). Since the landmark discovery of

miRNA involvement in chronic lymphocytic leukemia in 2002,

research has expanded to uncover their roles in complex ocular

diseases, particularly DR (9). Recent studies highlight miRNAs as

pivotal mediators of DR pathogenesis, influencing critical

mechanisms like angiogenesis, inflammation, oxidative stress, and

neurodegeneration. This review synthesizes current research on

miRNA-mediated regulatory networks in DR, evaluates their

diagnostic and therapeutic applicability.
2 Global epidemiology of DR

Global epidemiological modeling projects DR to be a persistent

global public health crisis. As of 2020, an estimated 130 million

individuals worldwide were afflicted with DR. Moreover, it is

forecasted that by 2045, the number of patients developing DR

will be near 160 million (10). Vision-threatening complications,

including vision-threatening diabetic retinopathy (VTDR) and

clinically significant macular edema (CSME), collectively impair

over 47 million individuals, with VTDR affecting 6.17% (28.54

million; 95% CI: 25.12–32.34 million) and CSME 4.07% (18.83

million; 95% CI: 3.42–4.82%) of the global diabetic population (10).

As the fifth leading cause of blindness among working-age

adults (50 years of age and older) (11). DR exhibits striking

geographical disparities: Asia shoulders the highest global burden,

propelled by rapid urbanization, dietary transformations, and a

burgeoning population of individuals with diabetes (12, 13). In

China, with its large diabetic population and aging demographic,

approximately 19.5 million people with diabetes are affected by DR.

Among them, one - fifth have reached the VTDR stage (14). India

demonstrates stark regional contrasts, with DR prevalence ranging
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from 12.27% in central regions to 34.06% in northern states,

alongside an urban-rural divide (17.4% vs. 14.0%) (15). In

contrast to the escalating DR burden in low- and middle-income

regions, high-income nations paradoxically confront persistent DR

challenges despite their comprehensive screening programs and

widespread access to anti-VEGF therapies. In the United States,

where 37.6 million adults were diagnosed with diabetes in 2021,

epidemiological modeling revealed that 9.60 million individuals

(95% UI: 7.90–11.55 million) — representing 26.43% (95% UI:

21.95–31.60) of the diabetic population — were affected by DR.

Alarmingly, 1.84 million patients (95% UI: 1.41–2.40 million)

progressed to VTDR, translating to a 5.06% prevalence rate (95%

UI: 3.90–6.57) among diabetics (16). In Europe, DR is observed in

25.7% of individuals diagnosed with type 1 or 2 diabetes. Among

this population, 18.5% exhibit mild to moderate NPDR, while 3.7%

develop DME. Despite a steady decline in DR prevalence across

Japan over the past decade, the prevalence rate remains alarmingly

high — affecting 23.5% of Japanese diabetes patients (17).
3 Updated diagnosis and therapy of
DR

ETDRS classification remains the gold standard for DR due to

robust validation predicting progression, but its complexity

impedes clinical adoption. This led to the ICDR Severity Scale— a

streamlined adaptation of the ETDRS framework—which now

serves as the most commonly adopted benchmark in clinical

workflows due to its simplified five-tier staging (18, 19). Modern

diagnostics integrate multimodal imaging: ultra-widefield (UWF)

retinal imaging captures peripheral lesions, and optical coherence

tomography angiography (OCTA) visualizes microvasculature (20,

21). AI enables automated lesion detection and predictive modeling

for scalable screening (22, 23). These innovations enhance staging

accuracy, facilitate progression monitoring, and optimize

therapeutic decisions.

Anti-VEGF therapy (ranibizumab, bevacizumab, aflibercept) is

the established first-line treatment for center-involved DME and a

validated option for PDR, with extensive evidence demonstrating

efficacy in edema reduction and vision improvement (24, 25).

However, the DRCR.net Protocol W trial indicated that while

proactive anti-VEGF treatment for NPDR prevents progression to

PDR or DME, it does not yield superior long-term visual outcomes

compared to initial observation with as-needed treatment upon

complication development (26). Furthermore, the apparent

improvement in DR severity with anti-VEGF often masks persistent

underlying retinal ischemia, and lesions frequently recur rapidly after

therapy cessation (24). For PDR, panretinal photocoagulation (PRP)

remains the standard, effectively reducing vision loss risk (27).

Emerging therapies focus on enhancing efficacy and durability while

reducing injection frequency. Faricimab, a bispecific antibody

inhibiting both VEGF and angiopoietin-2 (Ang-2)/Tie pathways,

achieved visual gains comparable to aflibercept in DME but with

superior anatomic outcomes and significantly extended dosing

intervals (≥12–16 weeks for >50-70% of eyes at 1 year), addressing
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vascular instability more effectively (28–30). Nevertheless, treatment

selection must weigh adherence challenges, injection burden, and

patient preference against PRP’s durability.

Recent research focuses on identifying novel biomarkers –

defined as biological molecules indicating physiological or

pathological processes – to enable early detection of DR, halt

progression, and prognostic outcomes (e.g., predicting

NPDR→PDR transition), thereby guiding resource allocation and

treatment strategies (31). Multiple clinical studies have identified

12-HETE and 2-piperidone in plasma/serum as potential DR

biomarkers, which exhibited superior diagnostic performance to

HbA1c in DR assessment using multiplatform metabolomics

approaches (32). Circulating miRNAs represent a revolutionary

frontier. Emerging evidence demonstrates that dynamic alterations

in miRNA expression profiles in biofluids (e.g., serum, aqueous

humor) strongly correlate with specific DR progression stages.

These miRNAs exhibit highly sensitive and specific differential

expression patterns, enabling non-invasive liquid biopsies to

distinguish NPDR from PDR (33). This molecular stratification

provides a crucial complement to structural imaging modalities,

offering profound potential not only for earlier and more precise

diagnosis but also for unveiling novel therapeutic targets to address

the underlying pathophysiology of DR.
4 miRNAs biogenesis and silencing
mechanisms

miRNAs are small non-coding RNA molecules (≈22 nucleotides)

that play a crucial role in post-transcriptional gene regulation,

primarily by inhibiting protein translation or promoting mRNA

cleavage (34). Their multi-step process of biogenesis involving both

nuclear and cytoplasm. Initially, miRNA genes are transcribed by the

RNA polymerase II (RNA poly II) into primary miRNA transcripts

(pri-miRNAs), which are large, hairpin-structured RNA molecules

capped with a 7-methylguanosine moiety and polyadenylated at the 3′
end. These pri-miRNAs are then recognized and processed in the

nucleus by the microprocessor complex, comprising the RNase III

enzyme Drosha and its cofactor DGCR8. The microprocessor

complex cleaves the pri-miRNA near the base of its stem-loop

structure to generate a ≈70-nucleotide precursor miRNA (pre-

miRNA). The pre-miRNA is subsequently transported to the

cytoplasm via Exportin-5 protein. In the cytoplasm, another RNase

III enzyme Dicer, along with its partner TRBP (TAR RNA-binding

protein), cleaves the pre-miRNA to produce a shorter RNA duplex.

This duplex consists of the mature miRNA (guide strand) and its

complementary strand (passenger strand). The mature strand is

selectively incorporated into the RNA-induced silencing complex

(RISC), where Argonaute (AGO) proteins serve as core

components, while the complementary strand is typically degraded.

Mature miRNAs within the RISC silence or regulate gene expression

by binding to complementary sequences in target mRNAs. This

interaction leads to gene silencing through two primary pathways:

(1) target mRNA degradation, which involves perfect or near-perfect

complementarity between the miRNA “seed region” (nucleotides 2–8)
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and the 3’UTR of target mRNAs. Upon incorporation into the RISC

with AGO proteins, miRNAs guide the complex to these

complementary sites, triggering endonucleolytic cleavage of the

mRNA by AGO; (2) translation repression, when miRNA-mRNA

binding is imperfect, the miRNA-RISC complex can suppress

translation even with partial complementarity (35). Notably,

miRNAs exhibit the capacity to regulate multiple target mRNAs

concurrently, while a single mRNA may be subject to regulation by

multiple miRNAs — dynamics that underscore the complexity of the

miRNA-mRNA regulatory network (36) (Figure 1).
5 miRNA profiling tools

miRNA profiling has evolved into a sophisticated field with

diverse methodologies tailored to detect and quantify miRNAs at

different stages (e.g., primary, precursor, and mature miRNAs). The

exploration of miRNA profiling tools in DR has provided critical

insights into disease mechanisms and therapeutic targets.

Numerous technologies have been utilized for miRNA detection

and quantification including Northern blot, quantitative reverse

transcriptase PCR (qRT-PCR), droplet-based digital PCR (ddPCR),

miRNA microarrays, and other technologies. Below is an overview

of each method, highlighting its strengths and limitations (Table 1).
5.1 Northern blot

Northern blot, the first method for miRNA quantification

following the initial discovery of lin-4 in 1993, remains a gold

standard for validating novel miRNAs (37). It confirms RNA size

via denaturing gel electrophoresis and miRNA-specific probes. Its

advantages include widespread laboratory availability without

specialized equipment. However, limitations include low

sensitivity due to high RNA requirements (≥5-10 mg) and time-

consuming procedures (2–3 days). This technique’s utility persists

in miRNA verification despite being superseded by newer high-

throughput methods in profiling studies (38).
5.2 Quantitative reverse transcriptase PCR

Compared to Northern blot, qRT-PCR offers rapid and

sensitive detection of miRNAs, leveraging stem-loop primers or

oligonucleotide-based approaches for reverse transcription and

target-specific amplification, followed by quantification via

sequence-specific probes. While stem-loop designs enhance

primer binding specificity, locked nucleic acid (LNA)-modified

primers further improve target recognition but may compromise

amplification efficiency, posing challenges for quantifying low-

abundance miRNAs. Although cost-efficient and technically

accessible, qRT-PCR suffers from limited throughput, requires

reference gene normalization for accurate relative quantification,

and relies on predefined miRNA sequences—restricting discovery

of novel miRNAs (39, 40).
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5.3 Droplet-based digital PCR

ddPCR enables absolute miRNA quantification by partitioning

reactions into thousands of nanoliter-scale droplets. This technique

eliminates the need for standard curves or reference genes and

achieves exceptional sensitivity and precision. However, its high

cost, reliance on specialized instrumentation, and limited scalability

for large-scale studies pose challenges for routine use in DR

biomarker discovery (41).
5.4 miRNA microarrays

Fluorescently labeled miRNAs hybridize to array-immobilized

probes, allowing simultaneous profiling of thousands of miRNAs.

Though it is cost-efficient for high-throughput screening,

microarrays require substantial RNA input, lack sensitivity for

low-abundance miRNAs, and are confined to known sequences.

Relative quantification and a narrow dynamic range further limit

their utility in comprehensive DR studies (42).
6 Mechanistic roles of miRNAs in DR

miRNA biogenesis and silencing mechanisms are critical to

post-transcriptional gene regulation. Dysregulation of these
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processes can exert profound impacts on various diseases,

including systemic metabolic eye disorders such as DR. Within

DR pathogenesis, miRNAs mediate key roles in modulating the

major effects of DR progression (inflammation, oxidative stress, and

vascular dysfunction), highlighting their involvement in

orchestrating complex molecular pathways that underpin disease

progression (43–45). Changes of miRNA levels in various tissues,

organs, and blood have been reported across multiple studies in

diabetic patients and animal models. In patients with T1DM,

circulating miR-346, miR-148a, miR-181a, and miR-208 are

upregulated, while miR-16, miR-93, miR-191, and miR-146a are

downregulated (46, 47). Approximately 350 miRNAs are expressed,

with at least 86 miRNAs dysregulated in the retinas of

streptozotocin (STZ)-induced diabetic rats (48, 49). A growing

focus lies in deciphering how miRNAs interact with target

mRNAs to regulate cellular dysfunction, vascular permeability,

neovascularization, and retinal neurodegeneration, thereby

unraveling the underlying pathobiological mechanisms of DR

(50). Figure 2 illustrates the mechanistic roles of miRNAs in DR.
6.1 Oxidative stress

Oxidative stress, marked by pro-oxidants’ dominance over

antioxidant defenses, drives cellular dysfunction via redox

imbalance. While reactive oxygen species (ROS) normally regulate
FIGURE 1

miRNAs biogenesis and silencing mechanism: miRNA genes are transcribed by RNA polymerase II (Pol II) into primary miRNAs (pri-miRNAs), which
are processed by the Drosha-DGCR8 complex into precursor miRNAs (pre-miRNAs). Pre-miRNAs are exported to the cytoplasm by Exportin-5 and
cleaved by Dicer-TRBP into miRNA duplexes. The mature miRNA strand is loaded into the RNA-induced silencing complex (RISC), where Argonaute
(AGO) proteins facilitate target mRNA degradation or translational repression through complementary base pairing.
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mitochondrial-lysosomal crosstalk during ATP production, excessive

ROS accumulation damages biomolecules, exacerbates mitochondrial

dysfunction, and causes uncontrolled oxidative tissue injury (51, 52).

The core pathological mechanisms of DR are intimately linked to

hyperglycemia-induced oxidative stress, with the polyol, hexosamine,

protein kinase C (PKC) pathways, and formation of advanced

glycation end products (AGEs) representing four central molecular

networks (53–55). This section systematically discusses the action

mechanisms of each pathway and research progress of miRNAs in DR

oxidative stress.

6.1.1 Activation of polyol pathway
Importantly, hyperglycemia activates the polyol pathway via aldose

reductase (AR), leading to NADPH depletion and increased ROS (53,

56). The overexpression of miR-26a-5p attenuates DR by enhancing

superoxide dismutase (SOD) and catalase (CAT) activities. In HG-

exposed retinal Müller cells, miR-26a-5p overexpression elevated SOD/

CAT levels, reduced oxidative markers (MDA, ROS), and inhibited

mitochondrial cytochrome c release, alleviating oxidative stress. In

STZ-induced diabetic male mice, miR-26a-5p agomir improved retinal

histopathology and reduced oxidative markers (57). Another study

found that miR-296-5p was downregulated in diabetic male mice

retinal tissues, exacerbating DR progression. Restoring miR-296-5p

alleviated DR pathology by targeting retinal ganglion cells: it reduced

their apoptosis (altered Bcl-2/Bax/Caspase-3 expression) and decreased

Evans blue leakage, indicating improved vascular integrity.
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Additionally, miR-296-5p upregulation suppressed oxidative stress

(lowered VEGF and MDA, enhanced SOD activity) and inhibited

GNAI2 expression by binding its 3’UTR (58).

6.1.2 Activation of PKC pathway
PKC drives diabetic complications through hyperglycemia-

induced diacylglycerol/ROS in retinal vasculature, triggering

microvascular dysfunction via Nox, NF-kB, and VEGF (59, 60).

Recent studies highlight miR-26a-5p as a critical regulator in DR

pathogenesis. Specifically, in vitro experiments using HG-treated

Müller cells exhibited downregulated miR-26a-5p, elevated

oxidative stress, mitochondrial cytochrome c release, and NF-kB-
driven inflammation (TNF-a, IL-1b, IL-6↑). Overexpression of

miR-26a-5p mitigated these effects by directly targeting USP14,

thereby suppressing USP14-mediated NF-kB activation (p-IkBa, p-
p65↓) and nuclear translocation. Extending these findings to in vivo

models, STZ-induced diabetic male mice displayed similar miR-

26a-5p downregulation, retinal oxidative injury, and inflammatory

responses, which were ameliorated by miR-26a-5p agomir

treatment (57). The overexpression of miR-183 in DR rats

activates the PI3K/Akt/VEGF signaling pathway by directly

targeting and suppressing BTG1, thereby promoting vascular

endothelial cell proliferation, pathological angiogenesis (via

upregulated CD34 and eNOS), and ROS accumulation.

Conversely, miR-183 silencing upregulated BTG1, inhibiting

oxidative damage and pro-angiogenic pathways (61).
FIGURE 2

Mechanism of miRNAs in DR. Key miRNAs are involved in four major pathological processes: oxidative stress (miR-296-5p, miR-26a-5p, miR-30c-
5p, miR183, miR-143-3p, miR-125b-5p, miR-181b), inflammation (miR-150, miR-204, miR-139-5p, miR-18b, miR-146a, miR-590-3p, miR-125a-5p,
miR-130a-3p, miR-124, miR-30a-5p), neurodegeneration (miR-150, miR-26a-5p, miR-29a-5p, miR-486-3p, miR-320a, miR-30a) and vascular
dysfunction (miR-132, miR-126, miR-135b-5p, miR-192-5p, miR-139-5p). Each miRNA modulates specific target genes and signaling pathways,
contributing to DR progression.
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Furthermore, miR-30c-5p acts as a critical regulator of DR-

associated vascular dysfunction by suppressing PLCG1, thereby

inhibiting the PKC/NF-kB pathway in HG-treated human retinal

endothelial cells (HRECs) (62).

6.1.3 Formation and accumulation of AGEs
AGEs disrupt extracellular matrix (ECM) integrity and bind to

RAGE to activate the NADPH oxidase/NF-kB/MAPK pathways,

thereby exacerbating DR (53). Studies have demonstrated that

AGEs-stimulated Müller cells exhibited elevated ROS and

inflammation, which were mitigated by miR-143-3p-mediated

inhibition of Cullin3 neddylation, thereby stabilizing Nrf2 to

enhance antioxidant responses (63). Under AGEs-induced

HRECs, miR-125b-5p suppresses P53-mediated ferroptosis by

restoring glutathione peroxidase 4 (GPX4) activity and blocking

lipid peroxidation, thereby preserving blood-retina barrier (BRB)

integrity (64). Beyond retinal cells, systemic investigations in STZ-

induced diabetic male mice revealed miR-181b downregulation

exacerbated endothelial dysfunction by amplifying oxidative stress

and vascular inflammation. AGEs suppressed miR-181b expression

in human renal arteries and human umbilical vein endothelial cells,

correlating with elevated superoxide production and impaired

vasodilation. miR-181b mimics reversed these effects, reducing

oxidative stress and restoring endothelial function. These findings

suggest that miR-181b may mitigate oxidative stress in vascular

endothelial cells, highlighting its therapeutic potential for DR (65).

6.1.4 Activation of hexosamine pathway
Hyperglycemia activates the hexosamine pathway via

glutamine: fructose-6-phosphate amidotransferase (GFAT),

producing UDP-N-acetylglucosamine (UDP-GlcNAc) that drives

pathological O-glycosylation (66). O-GlcNAc modifications drive

pathogenesis by activating AMPK and inducing photoreceptor

degeneration in retinal neurons (67). To date, no studies have

reported that miRNAs are involved in DR via activation of the

hexosamine pathway; this still warrants further investigation.
6.2 Inflammation and immune cell
activation

Hyperglycemia directly promotes inflammatory gene expression

and activates immune cells via multiple pathways, amplifying

inflammatory mediator production and impairing vascular

endothelial cell structural and functional integrity (68). miRNAs

further exert multidimensional regulatory roles in DR pathology by

targeting inflammatory mediators, signaling pathways, and immune

cell functions (69, 70). This section systematically discusses its

mechanisms from three dimensions: inflammatory signaling

pathway modulation, immune cell recruitment and activation, and

miRNA-endothelial-immune cell crosstalk.

6.2.1 Inflammatory signaling pathway modulation
The dysregulation of inflammatory pathways in DR is centrally

orchestrated by miRNAs through their targeted modulation of the
Frontiers in Endocrinology 07
NF-kB pathway, a master regulator of pro-inflammatory cytokine

production (e.g., TNF-a, IL-1b, IL-6). miR-150, an intrinsic anti-

inflammatory regulator, suppresses NF-kB activation under

physiological conditions; however, its diabetes-associated depletion

exacerbates ocular inflammation by disinhibiting NF-kB-driven
responses, as evidenced by LPS-induced endothelial cell models

(71–73). Furthermore, the MEG3/miR-204/Sirt1 axis mitigates

inflammation via NF-kB pathway that disrupts pro-inflammatory

cytokine production (e.g., TNF-a, IL-6) (74). Similarly, miR-18b

suppresses MAP3K1-dependent phosphorylation of NF-kB p65,

reducing vascular leakage and retinal thickening in STZ-induced

diabetic SD rats, while miR-139-5p targets LMO4 to block NF-kB
activation and downstream inflammatory cascades (TNF-a, IL-6,
Cox-2) in HG-incubated human retinal pigment epithelial (ARPE-

19) cells (75, 76). Apart from NF-kB, miR-146a attenuates

inflammation in HG-treated primary human retinal microvascular

endothelial cells (hRMECs) by inhibition of MyD88/TLR4 signaling

and suppression of TNF-a production, positioning it as a pivotal

regulator of retinal endothelial dysfunction (77). Additionally, miR-

590-3p plays an active role in inflammation by directly targeting

NLRP1, leading to the inhibition of pyroptosis via the NOX4/ROS/

TXNIP/NLRP3 signaling cascade (78, 79). Collectively, the

dysregulation of inflammatory signaling pathways in DR is centrally

orchestrated by miRNAs through their targeted modulation of key

transcriptional regulators and downstream effectors.

6.2.2 Immune cell recruitment and activation
The regulation of immune cells dynamics in DR involves miRNA-

mediated modulation of chemokine signaling, cellular adhesion, and

inflammatory cascades. miR-125a-5p directly targets Ninj1, a key

mediator of macrophage adhesion and pro-inflammatory factor

release. By suppressing Ninj1, miR-125a-5p reduces macrophage

infiltration into inflamed retinas and attenuates vascular leakage in

both endotoxin-induced and STZ-induced diabetic mice models,

underscoring its role in preserving vascular integrity (80).

Concurrently, overexpression of miR-130a-3p attenuated DR

progression by targeting YY1 to inhibit the PI3K/Akt/mTOR

pathway, thereby promoting macrophage autophagy, reducing M1

polarization, and suppressing inflammation in HG-treated human

monocyte (THP-1) and STZ-induced diabetic male mice (81). miR-

124 further modulates immune homeostasis by normalizing HG-

inducedmicroglial hyperactivity, suppressing inflammatory mediators

(e.g., Tnf-a, Ccl2, Ccl3), and downregulating transcription factors

(PU.1) and lipid raft proteins (Flot1), thereby preventing

vasoregression and neuroretinal dysfunction (48).

6.2.3 miRNA-endothelial-immune cell crosstalk
In DR, miRNA-mediated regulation of intercellular adhesion

molecule-1 (ICAM-1) and endothelial-immune crosstalk critically

drives inflammatory pathology. Studies reveal elevated ICAM-1

expression in retinal vessels, promoting leukocyte adhesion,

vascular leakage, and endothelial injury (82). miR-146a directly

modulates this pathway by targeting IRAK1 and ICAM-1, with its

rhythmic expression in diabetic STZ-induced diabetic rat retinas

inversely correlating with ICAM-1 oscillation, suggesting circadian
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regulation of vascular inflammation (83). Apart from ICAM-1,

miR-30a-5p emerges as a dual regulator of endothelial-microglial

crosstalk. In a mice model of ischemic retinopathy, miR-30a-5p

inhibition reduced pathological neovascularization by enhancing

FasL+ microglial interactions with Fas+ endothelial cells,

promoting endothelial apoptosis and microglial phagocytosis (84).
6.3 Retinal neurodegeneration

Emerging evidence reveals that neurodegeneration in DR,

characterized by neuronal dysfunction, apoptosis, and reactive

gliosis, precedes microvascular changes (85). Hyperglycemia-

induced metabolic stress triggers tau hyperphosphorylation and

mitochondrial dysfunction in retinal ganglion cells (RGCs), while

oxidative stress and neuroinflammation reduce neurotrophic

factors (86, 87). Activated microglia and Müller cells exacerbate

neuronal damage through cytokine release and glutamate

disruption (88–90).

Previous studies have shown that miRNAs critically regulate the

neurodegenerative mechanisms (91). Specifically, in T2D mice,

deletion of miR-150 (miR-150-/-) exacerbates photoreceptor

apoptosis detected by increased TUNEL staining in the retina.

This effect occurs because decreased miR-150 promotes nuclear

pELK1T417 translocation, identified as the key step triggering

photoreceptor apoptosis in response to the diabetic/high-fat

conditions (92). Similarly, miR-26a-5p is downregulated in STZ-

induced diabetic mice retina, exacerbating neuronal apoptosis.

Mechanistically, miR-26a-5p directly targets PTEN, suppressing

its upregulation in inner/outer nuclear layers and dampening glial

activation (via GFAP reduction) and inflammatory markers (IL-1b,
NF-kB, VEGF) (93). Transitioning to human studies, miR-29a-5p

levels were markedly elevated in DR patients’ blood, correlating

with hyperglycemia and dyslipidemia. HG upregulates miR-29a-5p

expression in RGCs. This upregulation induced RGCs apoptosis,

oxidative stress (increased ROS/MDA, decreased SOD), and

inflammation (elevated TNF-a/IL-6) via SIRT3 suppression (94).

Moreover, in HG-treated Müller cells, miR-486-3p overexpression

reduced oxidative stress, inflammation, and apoptosis by targeting

TLR4 to repress NF-kB signaling (95). Similarly, miR-320a

overexpression reduced hypoxia-induced damage of Müller cells

by suppressing aquaporin-4 (AQP4) expression, inhibiting

superoxide anion production, enhancing cell viability, and

promoting AQP4 internalization, thereby alleviating retinal

edema. Conversely, miR-30a activates microglia in an NLRP3-

dependent manner, thus promoting the progress of DR (96).
6.4 Vascular dysfunction

Pathological angiogenesis and vascular hyperpermeability are

hallmark features of DR, driven by dysregulated miRNAs that

modulate endothelial proliferation, junctional integrity, and

angiogenic signaling cascades. In angiogenesis, miR-139-5p

emerges as a critical promoter of retinal neovascularization,
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where its upregulation in HG-exposed RMECs enhances VEGF

production, cell migration, and tube formation by repressing PTEN,

a key suppressor of the PI3K/Akt pathway (97). Similarly, miR-

135b-5p promotes endothelial cell proliferation and angiogenesis by

inhibiting Von Hipp-el-Lindau (VHL) expression, as demonstrated

through in vitro retinal endothelial cell isolation from DR mice

transfected with miR-135b-5p inhibitor or VHL-overexpressing

plasmids, and in vivo using a STZ-induced diabetic mice model

(98). Conversely, miR-192-5p acts as a protective regulator by

suppressing ELAVL1-mediated PI3Kd stabilization, thereby

inhibiting endothelial proliferation and migration in HG-treated

hRMECs, with its overexpression mitigating pathological

angiogenesis (99).

Interestingly, in the field of vascular permeability and stability,

miR-132 disrupts retinal barrier integrity by directly targeting

occludin, a tight junction protein, via JAK/STAT3 activation in

HG-stressed ARPE-19 cells, exacerbating vascular leakage and

epithelial mobility. Pharmacological inhibition of miR-132

restores occludin/E-cadherin expression and reduces permeability

(100). Meanwhile, miR-126 downregulation in diabetic retinas plays

a pivotal role in vascular destabilization. Extracellular vesicles (EVs)

from mesenchymal stem cells under diabetic-like conditions

suppress miR-126 in retinal pericytes, amplifying HIF-1a/VEGF-
driven pericyte loss and BRB dysfunction. miR-126 deficiency

correlates with enhanced vascular leakage, independent of Ang-2/

PDGF pathways, positioning miR-126 restoration as a strategy to

counteract EV-mediated BRB breakdown (101).
7 Circulating miRNAs: DR biomarkers

miRNAs, identified as highly stable molecules in various

biological fluids, can be efficiently extracted from blood and other

liquid biopsies (102). Emerging evidence demonstrates that

dynamic alterations in miRNA expression profiles reflect

pathological progression across diverse diseases, including

cancers, cardiovascular diseases, and even DR (103, 104). For

instance, miR-29a-3p exhibits stage-specific dysregulation during

colorectal cancer progression, correlating with tumor invasiveness

and metastatic potential (105). Similarly, miR-21 has emerged as a

pivotal regulator in cardiovascular pathologies, driving cardiac

remodeling (106). Notably, while the functional roles of these

miRNAs in retinal tissues require further elucidation, their

diagnostic utility is underscored by large-scale studies. Circulating

miRNAs in biofluids (e.g., plasma, serum, aqueous humor, vitreous

humor) not only reflect pathological states but also hold represent

promising non-invasive biomarkers for early diagnosis and

therapeutic monitoring (107). Table 2 summarizes the literature

review regarding the expression profiles of miRNAs in DR.

Some studies have shown that blood-derived miRNAs possess

remarkable predictive value for the diagnosis of DR. Through qRT-

PCR analysis, plasma miR-335-3p levels were significantly

decreased in DR patients and demonstrated specificity in

distinguishing DR cases from healthy individuals and T2DM

patients, suggesting its utility as a non-invasive biomarker for DR
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screening (108). Similarly, qRT-PCR quantification showed

markedly reduced plasma miR-26a-5p levels in T2DM patients

with NPDR compared to those without retinopathy, correlating

with superior retinal nerve fiber layer (RNFL) thickness (109).

RNA-seq profiling of serum identified five differentially expressed

miRNAs (miR-4448, miR-338-3p, miR-485-5p, miR-9-5p, and

miR-190a-5p) in NPDR patients , with the first four

downregulated and miR-190a-5p upregulated (110). Furthermore,

qRT-PCR analysis revealed dynamic expression patterns of miR-93

and miR-152 during diabetes progression in serum: miR-93 levels

decreased (OR=0.25, p = 0.028), while miR-152 levels increased

(OR=1.37, p < 0.001) across diabetes, NPDR, and PDR cohorts

(111). Notably, qPCR assays revealed serum miR-146a and miR-21

levels correlating with DR severity (PDR > severe NPDR >

moderate > mild > normal fundus), while miR-34a is in the

opposite tendency (112).

The available data on the expression profiles of miRNAs in the

vitreous humor and aqueous humor of eyes with DR remain scarce,

primarily due to ethical considerations that preclude the use of

healthy individuals as controls. Using RT-qPCR, studies with non-

diabetic controls (macular hole cases) identified upregulated miRNAs

in vitreous analyses of PDR patients: hsa-miR-24-3p, hsa-miR-197-

3p, hsa-miR-3184-3p correlated with VEGF-A/TGF-b levels, while

hsa-miR-20a-5p, hsa-miR-23b-3p, hsa-miR-142-3p, hsa-miR-185-

5p, hsa-miR-223-3p, hsa-miR-362-5p, and hsa-miR-662 showed

elevation compared to controls (113, 114). Conversely, miR-199a-

5p and hsa-miR-326 were downregulated in PDR vitreous, and

miR-100-5p demonstrated diagnostic potential through its

reduction (114, 115). qPCR analysis stratifying PDR severity stages
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(IV-VI) against idiopathic macular hole controls revealed progressive

miR-126 downregulation correlating with advanced fibrovascular

proliferation in vitreous (116). In contrast, aqueous humor studies

employed different control cohorts: RT-qPCR comparisons between

diabetic macular edema (DMO) patients and cataract controls

identified five markedly downregulated miRNAs (miR-185-5p,

miR-17-5p, miR-20a-5p, miR-15b-5p, miR-15a-5p) (117). A

comprehensive pilot study employing miRNA 3.0 microarrays

systematically profiled DR subtypes (T1DM with PDR, T2DM with

PDR, T2DM with NPDR) against non-diabetic vitreoretinal surgery

controls, revealing fluid-specific patterns: vitreous showed

predominant miRNA upregulation (e.g., let-7b, miR-320b, miR-

762, miR-4488), while aqueous exhibited subtype-unique markers

(miR-455-3p in T2DM with NPDR; miR-296 in T2DM with PDR)

(118). Though limited by heterogeneous control groups (macular

pathologies, cataracts), these findings collectively suggest specific

miRNA signatures reflecting DR progression, with vitreous and

aqueous humor profiles changes potentially serving as accessible

proxies for intraocular pathophysiology.
8 miRNA-targeted retinal therapies

Emerging understanding of miRNAs in biology and their

dysregulation in many diseases has prompted scientists to

investigate their potential use in DR. Current strategies focus on

three principal modalities: (1) miRNA restoration therapy, which

introduces synthetic oligonucleotides to supplement downregulated

or non-functional miRNAs; (2) miRNA inhibition therapy, which
TABLE 2 Potential diagnostic miRNA biomarkers for DR.

miRNA DR stage Dysregulation Sample type Detection method Ref.

miR-335-3p — down plasma qRT-PCR (108)

miR-26a-5p NPDR down plasma qRT-PCR (109)

miR-4448, miR-338-3p, miR-485-5p, miR-9-5p NPDR down serum RNA-seq (110)

miR-190a-5p NPDR up serum RNA-seq (110)

miR-93 NPDR, PDR down serum qRT-PCR (111)

miR-152 NPDR, PDR up serum qRT-PCR (111)

miR-146a, miR-21 NPDR, PDR up serum qPCR (112)

miR-34a NPDR, PDR down serum qPCR (112)

hsa-miR-24-3p, hsa-miR-197-3p, hsa-miR-3184-3p PDR up vitreous humor RT-qPCR (113)

hsa-miR-20a-5p, hsa-miR-23b-3p, hsa-miR-142-3p, hsa-miR-185-
5p, hsa-miR-223-3p, hsa-miR-362-5p, hsa-miR-662

PDR up vitreous humor RT-qPCR (114)

miR-199a-5p, hsa-miR-326, miR-100-5p PDR down vitreous humor RT-qPCR (115)

miR-126 PDR down vitreous humor qPCR (116)

miR-185-5p, miR-17-5p, miR-20a-5p, miR-15b-5p, miR-15a-5p DME down aqueous humor RT-qPCR (117)

let-7b, miR-320b, miR-762, miR-4488 NPDR up vitreous humor microarrays (118)

miR-455-3p, miR-296 PDR up aqueous humor microarrays (118)
frontier
NPDR, non-proliferative DR; PDR, proliferative DR; DME, diabetic macular edema; qRT-PCR, quantitative real-time polymerase chain reaction; qPCR, quantitative PCR; RT-qPCR, reverse
transcription-quantitative PCR; RNA-seq, RNA sequencing.
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employs antagonists to suppress overexpressed miRNAs; (3)

miRNA delivery therapy, where advances in systems like

extracellular vesicles and exosomes enhance therapeutic precision

by improving miRNA bioavailability and minimizing off-target

effects. Figure 3 illustrates miRNA-targeted therapeutic strategies

in DR.
8.1 miRNA restoration therapy

miRNA mimics are double-stranded RNA oligonucleotides that

exactly copy the mature miRNA duplex to replenish downregulated

miRNAs (119). Studies found that miR-20b-3p mimics attenuated

retinal inflammation in DR rat models by targeting TXNIP, leading

to reduced inflammatory cytokine levels and improved retinal

pathology (120). In HRECs, miR-182-5p mimics suppressed

hypoxia-induced angiogenesis by downregulating ANG and

BDNF, thereby enhancing cell viability and stabilizing vascular

integrity (121). Furthermore, miR-9 mimics counteracted glucose-

induced endothelial-to-mesenchymal transition (EndMT) by

inhibiting TGF-b and proinflammatory pathways, effectively

reducing retinal vascular leakage (122). Interestingly, miR-223-3p

mimics in zebrafish models exhibited dual effects: while elevating

glucose levels, they simultaneously mitigated retinal vascular

degeneration and restored structural abnormalities in ganglion
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and nuclear layers through VEGF-A/NRP-1 pathway modulation

(123). Furthermore, a miRNA-encoding plasmid or virus-based

vector could be exploited for purposes requiring miRNA delivery

for a specific period. In the oxygen-induced retinopathy (OIR) mice

model, lentiviral delivery of miR-106b reduced pathological

neovascularization by approximately 45-50%, achieving a

comparable therapeutic efficacy to anti-VEGF treatment, which

underscores the therapy potential in counteracting pathological

angiogenesis in PDR (124).

While miRNA mimics hold therapeutic potential for DR, their

clinical application is hampered by side-effects linked to the

passenger strand activity, raising concerns over safety and

specificity (125). In contrast, natural compounds derived from

traditional medicine offer a promising alternative by restoring

endogenous miRNA expression. Danhong injection (DHI)

alleviates DR by upregulating miR-30d-5p to suppress JAK1

expression, as demonstrated in both db/db diabetic mice and HG-

induced ARPE-19 cells, through suppressing inflammation,

improving renal/retinal injury, and inhibiting pathological

angiogenesis (126). Similarly, thymoquinone (TQ), a bioactive

phytochemical, alleviates Müller cell apoptosis in diabetic mice by

elevating miR-29b levels, thereby repressing SP1-mediated

activation of pro-apoptotic factors (e.g., Bax and Caspase-3) and

enhancing anti-apoptotic Bcl-2 expression (127). Furthermore,

Apigenin attenuates DR by elevating miR-140-5p expression to
FIGURE 3

Major strategies for miRNA-targeted therapy in DR. Three main approaches include: miRNA restoration therapy (including miRNA mimics, natural
compounds, and virus-based vectors), miRNA inhibition therapy (including miRNA antagomirs, natural compounds, miRNA sponges, and LNA-
antimiRs), and miRNA delivery therapy (including mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs), small extracellular vesicles (sEVs),
and exosomes).
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inhibit the HDAC3/PTEN/PI3K/AKT pathway, as demonstrated in

HG-induced hRMECs through reduced angiogenesis, proliferation,

and migration in vitro (128). These findings highlight the capacity

of herbal constituents to fine-tune miRNA networks without

exogenous oligonucleotide delivery, thereby preserving retinal

homeostasis through multi-target mechanisms while minimizing

side effects.
8.2 miRNA inhibition therapy

miRNA inhibition therapy represents a strategic approach to

counteract disease progression by selectively suppressing the activity

of aberrant miRNAs within target tissues, as demonstrated in various

pathologies. For example, the synergistic downregulation of miR-92a

and miR-18a in non-small cell lung cancer inhibits EMT and

suppresses tumor advancement through SPRY4 targeting (129). In

diabetic complications like nephropathy, the downregulation of miR-

21 enhances PPARa expression to improve mitochondrial function

and alleviate lipid metabolism disorders, thereby mitigating disease

progression — a mechanism highly relevant to targeting similar

pathways in DR (130). This therapy is achievable through diverse

methodologies such as miRNA antagomirs, natural compounds,

miRNA sponges, and LNA-antimiRs, which effectively disrupt

miRNA-mRNA interactions (102).

Antagomirs achieve miRNA suppression through sequence-specific

degradation of target miRNAs by utilizing chemically engineered,

cholesterol-conjugated antisense oligonucleotides that bind

complementarily to miRNAs (131). For example, the miR-139-5p

antagomir ameliorates DR by suppressing miR-139-5p expression to

upregulate PTEN and inhibit VEGF-driven retinal neovascularization,

as demonstrated in HG-treated hRMECs/mice retinal microvascular

endothelial cells (mRMECs) through reduced migration, tube

formation, and VEGF levels, and further validated in diabetic mice

models by attenuating acellular capillaries and pathological blood vessel

formation (97). Similarly, The miR-144-3p antagomir mitigates

oxidative stress-induced retinal degeneration in DR by suppressing

miR-144-3p to activate Nrf2-dependent antioxidant signaling (e.g.,

NQO1, GCLC), demonstrated in oxidatively stressed human/mice

RPE cells (reduced apoptosis) and sodium iodate-treated mouse

(preserved retinal integrity via subretinal delivery) (132).

Emerging evidence highlights natural compounds as promising

miRNA-modulating agents for DR management. Astragalus

polysaccharide (APS) mitigates mitochondrial apoptosis in ARPE-19

cells by suppressing the miR-182/Bcl-2 axis under high glucose

conditions. APS downregulates miR-182, restoring Bcl-2 expression,

reducing cytochrome-c release, and attenuating apoptosis markers

(Bax, cleaved caspases) (133). Similarly, blueberry anthocyanins (BAE)

alleviate DR via the miR-182/OGG1 axis, suppressing HG-induced

ROS, endoplasmic reticulum stress (ERS), and apoptosis in ARPE-19

cells. BAE inhibits miR-182 to upregulate OGG1, confirmed by

luciferase assays, and ameliorates retinal oxidative damage in DR

rats (134). Complementarily, ginsenoside Rg1 targets the miR-100-3p/

FBXW7/c-MYC axis, inhibiting angiogenesis in hRMECs and DR rat

models. Rg1 downregulates miR-100-3p, elevating FBXW7 to
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promote c-MYC degradation, thereby reducing vascular leakage and

pathological neovascularization (135). These studies collectively

demonstrate that natural compounds modulate distinct miRNA

pathways to address multifactorial DR pathogenesis.

miRNA sponges represent a class of artificially engineered RNA

molecules meticulously designed to specifically inhibit the function

of one or more target miRNAs, thereby serving as potent tools in

miRNA inhibition therapy; these constructs typically comprise long

RNA chains embedded with multiple (ranging from 4 to 10 or

more) tandem, fully or nearly fully complementary binding sites

that exhibit high affinity for the designated miRNAs, functioning

analogously to a “sponge” to efficiently sequester and bind the target

miRNAs within cellular environments through competitive

interactions (136, 137)—crucially, this sequestration prevents the

miRNAs from binding to their natural downstream mRNA targets,

effectively nullifying their gene silencing capabilities and restoring

normal gene expression (138). For instance, circular RNA ZNF532

acts as a miR-29a-3p sponge to sequester and reduce miR-29a-3p

activity, thereby upregulating NG2, LOXL2, and CDK2 expression

to rescue pericyte function in HG-exposed retinal pericytes and

STZ-induced diabetic mice, highlighting its relevance in mitigating

early DR complications (139). Similarly, in the context of PDR,

studies reveal that the long noncoding RNA PPT2-EGFL8 functions

as a sponge for miR-423-5p. In PDR, long noncoding RNA PPT2-

EGFL8 functions as a miR-423-5p sponge, suppressing hypoxia-

induced hRMECs proliferation and ameliorating pathological

neovascularization in STZ-induced diabetic mice models by

modulating PPARD/ANGPTL4 signaling, thereby illustrating the

targeted efficacy of miRNA sponges in addressing advanced DR

pathologies (140).

LNA-antimiRs, characterized by their 20-O and 40-C

methylene-bridged ribose ring modifications that confer structural

rigidity, exhibit enhanced nuclease resistance and superior miRNA

binding affinity compared to antagomirs (141). The study by Zhou

et al. demonstrated that LNA-anti-miRs for miR-126 effectively

suppressed pathological choroidal neovascularization (CNV) in a

laser-induced mice model and reduced VEGF-A production

through aB-Crystallin promoter regulation in RPE cells (142).

Notably, while this study validates LNA-antimiRs as potent tools

for modulating ocular angiogenesis, direct evidence for LNA-

mediated miRNA inhibition in DR remains unexplored.
8.3 miRNA delivery therapy

Current miRNA delivery approaches include conjugation

(direct ligand-conjugated miRNAs enabling targeted delivery but

inducing hepatic aggregation), viral vectors (efficacy limited by

safety concerns), and nanoparticles (cationic carriers protecting

miRNAs but risking cytotoxicity) (143–145).

Emerging non-viral strategies, such as EVs and exosomes, offer

promising alternatives due to their biocompatibility and targeted

delivery potential for DR treatment (146). MSC-sEVs demonstrated

therapeutic efficacy by delivering miR-143-3p to suppress NEDD8-

mediated Cullin3 neddylation, thereby stabilizing Nrf2 to reduce
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oxidative stress and inflammation in Müller cells - both in vitro

(restoring AGEs-induced endothelial barrier dysfunction) and in

diabetic mice (alleviating retinal inflammation and gliosis) (63).

Similarly, MSC-sEVs attenuated DR progression in diabetic rats

through miR-22-3p transfer , which inhibited NLRP3

inflammasome activation in microglia, subsequently reducing

retinal inflammation and blood-retinal barrier damage (147).

Human umbilical cord mesenchymal stem cell-derived extracellular

vesicles (MSC-Evs) were shown to enrich miR-30c-5p, targeting

PLCG1 to suppress PKC/NF-kB signaling pathways, thereby

ameliorating inflammatory responses in both STZ-induced diabetic

rats andHG-treated HRECs (62). Exosomes, as a specialized subset of

EVs, have demonstrated enhanced targeting capabilities in DR

models. Bone marrow MSC-derived exosomes delivered miR-133b-

3p to mRMECs, effectively suppressing FBN1-mediated angiogenesis

and oxidative stress while promoting apoptosis in hyperglycemic

conditions, as evidenced by both in vitro cellular assays and KK/Upj-

Ay diabetic mice models (148). Similarly, umbilical cord MSC

exosomes enriched with miR-17-3p demonstrated therapeutic

efficacy by modulating the STAT1/miR-17-3p/VEGF axis to

suppress pathological neovascularization in DR mice (149). These

findings position EV/exosome-mediated miRNA delivery as a

transformative approach for DR treatment, combining the

physiological benefits of natural biomaterials with precise molecular

targeting capabilities to address multifactorial retinal

pathophysiology. A summary of the current miRNA delivery

platforms is provided in Table 3.
9 Limitations and translational
challenges

There are several critical limitations that impede clinical

translation of miRNA-based therapies. Firstly, the heavy reliance

on animal models—such as STZ-induced diabetic rodents—poses

inherent constraints. These models do not fully recapitulate the

complex, multifactorial, and chronic nature of human DR,

particularly in terms of metabolic comorbidities, genetic diversity,

and the slow progression of microvascular and neuroglial pathology

(150). Species-specific differences in retinal anatomy, miRNA

expression profiles, and disease progression limit the direct
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applicability of these findings to humans. Secondly, while

circulating miRNAs show promise as non-invasive biomarkers,

their clinical utility is hampered by preanalytical variability (e.g.,

sample collection, processing, and storage), lack of standardized

profiling methods, and heterogeneity in expression profiles across

different patient populations and stages of DR (151, 152). Moreover,

current miRNA therapeutic strategies face substantial hurdles in

clinical implementation. Key challenges include ensuring efficient,

targeted, and sustained delivery to retinal tissues while minimizing

off-target effects and immune activation (119). Current delivery

systems—such as viral vectors, lipid nanoparticles, and extracellular

vesicles—still face limitations in bioavailability, tissue specificity, and

potential cytotoxicity (153).Furthermore, the risk of off-target effects

due to the pleiotropic nature of miRNAs, which can regulate multiple

mRNA targets, raises concerns about unintended consequences on

physiological processes (154). Long-term safety profiles, including

immunogenicity and cumulative toxicity, remain largely unexplored.
10 Discussion and future directions

While the compelling evidence underscores the immense potential

of miRNAs as sensitive diagnostic biomarkers for non-invasive liquid

biopsy-based staging and multi-target therapeutic agents capable of

modulating key hyperglycemia-induced pathways (oxidative stress,

inflammation, angiogenesis, neurodegeneration) in DR, significant

translational challenges necessitate focused future research, including

rigorously validating the diagnostic accuracy, specificity, and predictive

power of candidate miRNAs across diverse, large-scale longitudinal

cohorts and ethnic populations using standardized, sensitive profiling

techniques like ddPCR to overcome limitations of variability and

establish clinically actionable thresholds; developing efficient, targeted,

and stable delivery systems capable of safely and persistently delivering

miRNA mimics or inhibitors specifically to retinal cells while

minimizing off-target effects and immune responses; conducting

comprehensive preclinical studies evaluating long-term efficacy, safety,

and potential synergies or antagonismswith existing therapies (e.g., anti-

VEGF, faricimab); advancing robust miRNA-based combinatorial

strategies that integrate multi-miRNA therapeutics or miRNA

modulation with emerging modalities like sustained-release devices or

gene editing technologies to enhance durability and efficacy; and
TABLE 3 Comparison of miRNA delivery platforms for DR.

Delivery
platform

Mechanism Advantages Limitations

Conjugation Direct ligand-conjugated miRNAs Targeted delivery
Hepatic aggregation, limited tissue
specificity

Viral Vectors
Recombinant viruses encoding miRNA mimics or
inhibitors

High transfection efficiency, persistent
expression

Immunogenicity

Nanoparticles Cationic lipids encapsulating miRNAs Protects miRNA Cytotoxicity, limited retinal penetration

Extracellular Vesicles Natural membrane vesicles carrying miRNAs Biocompatible, low immunogenicity Scalable production challenges
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fostering the integration of validated circulating miRNA signatures with

cutting-edge diagnostic tools like AI-driven retinal imaging and

metabolomics into unified, accessible platforms for precision risk

stratification, early detection, personalized intervention, and real-time

monitoring of DR progression to ultimately shift the paradigm towards

prevention and halt the relentless global burden of this vision-

threatening complication.
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