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Objective: This study aimed to investigate the clinical, steroid hormones and
genetic characteristics of Chinese children with 21-hydroxylase
deficiency (210HD).

Methods: This retrospective study included 115 children with 210OHD. Clinical
data, steroid hormone levels, and genetic information were collected for overall
and subgroup analyses. Clinical and steroid hormone characteristics were
compared across clinical phenotypes and by sex. Within the salt-wasting (SW)
group, characteristics were also compared between newborn screening (NBS)-
diagnosed and clinically diagnosed patients. The relationship between Prader
scores and both clinical phenotype and steroid hormone levels was analyzed,
and the genotype-phenotype correlation, variation frequency and CAH-X CH-1
incidence were calculated.

Results: The cohort comprised 76 (66.09%) SW, 27 (23.48%) simple virilizing (SV),
and 12 (10.43%) non-classic (NC) patients. The overall levels of
adrenocorticotropic hormone (ACTH), 17-hydroxyprogesterone(170HP), and
progesterone (P) levels were significantly elevated in SW and SV compared to
NC patients. Girls with Prader scores >1 had higher hormone levels than those
with normal external genitalia. Virilization was more severe in SW than SV girls.
NBS significantly reduced the diagnostic delay for SW infants. Functional assays
and SpliceAl prediction confirmed that a novel splice variant (c.203-1G>A)
induces exon 2 skipping. We also report the first instance of cis double
mutations (E3del8bp and p.V282L) on a single allele in two brothers. The allele
frequency of p.V282L (5.16%) and CAH-X CH-1 incidence (11.32%) were higher
than previously reported.
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Conclusion: This study expands the 210HD mutational spectrum with two novel
findings: a pathogenic splice-site variant (c.203-1G>A) and cis double mutations
on a single allele. We demonstrate phenotype-specific differences in virilization
and steroid hormones, underscoring the value of Prader scoring. NBS facilitated
earlier diagnosis in SW patients, supporting its nationwide implementation in
China. Our findings illustrate a distinct genetic architecture for 210HD in the
Chinese population, correlating with increased detection of NC cases.

21-hydroxylase deficiency, steroid hormones, newborn screening, genotype,

CAH-X syndrome

1 Introduction

21-hydroxylase deficiency (210HD)(OMIM: 201910) is an
autosomal recessive disorder caused by pathogenic variants in the
CYP21A2 gene, accounting for over 90% of congenital adrenal
hyperplasia (CAH) cases (1). The clinical phenotype correlates
with the residual 21-hydroxylase activity: salt-wasting (SW)
(minimal/no activity), simple virilizing (SV) (moderate
deficiency), and non-classic (NC) (mild impairment) (2-4).
210HD disrupts adrenal steroidogenesis, leading to distinct
hormone profiles across phenotypes and sexes.

Elevated 17-hydroxyprogesterone (170HP) is a sensitive
diagnostic biomarker for 210HD. Newborn screening (NBS) for
170HP has been progressively implemented across most cities since
2018 in Hebei Province, China. NBS has been shown to reduce
hospitalization and prevent morbidity and mortality from adrenal
crises (5, 6). However, province-specific outcome data
remain limited.

The CYP21A2 gene resides at 6p21.3 within the RCCX module,
a tandem arrangement of genes (RP1-C4A-CYP21A1P-TNXA-RP2-
C4B-CYP21A2-TNXB) prone to recombination due to high
homology between functional genes (CYP21A2, TNXB) and
pseudogenes (CYP2IAIP, TNXA) (5-7). These rearrangements
generate pathogenic chimeric genes, complicating molecular
diagnosis, which typically combines Sanger sequencing and
multiplex ligation-dependent probe amplification (MLPA) (1, 8-
10). Co-occurring CYP2I1A2 and TNXB variants cause CAH-X
syndrome, presenting with combined 210HD and Ehlers-Danlos
syndrome (EDS) features (~10% of 210HD cases) (8, 11, 12). CAH-
X syndrome is classified into three subtypes based on breakpoints
within the chimeric TNXA/TNXB gene: CH-1: 120-bp deletion in
exon 35; CH-2: Pathogenic variants disrupting exon 40; CH-3:
Multiple clustered variants in exons 41 and 43 (11-14).

In this study, we comprehensively analyzed the clinical
phenotype, steroid hormone profiles, and genetic spectrum in 115
Chinese children with 210HD and functionally validated a novel
pathogenic variant.
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2 Materials and methods
2.1 Case data

2.1.1 Study population and diagnostic criteria

We conducted a retrospective cohort study of children with
suspected congenital adrenal hyperplasia (CAH) evaluated at the
Second Hospital of Hebei Medical University from 2012 to 2023
(Supplementary Figure SI). A cohort of 119 cases with clinical and
biochemical features of CAH—including hyperpigmentation,
hypocortisolism, elevated ACTH, vomiting, atypical genitalia—
along with elevated 17-OHP was collected. Four cases presenting
hypertension or hypokalemia were excluded; all were confirmed by
genetic testing to carry compound heterozygous mutations
in CYP11BI.

Among the remaining cases, 106 underwent CYP21A2
sequencing and MLPA analysis. Two carried only a single
heterozygous mutation (one SW and one NC), while 104 had
homozygous or compound heterozygous mutations, which were
classified as SW (n = 71), simple virilizing (SV) (n = 25), or NC (n =
8) based on clinical and electrolyte profiles. The remaining nine
cases, without genetic testing, were phenotypically categorized as
SW (n =4), SV (n = 2), or NC (n = 3) (Detailed clinical data are
provided in Supplementary Table S1).

This retrospective analysis study was approved by the
institutional ethics committee of the Second Hospital of Hebei
Medical University (2023-R658). The study adhered to the Helsinki
Declaration. Informed consent to participate was obtained from all
of the participants’ guardians in the study.

2.1.2 Phenotypic classification
115 patients were stratified into three clinical phenotypes based
on established criteria:

* SW: Characterized by hyponatremia, hyperkalemia,
dehydration, and atypical genitalia in girls.

* SV: Presenting with atypical genitalia at birth and
progressive postnatal virilization in girls and peripheral

frontiersin.org


https://doi.org/10.3389/fendo.2025.1665306
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Chong et al.

precocious puberty in boys, both in the absence of salt-
wasting symptoms.

* NC: Manifesting later-onset symptoms including
premature pubarche, menstrual irregularities, or
accelerated bone age.

2.1.3 Newborn screening

NBS was performed using dried blood spots collected from heel
prick 72 hours after birth, once adequate breastfeeding had been
established. 17OHP was measured at designated screening centers
using Time-Resolved Fluoroimmunoassay (TRFIA). Patients
identified through NBS were classified as SW if they presented
with hyponatremia and/or hyperkalemia and carried severe
mutations (Group 0 or A). Those without electrolyte imbalance
or elevated renin, and carrying partial-loss mutations, were
classified as SV.

2.1.4 Data collection
Comprehensive clinical and biochemical parameters were
obtained at diagnosis:

* Demographic characteristics (sex, age at symptom onset
and diagnosis).

* Anthropometric measurements (height, weight, bone age).

 Serum electrolytes (Na*, K*).

» Steroid hormone profiles (ACTH, cortisol, 1770HP, T, P,
Androstenedione (AD), 21-Deoxycortisol (21-DOF),
Dehydroepiandrosterone sulfate (DHEA-S)).

* Gonadotropin levels (follicle-stimulating hormone (FSH),
luteinizing hormone (LH)).

* For female patients: Prader score and surgical history.

* Neonatal 170HP screening results (if available).

2.2 Genetic testing

Peripheral blood was collected from the patients and their
parents and genomic DNA was extracted, following the procedure
of the DNA isolation system (Lab-Aid 820, Zeesan). First, MLPA
was performed using the P050-D1CAH kit (MRC Netherlands,
Amsterdam, The Netherlands) to detect large block deletions/
transformations on a genetic analysis system. The MLPA contains
six probes targeting the TNXB gene to detect the deletion of exon 35
of the TNXB gene. Then, PCR-specific amplification of the
CYP21A2 gene was performed with ME0008 and MEO0066,
followed by direct sequencing of the entire CYP2IA2 gene using a
sequencer (3500xL Dx, Thermo Fisher, Inc.). The CYP21A2 gene
amplification failed in patients harboring large deletions/
conversions on both alleles.
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2.3 Genotype-phenotype correlation
analysis

Patients were stratified into five genotype groups based on
predicted residual 21-hydroxylase activity:

* Group 0: Complete enzyme inactivation caused by biallelic
null variants (deletion, E3del8bp, E6 cluster, p.L308Ffs*6,
p.Q319X, p.R357W) (14, 15).

* Group A: Minimal activity (homozygous I12G or compound
heterozygous with null variants) (16).

* Group B: ~2-5% activity (homozygous p.I173N/p.R484P/
p-R436C/p.R460H or compound heterozygous with Groups
0/A mutations) (17).

*  Group C: 20-50% activity (homozygous p.V282L/p.P31L or
compound heterozygous with Groups 0/A/B variants)
(18-20).

*  Group D:Patients with novel or biochemically-not-assessed
mutations (21).

Patients in Groups 0 and A were predicted to have a phenotype
of SW, patients in Group B were predicted SV phenotype, and NC
phenotype for Group C patients. As the observed clinical phenotype
did not always match the genotype-predicted phenotype within
each group, the positive predictive value (PPV) was calculated to
quantify this correlation. PPV was defined as: (Number of patients
with the expected phenotype in the group/Total patients in the
group) x 100%.

2.4 Analysis of the pathogenicity of the
novel c.203-1G>A mutation in CYP21A2

2.4.1 In silico pathogenicity prediction
Splice-altering potential was assessed using Splice-AI (https://
spliceailookup.broadinstitute.org/).

2.4.2 In vitro experiments

Cell culture: HEK293T and HeLa cells (Chinese Academy of
Sciences Cell Bank) were maintained at 37 °C/5% CO,. The PCR
primers used in follow procedure are shown in Supplementary
Table S1.

Plasmid construction: We modified the pEGFP-N1 vector
(Addgene #172281) by inserting a 3xFLAG tag sequence (after
CMV promoter) and T2A (pre-EGFP) sequences. We then
amplified the wild-type CYP21A2 fragment from HEK293T
genomic DNA (TIANamp Kit) via nested PCR with flanking
Xhol/Kpnl sites. Subsequently, we generated the ¢.203-1G>A
mutant using overlap extension PCR. Finally, we ligated the
respective fragments (CYP2IA2-WT or CYP21A2-MUT) into the
modified vector backbone to create the constructs pCMV-
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TABLE 1 Phenotype- and sex-stratified profiles of the 115 Chinese children with 210HD at initial diagnosis.

SW SV NC
Male Female Total Male Female Total Male Female Total
(n=47) (n=29) (n=76) (n=11) (n=16) (n=27) (n=6) (n=6) (n=12)
m age . . .01 X . . 5 .85 7.
Sym ag 0.03 0.00 0.0 442 0.00 0.18 3.96 11.8 43
(yr) (0.01;0.06) **  (0.00;0.00) * (0.00:0.04) *  (1.30;6.48) * | (0.00;0.59) ® (0.00:425)°  (2.926.10) * | (7.65;14.64) (3.72;12.68)
Sym-di
n:':walf S 005 0.06 0.05 0.60 2.04 1.83 3.81 123 2.72
1) (0.02;0.09) % (0.04;0.24) * (0.02:0.11) *  (0.03;3.81) (0.70:4.31) (0.31;4.26) (1.72:4.69) | (0.37:3.29) (0.504.22)
yl'
iag age . . .07 .5 7 . 7. X .
Diag ag 0.08 0.06 0.0 6.51 278 4.32 24 13.49 8.91
(yr) (0.05:0.14) *  (0.04;0.24) * (0.05:0.16) *  (3.07:8.37) (0.74;5.70) ® (1.68:834)°  (6.739.59) * | (8.16;16.92) (6.98;13.56)
Nas 119.40 122.60 120.75 138.00 134.90 137.00 138.00 140.15 139.20
(107.60; (112.30; (110.20; (132.90; (123.71; (124.51; (102.45; (138.58; (137.25;
(mmol/L) ac ac ac b
126.50) 131.50) 130.03) 138.80) 138.95) 138.80) 140.03) 142.80) 141.80)
+ . ) 7 5 7 7 15 . 15
K 6.82 6.30 6.79 456 4.79 478 4 412 4.1
(mmol/L)  (5.93;7.89) *  (5.73;7.70) * (5.80:7.85) *° | (3.98;5.10) (4.47:6.02) ® (430:5.88)°  (3.064.30) | (3.96:4.26) (4.004.28)
ACTH 230.00 362.80 255.45 102.00 245.50 141.00 71.39 79.70 79.70
(pa/oal) (91.80; (128.15; (107.09; (79.51; (81.35; (79.51; (22.75; (20.30; (22.25;
524, 1072.55 : 74. 5 X . 5 75
P8 24.00) 072.55) 846.20) 374.60) 322.50) 328.00) ® 133.63) 124.50) 119.75)
S 127.70 139.60 13005 82.70 80.25 82.70 19.50 70.73 37.00
(ng/ml) (25.105 (76.90; (49.50; (71.95; (30.86; (34.20; (11.51; (2.99; (591:
8 232.10) 277.10) 251.08) * 116.50) 186.42) 148.70) 66.43) 146.87) 89.84)
T 3937.50 4330.00 4120.00 1730.00 2687.00 2280.00 926.09 1838.60 1499.04
(1645.50; (2565.00; (1953.25; (785.30; (1375.65; (1129.70; (227.50 (265.28; (249.53;
(pg/ml)
m
P8 5670.00) 8720.00) 7781.00) * 3596.00) 4954.58) 3795.86) 3180.00) 5392.50) 3366.80)
P 13.26 13.86 13.36 6.74 10.54 9.70 1.64 2.13 2.13
(ng/ml) (6.95;18.74) *  (7.38;24.76) * (7.3721.03) * | (1.40;14.96) | (7.15;15.90) © (5.04:14.96)® | (027;531)  (0.91;6.87) (0.37:4.28)

Different superscript letters (a, b, ¢) indicate statistically significant differences (P < 0.05) between phenotypes: a, SW vs NC; b, SV vs NG; ¢, SW vs SV. Asterisk (*) indicates significant difference

(P < 0.05) between males and females within the same phenotype group.

Sym age, age at symptom onset; Sym-diag interval, symptom-to-diagnosis interval; Diag age, age at diagnosis; yr, years-old.

CYP21A2-WT and pCMV-CYP21A2-MUT. Both constructs were
verified by Sanger sequencing (for the full insert in WT and the
specific mutation in MUT).

Transfection and splicing analysis: Plasmids (pCMV-
CYP21A2-WT and pCMV-CYP21A2-MUT) were transfected into
HEK293T and HeLa cells using Lipofectamine 2000. Total RNA
was extracted from transfected cells 48-72 hours post-transfection
(Omega Bio-Tek EZN.A.® Total RNA Kit I). cDNA was then
synthesized from the extracted RNA (MonScriptTM RTIII Super
Mix with dsDNase). Transcripts encompassing the region of
interest were amplified via nested PCR. The resulting PCR
products were analyzed through 1% agarose gel electrophoresis.
Bands corresponding to expected sizes were gel-purified (BioFlux
Gel Extraction Kit), and finally subjected to bidirectional Sanger
sequencing to determine the splicing pattern.

2.5 Statistical analysis

All statistical analyses were conducted using IBM SPSS Statistics
(version 22.0). Due to non-normally distributed data, continuous
variables are presented as median and interquartile range (IQR).
Missing data were handled using multiple imputation: variables
with missingness <15% (Na*, K*, ACTH, 170HP, T, P) were
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imputed, while those with higher missing rates (AD, 18.26%;
cortisol, 20.00%; 21DOF, 27.82%; DHEA-S,30.43%) were included
only as predictors. Twenty imputed datasets were generated and
pooled according to Rubin’s rules.

Group comparisons (e.g., SW vs SV, SV vs NC, SW vs NG;
overall and sex-specific subgroups; NBS vs clinical diagnosis in SW;
vulvar masculinization degree in girls) were performed using
Mann-Whitney U test or chi-squared test, as appropriate.
Bonferroni correction was applied for multiple comparisons.
Statistical significance was defined as P < 0.05 (two-sided).

3 Results
3.1 Clinical data analysis

3.1.1 Clinical characteristics by phenotype

The clinical characteristics and steroid hormone levels of 115
patients with 210HD (SW = 76, SV = 27, NC = 12) at the time of
initial diagnosis are shown in Table 1. Overall, compared to the
combined SV and NC groups, patients with the SW form exhibited
a younger age at symptom onset and/or diagnosis, a shorter interval
from symptom onset to diagnosis, as well as significantly lower Na*
along with higher levels of K*, ACTH, 170HP, T, and P.
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TABLE 2 Comparison of SW patient profiles by diagnostic pathway (NBS vs clinical presentation).

Abnormal NBS

Clinical diagnosis

(n=31) (n=45) Zl’ :
Sym age (d) 7.00(0.00;20.00) 5.00(0.00;16.00) 0.28 0.78
Sym-diag interval (d) 18.00(7.00;27.00) 27.00(11.00567.00) 241 0.02
Diag age (d) 23.00(19.00;38.00) 41.00(18.50;84.50) 2.19 0.03
Sex (n, %)
Male 22/47(46.81%) 25/47(53.19%) 1.85 0.17
Female 9/29(31.03%) 20/29(68.97%)
Na* (mmol/L) 122.60(110.80;131.10) 119.90(109.50;129.20) 0.72 047
K* (mmol/L) 6.58(5.77;8.35) 6.79(5.85;7.83) 0.37 0.72
ACTH (pg/ml) 132.00(79.38;892.30) 289.40(117.65;820.40) 1.46 0.14
170HP (ng/ml) 127.70(63.07;264.00) 135.00(47.85;223.67) 0.01 1.00
T (pg/ml) 3277.00(1645.50:4778.80) 4323.46(2251.50;9025.00) 1.76 0.08
P (ng/ml) 13.19(6.36;14.24) 14.01(7.86;25.03) 1.73 0.08

Sym age, age at symptom onset; Sym-diag interval, symptom-to-diagnosis interval; Diag age, age at diagnosis; d, days old; Z/?, the Z value (for Mann-Whitney U test) or the chi-square value (for

the chi-square test).

Furthermore, when comparing SV and NC patients, those with the
SV form showed both an earlier age of onset and diagnosis in
addition to elevated K*, ACTH, 170HP, and P levels. P levels were
significantly higher in SW and SV females—as well as in SW males
—compared to their NC counterparts. No significant sex-based
differences in steroid levels were detected within the same
phenotypic subgroups. Females with classic 210HD due to visible
atypical genitalia present earlier than males, who often present later
with salt-wasting crisis or precocious puberty. Conversely, among
NC patients, males presented with an earlier onset and diagnosis
than females.

A sensitivity analysis comparing the results derived from
multiply imputed data with those from complete case analysis
(Supplementary Table S2) demonstrated closely matched medians
and consistent statistical significance across the SW, SV, and NC
groups, both in the overall cohort and in gender-specific subgroups.
These findings suggest that the primary results are robust to the
method of handling missing data.

3.1.2 Comparison of NBS and clinically diagnosed
patients

Among 115 patients, 33 (SW = 31, SV = 2) patients accepted
NBS were reported abnormal 170OHP. Comparative analysis of SW
patients diagnosed via abnormal NBS (n=31) versus clinical
diagnosis (n=45) revealed key differences (Table 2). NBS
significantly reduced the diagnostic delay by 50% (median: 18d
vs. 27d; P = 0.02). Accordingly, the age at diagnosis was
substantially earlier in the NBS group (median: 21d vs. 43d;
P = 0.03). However, no significant differences were observed
between the two groups in sex distribution, electrolyte levels, or
steroid hormone concentrations at the time of diagnosis.

Frontiers in Endocrinology

3.1.3 Virilization patterns in females with 210HD
As illustrated in Figure 1, the distribution of Prader scores
varied markedly across the groups. Among the SW group (n=29),
the majority were classified as Prader 3 (44.83%), whereas the SV
group (n=16) was predominantly Prader 2 (56.25%). In contrast,
the NC group (n=6) showed predominantly normal external
genitalia (83.33%). Overall comparisons revealed statistically
significant differences in composition ratios between the SW/SV
and NC groups (P < 0.001). Furthermore, the proportion of
individuals with Prader >3 was significantly higher in the SW
group (72.42%) compared to the SV group (37.50%) (P = 0.022).
As summarized in Table 3, clinical and hormonal correlates also
differed significantly according to Prader classification. Specifically,
subjects with Prader >1 (n = 46) exhibited significantly earlier
symptom onset and time of diagnosis (P < 0.001), along with higher
ACTH, 170HP, and progesterone levels (P < 0.05), compared to those
with normal external genitalia (n = 5). Additionally, the surgery rate
was markedly higher in the Prader =1 group (78.26% vs. 0.00%,
P = 0.002). When comparing the Prader >3 (n = 27) and Prader
1~2 (n = 19) subgroups, the former was associated with a younger age
at diagnosis and surgery (P < 0.01), a shorter diagnostic delay
(P = 0.02), and a higher surgical rate (92.59% vs. 57.89%, P = 0.01).

3.2 Genetic analysis

Molecular testing of CYP21A2 was performed in 106 proband-
parent trios. Biallelic pathogenic variants were identified in 104
patients (SW = 71, SV = 25, NC = 8), while two patients harbored
single heterozygous mutations (I2G [NC phenotype] and p.Q319X
[SW phenotype]). The remaining 9 patients did not undergo genetic
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FIGURE 1
Distribution of Prader scores among girls with 21OHD stratified by
clinical phenotypes. The symbol *** denotes statistical significance
at p < 0.001.

testing and were diagnosed clinically based on biochemical and
phenotypic evidence (SW = 4, SV = 2, NC = 3). The final cohort
comprised 115 patients from 107 unrelated families (SW = 76,
SV =27,NC = 12).

Genotype-phenotype correlations were summarized in Table 4.
PPV for each variant group was calculated as follows: Group 0 (null
variants) exhibited a 100% PPV for the SW form, while Group A showed
an 87.5% PPV for SW. Conversely, Group B demonstrated a 76.9% PPV
for the SV form, and Group C had a 75.0% PPV for the NC form.

Discordant cases were, however, observed in each group. Group
A included five SV patients with the following genotypes: 12G
homozygotes (n=2), 12G/p.L308Ffs*6 (n=2), and 12G/E3del8bp &
p.V282L (n=1). In contrast, six SW cases were found in Group B,
including p.I173N homozygotes (n=1), p.I173N/Large del or con

TABLE 3 Clinical and biochemical profiles of 210HD girls by Prader score.

Normal external

10.3389/fendo.2025.1665306

(n=2), p.I173N/I2G (n=2), and p.I173N/p.Q319X (n=1).
Additionally, two SW patients were identified in Group C, both
genotyped as p.V282L/12G.

Notable genotypes included cis double mutations and de novo
events. Cis double mutations occurred in three males: a paternal
E3del8bp & p.V282L allele in two Group A brothers
(Supplementary Figure S2), and a paternal p.L308Ffs*6 &
p-Q319X allele in a Group D patient (Supplementary Figure S3).
Additionally, de novo mutations were confirmed in three patients:
p.I173N (female), p.R357W (male), and an exon 6 deletion (male)
(Supplementary Figure S4).

Of the 30 patients harboring CYP21A2 deletions, 40% (12/30)
exhibited co-occurring TNXB exon 35 deletions, confirming a
diagnosis of CAH-X CH-1 (Table 5; Supplementary Figure S5).

3.2.1 Variant spectrum of CYP21A2

The variant spectrum of CYP21A2 was characterized in detail.
As summarized in Table 6, micro-conversions constituted the
majority of allelic variants (70.89%, n=151), followed by large
deletions or conversions (19.25%, n=41) and bona fide point
mutations (9.86%, n=21). The most prevalent variant was 12G
(31.46%), with large deletions/conversions (19.25%), p.I173N
(13.62%), p.Q319X (7.04%), and p.V282L (5.16%) also
being predominant.

Bona fide point mutations consisted of nine missense, one
nonsense, one splice-site, two indel, and one promoter variant.
Recurrent mutational hotspots were observed, notably a missense
cluster in exon 8 and indels targeting codon R484 in exon 10.
Additionally, we identified a novel splice-site variant in intron 1,
€.203-1G>A (Figure 2C, Supplementary Figure S6a).

3.2.2 Analysis of pathogenicity of novel mutation
c.203-1G>A

Splice-Al online tool predicted Splice Loss=0.99(1bp), and
Splice Gain=0.15(-61bp), hypothesizing that the splice variant
leads to a high probability of splice deletion as the wild-type

Prader>1(n=46)

genitalia (N=5)  prager 1~2(n=19) Prader>3(n=27)  Z/y?
Sym age () 10.19(7.43;14.97) 0.00(0.00,0.78) 0.00(0.000.00) 261 | 001 0.00(0.000.00) 451 | <0001
Iif;ii?i) 1.80(0.55;3.43) 1.54(0.11;4.26) 0.10(0.040.42) 234 002 0.19(0.05;1.84) 184 | 007
Diag age (y) 13.35(7.98:17.72) 2.66(0.14:5.80) 0.10(0.04:0.42) 290 | 0.004 0.20(0.05:2.72) 333 0001
Surgery (n, %) 0/5(0.00%) 11/19(57.89%) 25/27(92.59%) 598 0.01 36/46(78.26%) 980 | 0.002
Surgery age (y) - 3.80(2.20;5.30) 2.10(1.75:3.10) 262 001 2.45(1.80:3.55) - -
ACTH (pg/ml) 78.90(19.40;125.00) 227.00(75.70:459.00) 362.13(135.00;646.00) 141 | 016  267.40(109.26;595.08) 254 001
170HP (ng/ml) 53.60(2.88:99.84) 122.80(33.13226.13) 139.21(49.07;278.00) 050 | 062 137.87(39.08;255.00) 206 | 0.04
T (pg/ml) 1460(203.85:6268.60) | 3750.00(1440.00:7230.00) = 3710.00(2260.00:8540.00) ~ 0.56  0.58 | 3730.00(2245.757377.50) = 176 | 0.08
P (ng/ml) 2.02(0.63:3.31) 13.30(6.63;16.31) 13.83(8.21;25.02) 108 | 028 13.51(7.3921.24) 358 <0.001

Z/y?, the Z value (for Mann-Whitney U test) or the chi-square value (for the chi-square test).
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TABLE 4 Genotype-phenotype correlation in 106 patients with 210HD who underwent genetic testing.

Genotype Allele 1 Allele 2
Group 0 Large del or con Large del or con 2
Large del or con p-Q319X
Large del or con p-R357W 1
Large del or con p.L308Ffs*6 2
Large del or con E3del8bp 1
Large del or con p-R484fs*40 2
p-R357W E3del8bp 1
E3del8bp p.L308Ffs*6 1
p.Q319X p.Q319X
15 100%
Group A 12G Large del or con 10
12G 12G 5
2G p.Q319X 2
12G p-L308Ffs*6
2G pR357W 3
12G E3del8bp 1
12G p-R484Pfs*58 1
2G E3del8bp & p.V282L 1
40 87.50%
Group B pI173N Large del or con 1
p.I173N p.I173N 1
pI173N 2G 1
pI173N E6cluster
pl173N p.Q319X
pI173N pR357W
26 76.92%
(Continued)
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TABLE 4 Continued

Genotype

Group C

Group D

Female
Allele 1 Allele 2
SV
p.P31L Large del or con 1
p.V282L Large del or con 1
p.V282L p.I173N
p-V282L 12G
p.V282L p.V282L 1
8 75.00%
12G p.L322P
12G p.5216X
12G No pathologic mutations detected
p-Q319X No pathologic mutations detected
p-Q319X c.-113G>A
p.Q319X p-R150P
p-Q319X p-R484W 1
Large del or con c203-1G>A
Large del or con p-G179R
Large del or con p.A34D
Large del or con p-R357Q
p.L308Ffs*6&p.Q319X p.R342W
p-L308Ffs*6 p-G292S
E6cluster p-R355C
17

Del, deletion, con, conversion, &, Cis double mutations.
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TABLE 5 Co-occurrence of TNXB exon 35 deletions and CYP21A2 deletions (CAH-X CH-1).

Patients CYP21A2 TNXB gene exon 35 Patients CYP21A2 TNXB gene exon 35
(sex) (allelel/allele2) deletion (sex) (allele1/allele2) deletion
CH-1-01(F) del/p.I173N Yes CH-1-16(M) del/del Yes
CH-1-02(F) del/p.V282L No CH-1-17(M) del/12G Yes
CH-1-03(F) del/12G No CH-1-18(F) del/12G Yes
CH-1-04(M) del/p.L308Ffs*6 No CH-1-19(M) del/12G No
CH-1-05(F) del/p.I173N No CH-1-20(M) del/12G No
CH-1-06(F) del/p.P31L No CH-1-21(M) del/p.R357W No
CH-1-07(F) del/p.I173N No CH-1-22(F) del/p.L308Ffs*6 Yes
CH-1-08(F) del/p.I173N No CH-1-23(M) del/I2G Yes
CH-1-09(F) del/c.203-1G>A Yes CH-1-24(M) del/I2G Yes
CH-1-10(F) del/p.I2G No CH-1-25(M) del/(exon1-3del) No
CH-1-11(M) del/p.R484f5*40 No CH-1-26(F) del/2G Yes
CH-1-12(M) del/p.G179R Yes CH-1-27(M) del/p.L308Ffs*6 No
CH-1-13(M) del/p.I173N No CH-1-28(M) del/12G No
CH-1-14(M) del/12G No CH-1-29(F) del/E3del8bp Yes
CH-1-15(F) del/p.I173N No CH-1-30(M) del/E3del8bp Yes

M, male, F, female.

motif “cccagATG” was changed to “cccaaATG” without uncovering
a cryptic splice site.

In vitro functional validation experiments: Agarose gel
electrophoresis showed that the target cDNAs detected in
HEK293T and HelLa cells transfected with pCMV-CYP21A2-WT
plasmid were both of higher molecular weight than those
transfected with pCMV-CYP21A2-MUT plasmid (Figure 2A,
Supplementary Figure S7). Sanger sequencing confirmed the exon
2 skipping in the mature mRNA (Figures 2B, D, Supplementary
Figure S6b), and the protein was predicted to be truncated. The
mutated mRNA is denoted as NM_000500.9: ¢.203_292del.

4 Discussion

This study advances beyond prior genetic-focused
investigations of 210HD (10, 21, 22) by integrating clinical,
hormonal, and molecular profiling in 115 Chinese pediatric
patients. We systematically compared phenotype-stratified clinical
and steroid hormone characteristics, analyzed sex-specific
differences, evaluated Prader score correlations with phenotypes/
hormones in females, and quantified genotype-phenotype
concordance, variant frequencies, and CAH-X CH-1 incidence.

Key clinical distinctions emerged at diagnosis: SW infants
presented neonatally with classic electrolyte crises, enabling
prompt diagnosis. SV children manifested early virilization but
faced diagnostic delays (median diagnosis age: 4.32 years), reflecting
low disease awareness for isolated masculinization. NC boys were
typically identified during school-age growth assessments via
advanced bone age—a consequence of increased developmental

Frontiers in Endocrinology

surveillance. Their historical underrepresentation in cohorts likely
stems from underdiagnosis.NC girls presented peripubertally with
menstrual irregularities + virilization, aligning with existing reports
(22). Simultaneously, the diagnosis of NC form also highlights the
importance of genetic testing (23).

Steroid hormone analysis revealed significantly elevated levels of
170HP and P in SW and SV patients compared to NC patients,
consistent with enhanced ACTH stimulation. Sex-specific variations
were observed: P levels were significantly higher in SW and SV females
—as well as in SW males—compared to their NC counterparts.
However, no significant sex-based differences in steroid levels were
detected within the same phenotypic subgroups. In contrast, Chang
et al. (24) reported sex-related hormonal differences within
phenotypes—a discrepancy potentially attributable to our smaller
sex-stratified subgroups or limited biomarker panel.

Notably, a male predominance (55.65%; 64/115) was observed,
which was particularly pronounced in the SW subgroup (61.84%).
This finding aligns with a Chinese cohort analysis by Xia et al. (22)
and may be attributed to the fact that females with virilization often
receive earlier diagnoses in primary care settings, while males with
electrolyte crises require specialized referral to tertiary centers.
Previous studies have reported that clinically diagnosed cohorts
typically exhibit a female predominance (25, 26). Furthermore, a
higher proportion of patients with severe genotypes were diagnosed
after the implementation of NBS compared to the pre-screening era
(27), highlighting significant pre-NBS mortality among severe
phenotypes—especially males.

Critically, NBS significantly advanced the age at diagnosis for
SW infants, although no significant differences were observed in
electrolyte and biochemical parameters at the time of diagnosis,

frontiersin.org


https://doi.org/10.3389/fendo.2025.1665306
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Chong et al.

10.3389/fendo.2025.1665306

TABLE 6 Spectrum and frequency of CYP21A2 variants identified in 213 alleles from 106 patients with 210HD.

Mutation Mutation on the Mutation on protein Location on Mutation Relative
type DNA level level CYP21A2 gene type AlEES frequency

Micro-conversions | ¢.293-13 A/C>G (12G) Intron 2 splicing 67 31.46%
c518T>A p.I173N Exon 4 missense 29 13.62%

c.1069 C>T p-R357W Exon 8 missense 10 4.69%

c955C>T p-Q319X Exon 8 nonsense 15 7.04%

c.844 G>T p.-V282L Exon 7 missense 11 5.16%

¢.923dupT p-L308Ffs*6 Exon 7 duplication 10 4.69%

z;ig i z :; c713T > A Ei;;;l;gr;l’h?;ﬁ;;’) Exon 6 missense 3 1.41%

c92 C>T p.P31L Exon 1 missense 1 0.47%
¢.332_339del(E3del8bp) p-G111Vfs*21 Exon 3 deletion 7 3.29%

Large deletion or deletion/conversion E1-7 Exon 1-7 31 14.55%

crossover

deletion/conversion E1-3 Exon 1-3 8 3.76%
deletion/conversion E1-6 Exon 1-6 1 0.47%
deletion/conversion E6 Exon 6 1 0.47%

bona fide point €.1451_1452delGGinsC p-R484Pfs*58 Exon 10 indel 2 0.94%

mutations

c.965T>C p.L322P Exon 8 missense 1 0.47%

c.874G>A p.G292S Exon 7 missense 2 0.94%

¢.1450C>T p-R484W Exon 10 missense 1 0.47%

c.-113G>A Promoter 1 0.47%

c.449G>C p-R150P Exon 4 missense 1 0.47%

c203-1G>A - Intron 1 splicing 1 0.47%

¢.1450_1451 insC p-R484fs*40 Exon 10 indel 2 0.94%

c.535G>A p.G179R Exon 4 missense 1 0.47%

c.377C>G p.S126X Exon 3 nonsense 2 0.94%

¢.1024C>T p-R342W Exon 8 missense 1 0.47%

c101C>A p.A34D Exon 1 missense 1 0.47%

c.1070G>A p-R357Q Exon 8 missense 1 0.47%

¢.1063C>T p-R355C Exon 8 missense 2 0.94%

213

early detection mitigated long-term homeostatic imbalances and
associated physiological damage, particularly for SW males. Family
histories revealed neonatal deaths in undiagnosed cases,
emphasizing NBS’s role in preventing mortality.

Female patients exhibited distinct virilization patterns across
phenotypes: Prader 3 (44.83%) predominated in SW, while Prader 2
(56.25%) was most frequent in SV, contrasting with NC’s minimal
virilization (Normal external genitalia: 83.33%). This phenotypic
gradient aligned with elevated ACTH and P levels in SW/SV versus
NC girls, though 170HP and T showed non-significant trends. The
higher prevalence of severe virilization (Prader >3) in SW versus SV
girls may reflect comparatively elevated testosterone in this
subgroup, consistent with prior reports (24, 28).
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Critically, virilized girls (Prader >1; 90.20%) demonstrated
accelerated diagnosis timelines and significantly higher ACTH,
170HP, and progesterone. Surgical intervention occurred earlier
and more frequently with increasing severity-92.59% of Prader >3
girls underwent surgery at median age 2.10 years versus 57.89% at
3.80 years in Prader 1~2. The overall surgical rate (78.26%) was
slightly lower than previously reported (85%) (29). Studies
demonstrated that patients undergoing surgery after 2 years of
age required significantly fewer additional major surgeries and had
higher long-term satisfaction rates than those operated on before 2
years of age (30). No significant association was observed between
Prader scores and postnatal steroid hormone levels in this study.
This may be attributed to several factors: postnatal steroid
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FIGURE 2
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In vitro functional characterization of ¢.203-1G>A. (A) Agarose gel of RT-PCR products from cells transfected with WT or MUT CYP21A2 plasmids.
(B) Splicing mechanism: WT (exon 1-2-3) vs. MUT (exon 2 skipping). (C) Genomic Sanger chromatogram showing heterozygous ¢.203-1G>A (arrow).

(D) cDNA sequencing confirming exon 2 deletion (c.203_292del).

concentrations are susceptible to confounding variables such as
stress and may not accurately reflect peak androgen exposure
during the critical window of urogenital sinus differentiation.
Additionally, individual tissue responsiveness to androgens is
influenced by factors such as 50-reductase activity, androgen
receptor sensitivity, and coregulator expression (31, 32). Finally,
the scope of androgen assessment was limited; key biomarkers
including free testosterone, dihydrotestosterone, and 11-oxygenated
androgens were not analyzed (33).

Our MLPA assay, employing six TNXB-specific probes, identified
exon 35 deletions in 30/106 patients (28.30%). Of these, 12 patients
(11.3% overall; 40% of CYP21A2-deleted cases) harbored contiguous
deletions extending from CYP2I1A2 to TNXB exon 35, generating
TNXA/TNXB chimeras (exons 1-34 of TNXB + exons 35-44 of
TNXA) diagnostic of CAH-X CH-1. This prevalence exceeds prior
reports (7-8.2%) (8, 11), suggesting population-specific variability,
and chimeric mutations demonstrate incomplete penetrance for EDS
features (8, 11), mild EDS manifestations may occur even without
chimeras (14). Patients with missense-driven CH-2/3 exhibit greater
joint hypermobility than CH-1 cases (8), likely reflecting distinct
pathomechanisms: CH-1 causes an extracellular matrix protein TNX
haploinsufficiency, whereas CH-2/3 exert dominant-negative effects
(12, 13). A limitation of this study is the absence of systematic EDS
assessments and lack of TNXB exons 40, 41, and 43 sequencing.

Genotype-phenotype correlations demonstrated high PPV for
severe phenotypes (Group 0: 100%; Group A: 87.50%), while
moderate PPV was observed for Groups B (76.92%) and C
(75.00%). This largely aligns with established literature, although
the PPV of Group B varies across studies involving different
populations (10, 34-36), suggesting greater phenotypic
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heterogeneity in moderate forms. Such variability likely stems
from modifier genes influencing 21-hydroxylase expression and
steroidogenesis (4, 22), as well as divergent genetic backgrounds
among different ethnic groups, further supporting the clinical
continuum observed among the three phenotypes.

Molecular profiling revealed three variant classes: micro-
conversions predominated (70.89%), followed by large deletions/
conversions (19.25%) and bona fide point mutations (9.86%),
consistent with Asian populations (22, 37). The first three
common variants were: 12G (31.46%); large deletions/conversions
(19.25%) and p.I173N (13.62%). The first three common variants
were consistent with the most common variants in Asian
populations (9, 22, 24, 37). It should be noted that the MLPA
approach used here, while effective for confirming deletions, may
miss complex rearrangements and does not provide breakpoint
resolution. Further analysis with advanced sequencing methods is
warranted to fully elucidate the structure of these variants in
the future.

Notably, p.V282L frequency (5.16%) exceeded previous similar
reports yet remained below Argentinian/high-admixture cohorts
(23.9-26.2%) (36, 38), indicating ethnogeographic variation. The
p.V282L variant dominated our NC subgroup (5/9 cases), including
two homozygotes, establishing it maybe a regional hotspot. While
p-V282L and p.P31L share comparable residual activity in vitro,
p-P31L carriers exhibit poorer genotype-phenotype concordance
and higher symptom penetrance (4, 29)—consistent with its rarity
(1/9 NC patients) in our cohort.

Two male patients (1.89%) in Group D exhibited monoallelic
variants: one NC phenotype with I12G and one SW with p.Q319X,
despite comprehensive screening revealing no second pathogenic
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allele. This aligns with reported monoallelic detection rates (2.2-
24%) (4, 10, 34, 36, 39), potentially relating to pseudogenes affecting
amplification or some unidentified intron region variants affecting
transcriptional activity (24, 40). Notably, three male patients
(2.83%) harbored paternally inherited cis double mutations: two
brothers with discordant SW/SV phenotypes carried the first-
reported discontinuous mutations (E3del8bp & p.V282L), while
one SW patient had adjacent mutations (p.L308Ffs*6 & p.Q319X)
previously hypothesized to be minor conversions (4, 24, 39, 41). The
phenotypic divergence between siblings sharing identical paternal
mutations implies the contribution of factors beyond the primary
genetic defect, such as modifier genes, epigenetic influences, or
stochastic developmental processes, which alter enzyme activity,
hormone levels, or tissue responsiveness. Future studies employing
genome-wide approaches and family-based designs are warranted
to elucidate the complex interplay between primary mutations,
modifier genes, and epigenetics in shaping the phenotypic
landscape of 210HD (38).

Additionally, three patients (2.83%) possessed de novo
mutations absent in maternal blood, suggesting germline
mosaicism (4). This incidence exceeds the 1% literature baseline
(4), underscoring de novo events as non-trivial contributors. Finally,
we validated a novel splice variant (¢.203-1G>A) in an SW female.
Splice-AI predicted exon skipping (probability=0.99), confirmed in
vitro to cause exon 2 exclusion (NM_000500.9: ¢.203_292del) and
protein truncation, explaining the severe phenotype when co-
occurring with a deletion allele.

5 Conclusions

In conclusion, this study comprehensively analyzed clinical
phenotypes, steroid hormone profiles, and molecular genetics in
115 Chinese patients with 210HD. We identified and characterized
a novel pathogenic splicing mutation (c.203-1G>A), demonstrating
it induces exon 2 skipping during mRNA processing. We report the
first documented case of paternally inherited, discontinuous cis
double mutations (E3del8bp and p.V282L) in siblings exhibiting an
intriguing discordant SW/SV phenotype. Significantly elevated
levels of ACTH, AD, and P were demonstrated in the SW and SV
groups compared to the NC group. Girls with vulvar
masculinization exhibited higher ACTH, 170HP, and P levels
than non-virilized girls, and severe virilization was more
prevalent in the SW than SV group. NBS substantially reduced
time-to-diagnosis, particularly in male SW infants, underscoring
the value of implementing nationwide NBS in China. We
established genotype-phenotype correlations and defined the
variant frequency, confirming I2G, large deletions/conversions,
and p.J173N as predominant CYP21A2 mutations in this Chinese
cohort. Notably higher frequencies of p.V282L and CAH-X CH-1
compared to previous reports suggest enhanced clinical recognition,
particularly of NC form.
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