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Background: Recently, central precocious puberty (CPP) is becoming a major

public health concern worldwide due to its enhanced prevalence. Traditional

Chinese medicine (TCM) compounds offer unique therapeutic advantages for

treating this condition, and luteolin, a bioactive monomer compound commonly

found in these herbs, has drawn increasing attention. However, the therapeutic

effects of luteolin on CPP development remain unclear.

Methods: A danazol-inducedCPPmodel was established in Sprague-Dawley rats to

explore the potential therapeutic effects of luteolin. Sexual development indicators,

organ coefficients, gonadal histopathology, and sex hormone levels were evaluated

to assess treatment outcomes. Additionally, a comprehensive approach involving

network pharmacology, molecular docking, and transcriptomic analyses was used

to identify luteolin-related signaling pathways and target proteins involved in CPP

treatment. Finally, we carried out enzyme-linked immunosorbent assay (ELISA) and

reverse transcription- quantitative polymerase chain reaction (RT-qPCR) for finding

validation and exploring the underlying mechanisms.

Results: In the danazol-induced CPP model, luteolin treatment significantly

decreased the abundances of Estradiol (E2), luteinizing hormone serum, and

follicle-stimulating hormone in sera; reduced organ coefficients and ovarian and

uterine wet weights; and delayed vaginal opening. Network pharmacology and

transcriptomic analyses revealed that luteolin exerted its therapeutic effects

mainly by modulating immune and inflammatory pathways, including the

tumor necrosis factor-a, Toll-like receptor, and IL-17 signaling pathways.

Molecular docking demonstrated stable binding of luteolin to key targets such

as Cxcl10, Cxcl11, Stat1, Tlr3, and Irf7. ELISA results confirmed that luteolin

inhibited pro-inflammatory cytokines while promoting anti-inflammatory

factors in the CPP model. Furthermore, RT-qPCR analysis revealed that luteolin

enhanced Irf7 and Stat1 expression within the Toll-like receptor pathway, mainly

by upregulating Tlr3, thereby enhancing the abundances of downstream effector

molecules Cxcl10 and Cxcl11.
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Conclusion: This study is the first to determine that luteolin ameliorates CPP

via the Toll-like receptor signaling pathway. These findings enhance our

understanding of luteolin’s pharmacological actions and support its potential

role in CPP treatment.
KEYWORDS
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1 Introduction

The global incidence of precocious puberty (PP), a common

perdiatric endocrine disorder, has increased steadily over the past

25 years (1, 2). By classical definition, PP refers to premature

puberty initiation at ages of <8 and 9 years respectively for

females and males. PP not only compromises final adult height

owing to accelerated bone maturation but also increases the

risk of metabolic, reproductive, and psychological disorders in

affected children (3, 4). The onset of PP is closely associated with

environmental, dietary, and nutritional factors (5). Notably,

these factors can directly activate hypothalamic orexin signaling,

induce an inflammatory state, and subsequently trigger premature

gonadotropin-releasing hormone (GnRH) neuron activation,

leading to central PP (CPP) development (6–8). Based on

etiology, precocious puberty can be classified into three types:

central precocious puberty, peripheral precocious puberty, and

incomplete precocious puberty, approximately 80% of PP cases

are classified as CPP (9). Although GnRH analogs (GnRHa) are

recommended as the standard treatment for CPP (10), they have

strict indications and contraindications and are associated with high

costs (11). Therefore, identifying novel therapeutic alternatives that

are both effective and safe for CPP is of paramount importance.

Traditional Chinese medicine (TCM) formulations have shown

promising potential in CPP treatment, offering a multi-targeted

therapeutic approach (12). For example, compounds such as

“Zhibai Dihuang Pill” and “Fuyou Formula,” both rich in luteolin,

have demonstrated clear efficacy and a favorable safety profile in

managing CPP (13, 14). The flavonoid luteolin is abundant in

various fruits, vegetables, and several Chinese herbal medicines.

High concentrations of luteolin are present in dietary sources such

as celery, chili peppers, lettuce, spinach, and thyme, as well as in

medicinal herbs including perilla (Perilla frutescens) leaves,

Origanum vulgare, and Juniperus communis (15).It is known

to regulate multiple cellular signaling pathways potentially

involved in endocrine function. This suggests its potential role in

rebalancing the dysregulated hypothalamic-pituitary-gonadal axis

(HPGA) observed in CPP (16). Moreover, luteolin exhibits anti-

inflammatory, antioxidant, and neuroprotective properties (17).

Despite its therapeutic promise, the precise interventional effects
02
and underlying mechanisms of luteolin in the context of CPP

remain inadequately understood.

For evaluating luteolin’s efficacy during CPP treatment and

investigating the underlying biological pathways, we designed this

research. A danazol-induced CPP model was first established in

Sprague-Dawley (SD) rats to assess the efficacy of luteolin

treatment, administration of danazol during the neonatal period

disrupts the feedback mechanisms of sex hormones and

neuropeptide networks during the critical developmental window

of the hypothalamus, prematurely activating the HPGA. This leads

to an early increase in LH/FSH and estradiol levels, resulting in a

precocious puberty phenotype in female rats (18, 19). Network

pharmacology and transcriptomics, both widely applied in the

study of TCM, were employed to elucidate the molecular

mechanisms involved. As a method of unveiling the complex

interactions between TCM effective compounds and their target

proteins, the utility of molecular docking and network

pharmacology analyses has been validated (20). Transcriptomics

offers in-depth insights into gene expression patterns and

regulatory networks, enabling the identification of key pathways

modulated by TCM interventions (21). Utilizing these techniques

in a comprehensive manner, we herein identified the key gene

expression changes and major signaling pathways influenced

by luteolin during CPP treatment (22). Finally, the transcription

and secretion levels of specific signaling molecules were

appraised for result verification. Collectively, our findings reveal

novel comprehension supporting the utilization of luteolin for

CPP management.
2 Materials and methods

2.1 Drugs and reagents

Livzon Pharmaceutical Group (Zhuhai, China), A&D

Technology Corporation (Beijing, China), and National Institutes

for Food and Drug Control (Beijing, China) were the respective

providers for leuprorelin acetate microspheres, danazol, and TCM

reference standard luteolin (94.40% purity, 111520-202006),

Chemical formula: C15H10O6; molecular weight: 286.24 g86.24:a
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chemical structure shown in Supplementary Figure 1. Pentobarbital

sodium (Sigma-Aldrich, USA) was used as the anesthetic agent. All

remaining chemicals employed herein met ultra-pure specifications.
2.2 Animal grouping and drug
administration

Rat dams and the corresponding female offspring were

acquired from the Animal Center of Three Gorges University on

postnatal day (PND) 3. Housing conditions included evenly divided

illuminated–non-illuminated scheme and unlimited food and water

supply. At PND 21, the pups were weaned and separated from their

mothers. All experimental procedures conformed to the Helsinki

Declaration and received approval from the Animal Experimental

Center of Hubei University of Traditional Chinese Medicine

(approval number: HUCMS00311960).

The animals were randomly assigned to five groups, namely

control, model, triptorelin (positive control), luteolin high-dose

(HD), and luteolin low-dose (LD) groups, with 6 rats per group.

On PND 5, 300 µg/25 µL of danazol (in a 1:1 mixture of ethylene

glycol and ethanol, v/v) was administered to the rats in the model,

triptorelin, and luteolin groups via subcutaneous injection. The

control group received 25 µL of the glycol/ethanol vehicle alone

(19, 20). Starting on PND 15, the triptorelin group was administered

100 mg/kg of triptorelin via subcutaneous injection. The luteolin LD

and HD groups were intragastrically administered 60 and 100 mg/kg
Frontiers in Endocrinology 03
of luteolin, respectively, while equal volumes of physiological saline

were provided to the rats not subjected to luteolin or triptorelin

treatments via intragastrical administration. From PND 20 onward, a

vaginal opening was monitored and recorded daily as an indicator of

pubertal onset. Following one full estral cycle, rats exhibiting open

vagina were subjected to diestrous euthanization, while the rest were

sacrificed at a corresponding phase of the cycle. The specific

procedure is as follows: Rats were anesthetized by intraperitoneal

injection of pentobarbital sodium (50 mg/kg). After ensuring that the

rats were in a state of deep anesthesia, the blood of abdominal aorta

was collected. After the blood collection was completed, euthanasia

was performed in strict accordance with the AVMA Guidelines for

the Euthanasia of Animals (2020 Edition). Use the thumb and index

finger to press down on the head and neck, while the other hand

grasps the tail or hind limbs. Quickly and forcefully pull the

hindquarters backward and upward to dislocate the cervical

vertebrae. Check the animal’s heartbeat and the pupils to confirm

death. Hypothalamic tissues harvested meticulously from sacrificed

rats were snap-frozen with LN2 and kept inside the -80°C freezer.

The uterus and ovaries were dissected for weight measurement to

calculate organ coefficients. Hematoxylin and eosin (H&E) staining

was carried out utilizing half of the tissues, which were subjected to

fixation within paraformaldehyde (4%), with the rest utilized for

other analyses being kept inside the -80°C freezer. Besides,

Abdominal aortic blood was centrifuged (3,500 rpm, 20 min, 4°C)

for separation of serum samples. The prepared sera were kept inside a

-80°C freezer (Figure 1).
FIGURE 1

Flowchart outlining the in vivo experimental design and assay for this study.
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2.3 Histopathological analysis

Fixed ovarian and uterine tissues were dehydrated and paraffin

embedded. The embedded tissues were sectioned (5 mm) and then

sequentially subjected to xylene deparaffinization and rehydration

with graded decreased concentrations of ethanol in water. H&E

staining was performed on all sections. After staining, images were

captured using a Nikon Eclipse C1 digital camera connected to a

Nikon DS-FI2 digital microscope (Nikon, Japan). Uterine tissue

sections were imaged at 100× magnification. Endometrial thickness

was measured (in mm) at five different locations on each slide

employing Image-Pro Plus 6.0 for calculating the average value.

For ovarian tissue, the number of corpora lutea was counted on

each slide.
2.4 Enzyme Linked Immunosorbent Assay
detection

The serum abundances of Estradiol (E2), luteinizing hormone

(LH), and follicle-stimulating hormone (FSH) were measured using

commercially available ELISA kits (Cusabio Biotech Co., Ltd.,

Wuhan, China). For each assay, 50 µL of rat serum was added to

each sample well.

The abundances of tumor necrosis factor-a (TNF-a),
Interleukin 4 (IL-4), Interleukin 17 (IL-17), Interleukin 10 (IL-10)

and Interleukin 6 (IL-6) were assessed using ELISA kits from

Elabscience Biotechnology Inc. (Wuhan, China). Protein extracts

from hypothalamic and ovarian tissues were analyzed. Cytokine

levels in tissue homogenates were normalized to total protein levels

determined through bicinchoninic acid assay quantification. For the

analysis of ovarian tissue, 40 µL of rat serum was added to each

sample well.

All ELISA procedures were performed according to the

manufacturer’s protocols. Hormone and cytokine measurements

were performed following the recommended guidelines to ensure

accuracy and reproducibility.
2.5 Network pharmacology analysis

An extensive search of the databases of OMIM (https://

omim.org/), DisGeNET (https://www.disgenet.org/), and

GeneCards (https://www.genecards.org/) led to the identification

of 2,603 CPP-associated Homo sapiens targets, among which

2,383 unique targets remained after deduplication. Potential

luteolin targets were retrieved from the SwissTargetPrediction

(http://swisstargetprediction.ch/), PharmMapper (http://www.lilab-

ecust.cn/pharmmapper/), Sea (https://sea.bkslab.org/), and TCMSP

(http://tcmspnw.com/) databases, resulting in 147 non-redundant

targets. Two target networks, one for CPP and one for luteolin, were

constructed using Cytoscape v3.10.0 and the stringApp plugin. The

overlap between the two networks was assessed, and key nodes were

identified based on degree values exceeding the average, indicating
Frontiers in Endocrinology 04
their potential importance in the interaction network. The R (v4.0.1)

package DESeq2 (v1.30.0) was employed for screening genes

displaying differential expression (DEGs), with the cutoff

fold change and adjusted p-value values respectively being 1.5 and

0.05. Afterwards, clusterProfiler (v3.18.1) was utilized for Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology

(GO) functional characterization of the DEGs.
2.6 Molecular docking studies

For simulating the type and strength of luteolin-protein

interactions in silico, we employed the AutoDock Vina 1.2.2 (http://

autodock.scripps.edu/) software (23). PubChem Compound (https://

pubchem.ncbi.nlm.nih.gov/) and RCSB Protein Data Bank (http://

www.rcsb.org/pdb/home/home.do) were respectively queried for

acquiring the stereochemical structures of luteolin and its target

molecules Cxcl10 (PDB ID: 1O80), Cxcl11 (1RJT), Irf7 (2O61),

Stat1 (1YVL), and Tlr3 (1ZIW) (24). Prior to the simulations,

PDBQT files were created for all the aforementioned molecules. To

improve docking accuracy, water molecules were replaced with

polar hydrogen atoms. The grid box (30 × 30 × 30 Å, 0.05-nm

spacing) for each target protein was centered over the active domain

and to ensure sufficient space for free molecular movement.
2.7 Transcriptome profiling

TRIzol (Invitrogen) was employed for isolation of total RNA from

hypothalamic tissues, which was subjected to DNase I (Takara)

treatment (25). For quantifying and assessing the integrity of RNA,

1% agarose gel electrophoresis, spectrophotometry with NanoDrop

2000, and automated electrophoresis with the Agilent 2100

Bioanalyzer system were carried out. Differential gene expression

analysis for samples with biological replicates was conducted using

the DESeq R package (v1.10.1) to identify DEGs (adjusted p-value

< 0.05). For samples without biological replicates, read counts were

normalized using a scaling factor provided by the edgeR R package,

with significance defined as Q-value of < 0.005 and |log2(fold change)|

≥ 1. Additionally, DESeq2 (v1.30.0) was used to conduct differential

expression analysis, with significance thresholds set at an adjusted P-

value < 0.05 and fold change ≥ 1.5. Finally, ClusterProfiler (v.3.18.1)

was adopted for GO and KEGG functional characterizations of the

DEGs (26, 27).
2.8 Reverse transcription- quantitative
polymerase chain reaction assays

The TaKaRa RNAiso kit (Cat No. 9109) was adopted for

isolation of hypothalamic tissue total RNA, with its quality and

quantity being appraised with the spectrophotometric and gel-

electrophoretic methods mentioned above. The PrimeScript™ RT

Reagent Kit (TAKARA, RR037A) was adopted for reversely
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https://omim.org/
https://omim.org/
https://www.disgenet.org/
https://www.genecards.org/
http://swisstargetprediction.ch/
http://www.lilab-ecust.cn/pharmmapper/
http://www.lilab-ecust.cn/pharmmapper/
https://sea.bkslab.org/
http://tcmspnw.com/
http://autodock.scripps.edu/
http://autodock.scripps.edu/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
https://doi.org/10.3389/fendo.2025.1666932
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zha et al. 10.3389/fendo.2025.1666932
transcribing one microgram RNA sample into cDNA through a 15-

min incubation at 37°C, with the reaction being terminated by a 5-s

heating step at 85°C. Afterwards, 2 µL of the cDNA and 0.5 µM

primer pairs (synthesized by Beijing Qingke) were assembled with

the YEASEN Hieff™ qPCR SYBR Green Master Mix (No Rox) (Cat

No. 11201ES08) into a reaction system as specified by the

manufacturer. Thermocycling initiated with a 3-min denaturation

step at 95°C. Forty subsequent cycles involved 10 s at 95°C, 0.5 min

at 60°C, and 0.5 min at 72°C. Specificity of primers was confirmed

via a melting curve analysis, for which the temperature was

increased stepwise at a rate of 0.5°C/5 s from 65°C to 95°C.

Primer sequences for target genes and reference genes (GAPDH

or b-actin) are provided in the Supplementary Material. The

abundances of target transcripts relative to those of internal

reference genes were determined through the 2–DDCt algorithm

(28). Table 1 details the sequences of RT-qPCR primers.
2.9 Statistical analysis

Statistical analysis was conducted employing SPSS (v29.0) and

GraphPad Prism (v8.02) software. Results are expressed in the form

of mean ± standard deviation. Independent groups were

comparatively analyzed in a pairwise manner employing unpaired

t-tests or one-way analysis of variance with least significant

difference post-hoc testing for two and more than two groups,

respectively. Statistical significance was defined as P < 0.05.
3 Results

3.1 Luteolin inhibits danazol-induced CPP
formation in SD rats

Organ sampling photographs showed that, following danazol

administration, the fallopian tubes, uterus, and ovaries were

significantly enlarged in the model group rats relative to the

control counterparts. Conversely, the reproductive organs in the

triptorelin and luteolin LD and HD groups were noticeably smaller

compared to those in the model group (Figure 2A). H&E staining

revealed that the model group exhibited a thickened endometrium,
Frontiers in Endocrinology 05
a reduced number of primary and secondary oocytes in the ovaries,

and an increased number of mature oocytes and corpora lutea

compared to the control group. In comparison, the triptorelin and

luteolin LD and HD groups showed a reversal of these changes, with

increased numbers of primary and secondary oocytes and reduced

numbers of mature oocytes and corpora lutea (Figures 2B,C). We

also analyzed the rats’ body weight and found that it increased

evidently in the model group relative to all the other groups, except

the triptorelin group, suggesting a regulatory effect of luteolin on

body weight (Figure 2D). Statistical analysis of uterine wall

thickness revealed that the model group had a significantly

thicker uterine wall compared with all other groups, again with

the exception of the triptorelin group (Figure 2E). Additionally, the

model rats showcased increased number of corpora lutea relative to

the controls, a change that was reversed by luteolin and triptorelin

treatments (Figure 2F).

ELISA was used to measure serum estradiol, LH, and FSH

levels. All three hormones exhibited a similar trend: the model

group had significantly elevated E2, LH, and FSH levels relative to

the controls. Conversely, hormone levels in both the luteolin-

treated and triptorelin-treated groups were markedly reduced

relative to the CPP rats. The findings reveal that danazol

modeling accelerates sexual development by increasing sex

hormone levels, while both luteolin and triptorelin interventions

effectively suppress this effect (Figure 3). Furthermore, luteolin

not only significantly inhibited sexual development in the

modeled rats—exerting a therapeutic effect comparable to

triptorelin—but also demonstrated a greater impact in reducing

body weight.
3.2 Predictive network pharmacology

Using network pharmacology based on TCM, we predicted the

potential targets of luteolin and CPP. A total of 147 luteolin-related

targets, 2,382 CPP-related targets, and 59 overlapping (intersection)

targets were identified (Figure 4A). GO analysis indicated that

luteolin may exert therapeutic effects on CPP through modulating

the expression of genes exhibiting biological process, molecular

function, and cellular component-associated functionalities

(Figure 4B). KEGG pathway enrichment analysis revealed that, in
TABLE 1 Primer table.

Gene 5’→3’ 5’→3’ PCR Products (bp)

GAPDH TCTCTGCTCCTCCCTGTTC ACACCGACCTTCACCATCT 87

Irf7 GCAAGAGGAAATGCTGGGTTG TAGCTTCCATCTGCCATGCT 196

Cxcl10 TGAAAGCGGTGAGCCAAAGA CTAGCCGCACACTGGGTAAA 129

Stat1 GAGAGGTCTCAACGCTGACC CACCCATCATTCCAGAGGCA 198

Tlr3 TCACTTCGAGGGTTGGAGGA TGCCGTGTATTCGAACTGCT 106

Cxcl11 CCTGGCTATGATCATCTGGG TTGTCACAGCCGTTACTCGG 150
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addition to endocrine-related pathways such as endocrine

resistance, luteolin was significantly associated with immune-

related pathways. These included IL-17, T cell receptor, and Toll-

like receptor signaling cascades, as well as Human cytomegalovirus

infection, Hepatitis B, and Human T-cell leukemia virus 1

infection (Figure 4C).
3.3 Transcriptomic insights

Transcriptomic analysis of hypothalamic tissue was performed to

determine the molecular pathways influenced by danazol and luteolin

treatments. The analysis led to the identification of 702 and 663 DEGs

between the control group vs. model group and model group vs.

luteolin-treated group comparisons, respectively. For the two cohorts

of DEGs, 248 and 371 exhibited enhanced expression and 454 and 292

displayed reduced expression, respectively. By intersecting the DEGs

from both comparisons, a total of 272 common DEGs were identified
Frontiers in Endocrinology 06
(Figures 5A–C). Subsequently, hierarchical clustering analysis was

performed to group these DEGs based on their expression profiles

across different samples. This analysis revealed distinct gene expression

patterns, allowing for the identification of genes with similar regulatory

behavior, involved in related signaling pathways or biological

functions. Figure 5B illustrates that gene expression patterns are

consistent within each group, while notable differences are observed

between groups. To further characterize gene expression variations, we

conducted principal component analysis using the expression data

from individual samples. The principal components 1 (PC1) and 2

(PC2) were calculated to capture the major variance between samples,

and the position of each sample was plotted as a distinct colored point

on the coordinate axes. The spatial distances between points reflect the

clustering relationships, indicating the degree of similarity or

dissimilarity between samples (Figure 5D). Functional

characterization of the 272 common DEGs was then carried out

through KEGG and GO analyses. GO annotation reflected that the

DEGs primarily exhibited enrichment with immunologic processes of
FIGURE 2

Effects of luteolin on uterine wall thickness and fallopian tubes. (A) Macroscopic view of bilateral ovaries and uterus. (B) Microscopic observation of
uterine wall by HE staining (original magnification,100× and 200×). (C) Microscopic observation of Ovarian follicle were observed by HE staining
(original magnification, 100× and 200×). (D) Luteolin can reduce weight. (E) Luteolin reduces the thickness of uterine wall. (F) Luteolin reduces the
number of corpus luteum in ovary. *P<0.05; **P<0.01; ***P<0.001.
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immune response, inflammatory response, and antigen processing and

presentation (Figure 5E). As for pathways, the DEGs predominantly

displayed enrichment with NOD-like receptor, RIG-I-like receptor,

Toll-like receptor, and JAK-STAT signaling cascades, as well as antigen
Frontiers in Endocrinology 07
processing and presentation, among others (Figure 5F), which are

largely involved in immune-related functions. These findings support

the hypothesis that luteolin may alleviate CPP by modulating immune

and inflammatory signaling.
FIGURE 3

Effects of the luteolin on serum levels of the sex hormones. (A–C) Luteolin reduced the serum LH (A), FSH (B), and E2 (C) levels. ***P<0.001.
FIGURE 4

Network pharmacology results. (A) Venn diagram of intersecting targets of luteolin and CPP. (B, C) GO (B) and KEGG (C), top 20 pathways, analyses
of intersecting targets in network pharmacology.
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3.4 Integrative transcriptomic and network
pharmacology analysis

For further exploring the mechanistic insights into CPP’s

therapeutic effects on CPP, we integrated KEGG pathway results

from both network pharmacology and transcriptomic analyses. By

identifying overlapping pathways between the two methods, we

constructed a new KEGG enrichment profile based on their

intersection, identifying 34 shared pathways (Figure 6A). Of these

shared pathways, 14 were directly related to immune and

inflammatory responses, including the C-type lectin receptor,

TNF, prolactin, IL-17, NF-kB, T cell receptor, and Toll-like

receptor signaling cascades, as well as the Toll pathway in

humans, cytokine–cytokine receptor interaction, viral protein

interaction with cytokine and cytokine receptor, Th1 and Th2 cell

differentiation, Th17 cell differentiation, leukocyte transendothelial

migration, and intestinal immune network for IgA production.

According to this analysis, we focused on the Toll-like receptor
Frontiers in Endocrinology 08
signaling pathway as a representative inflammatory pathway.

Transcriptomic analysis identified five DEGs involved in this

pathway: Tlr3, Irf7, Stat1, Cxcl10, and Cxcl11. The upstream and

downstream regulatory relationships among these genes are

illustrated in Figure 6B.
3.5 Molecular docking

Molecular docking analysis using AutoDock Vina v1.2.2 was

performed to examine the binding affinities between luteolin and its

target proteins. The docking results provided the binding poses and

interaction profiles of luteolin with five protein targets, and the

corresponding binding energies were calculated. The analysis

revealed that luteolin interacted with its targets through strong

electrostatic interactions and visible hydrogen bonds (Figure 7). The

binding energies were as follows: -6.1 kcal/mol for Cxcl10, -6.3 kcal/

mol for Cxcl11, -7.1 kcal/mol for Stat1,-6.9 kcal/mol for Tlr3, and
FIGURE 5

Transcriptomics results. (A) Volcano plot of differentially expressed genes between Control vs Model and Model vs Luteolin. (B) Clustering plot of
differentially expressed genes between Control vs Model and Model vs Luteolin. (C) Venn diagram of differentially expressed genes between Control vs
Model and Model vs Luteolin. (D) PCA plot of Control vs Model and Model vs Luteolin. (E) GO analysis plot of differentially expressed genes between
Control vs Model and Model vs Luteolin. (F) KEGG analysis plot of differentially expressed genes between Control vs Model and Model vs Luteolin.
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FIGURE 6

Integrated analysis results. (A) KEGG analysis diagram of integrated analysis, showing all identical KEGG pathways. (B) Gene upstream and
downstream relationship diagram focusing on the toll-like receptor signaling pathway.
FIGURE 7

Molecular docking results. (A) Luteolin and Cxcl10 molecular docking. (B) Luteolin and Cxcl11 molecular docking. (C) Luteolin and Stat1 molecular
docking. (D) Luteolin and Irf7 molecular docking; (E) Luteolin and Tlr3 molecular docking.
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-7.1 kcal/mol for Irf7, suggesting stable and favorable binding

interactions (Table 2).
3.6 Luteolin inhibits inflammatory reaction

The danazol-induced model group exhibited decreased levels of

IL-4 and IL-10 and increased levels of IL-6, IL-17, and TNF-a,
across the serum, gonads, and hypothalamus, compared to the

control group. In contrast, treatment with both low and high doses

of luteolin, as well as triptorelin, led to IL-4 and IL-10 upregulation

and IL-6, IL-17, and TNF-a downregulation in all three tissues.

These results suggest that danazol-induced CPP is associated with a
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systemic inflammatory state characterized by suppressed anti-

inflammatory and high pro-inflammatory cytokines. Luteolin and

triptorelin both reversed this imbalance, with high-dose luteolin

demonstrating a stronger anti-inflammatory effect than the low

dose, suggesting a clear dose-response relationship (Figure 8).
3.7 Toll-like receptor signaling pathway
modulation by luteolin

To further validate our findings, we selected several immune-

related genes for analysis. RT-qPCR results showed a strong linear

correlation with transcriptomic data (Supplementary Figure 2),

confirming the reliability of the transcriptomic results. The

regulatory effects of luteolin and triptorelin on genes associated

with the Toll-like receptor signaling pathway were examined by RT-

qPCR. Five target genes, Cxcl10, Stat1, Irf7, Cxcl11, and Tlr3, were

analyzed. Compared to the control group These genes showed

varying degrees of downregulation in the model group. However,

treatment with luteolin led to upregulation of all five genes relative

to the model group, suggesting that luteolin may restore the

expression of key components in this signaling pathway (Figure 9).
TABLE 2 Molecular docking binding energy table.

Name Affinity (kcal/mol)

Irf7 -6.3

Stat1 -7.1

Tlr3 -6.9

Cxcl11 -6.3
FIGURE 8

Immune factor detection results heat map. ###P<0.001 compared to the control group; and *P<0.05; **P<0.01; ***P<0.001 compared to the
model group. Red indicates an upregulation difference, and blue indicates a downregulation difference.
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4 Discussion

CPP, marked by the early onset of secondary sexual characteristics,

is caused by premature activation of the HPGA and can negatively

affect final adult height and psychological well-being (29, 30). TCM

presents a promising complementary strategy for CPP management,

with potential benefits in modulating endocrine function and

enhancing treatment outcomes (18). Both clinical and preclinical

studies have demonstrated that TCM, either as monotherapy or in

combination with GnRHa, can effectively reduce uterine and ovarian

volume, lower serum E2, FSH, and LH levels and delay bone age

advancement (12). Network pharmacology analyses have further

highlighted key bioactive components in TCM—such as quercetin,

b-sitosterol, and luteolin—that target critical signaling pathways

including MAPK and PI3K-Akt, providing a mechanistic basis for

their therapeutic effects (31). This study explored the therapeutic

potential and underlying mechanisms of luteolin, a flavonoid

monomer commonly found in TCM formulations for CPP, using a

danazol-induced rat model.

The danazol-induced CPP rat model, which mimics accelerated

activation of HPGA and early sexual maturation, effectively

demonstrated the therapeutic potential of luteolin (19, 31). In this

study, triptorelin, a widely used GnRHa was used as the positive

control (32, 33). To evaluate luteolin’s efficacy in treating CPP, rats

were administered luteolin at 60 and 100 mg/kg doses, which

significantly delayed vaginal opening, reduced uterine and ovarian

weights and coefficients, and lowered serum E2, LH, and FSH levels.

These phenotypic improvements are consistent with effects

previously reported for TCM formulations (34, 35). Notably,

luteolin exhibited therapeutic efficacy comparable to that of

triptorelin across these key parameters. Histological analysis via

H&E staining further confirmed that both luteolin and triptorelin

suppressed uterine wall thickening and follicular maturation.

To elucidate the underlying mechanisms of luteolin therapeutic

effects, both network pharmacology and hypothalamic

transcriptomic analyses were conducted. Network pharmacology
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identified 59 common targets of luteolin associated with CPP, many

of which are closely related to inflammatory processes, innate

immunity, and adaptive immune responses. RNA sequencing

revealed substantial differential gene expression between the

luteolin-treated and model groups, as well as between the control

and model groups. GO enrichment analysis highlighted significant

involvement in biological processes such as inflammatory response,

chemokine activity, innate immune response, and antigen

processing and presentation. Consistent with these findings,

KEGG pathway analysis showed enrichment in pathways related

to cytokine–cytokine receptor interaction, chemokine signaling,

antigen processing and presentation, and apoptosis. Critically, this

integrated multi-omics approach converged on immune

dysregulation, strongly implicating the Toll-like receptor signaling

pathway as a central mechanism in luteolin’s therapeutic action

against CPP. Previous studies have demonstrated a link between PP

and aberrant immune function, particularly through the heightened

release of pro-inflammatory cytokines—findings that align with our

results (36–38). Additionally, various studies have reported on

luteolin’s anti-inflammatory and neuroprotective properties,

further supporting its potential role in modulating neuroimmune

pathways implicated in CPP (39–41).

Experimental validation further supported the immune-

inflammatory mechanism of luteolin action. ELISA assays revealed

that luteolin significantly decreased the levels of IL-6, IL-17, TNF-a
(pro-inflammatory cytokines) and increased the levels of IL-4 and IL-

10 (anti-inflammatory cytokines) in the hypothalamus, serum, and

ovarian tissues. Importantly, RT-qPCR analysis confirmed the

activation of the Toll-like receptor signaling pathway as predicted

by transcriptomic data. Luteolin significantly upregulated the

expression of Tlr3 in the hypothalamus, which further enhanced

the expression of Irf7 and Stat1 transcription factors, ultimately

leading to increased levels of effector chemokines Cxcl10 and

Cxcl11. Molecular docking results further validated these findings,

demonstrating stable binding of luteolin to Cxcl10, Cxcl11, Stat1,

Tlr3, and Irf7. Trl3, located within the endosomal compartment of
FIGURE 9

The expression levels of five genes in the hypothalamus of CPP rats were detected using the RT-qPCR method in the control group, model group,
and luteolin group. (A) RT-qPCR results for Irf7. (B) RT-qPCR results for Cxcl10. (C) RT-qPCR results for Cxcl11. (D) RT-qPCR results for Stat1. (E) RT-
qPCR results for Tlr3. *P<0.05; **P<0.01; ***P<0.001.
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dendritic cells, is essential for immune function and has been linked

to multiple pathological conditions, including infections, cancer,

autoimmune diseases, and allergies (42). IRF7 plays diverse and

multifunctional roles in various biological processes and is linked

to inflammation, androgen secretion, and endometrial immune

regulation (43). Cxcl10 and Cxcl11 are chemokines implicated not

only in immune disorders but also in cancer progression and T cell-

mediated immune responses (44). Notably, recent studies have

demonstrated that Cxcl10 can disrupt gap junction protein alpha 1

(GJA1) homeostasis between oocytes and granulosa cells, thereby

impairing follicular development and ovulation (45). These findings

delineate a novel mechanistic cascade wherein luteolin exerts its

therapeutic effect against CPP through activation of the Tlr3/Irf7/

Stat1/Cxcl10– Cxcl11 axis. Although transcriptomic data suggested

possible involvement of other inflammatory pathways, like IL-17 and

TNF signaling, the Toll-like receptor pathway emerged as the

predominant and experimentally validated mechanism. This

discovery is particularly significant in light of emerging evidence

linking hypothalamic inflammation to premature activation of the

HPGA in CPP pathogenesis (7, 8).

The study has several limitations. Although the danazol-

induced rat model is valuable for mimicking aspects of CPP, it

may fall short in capturing the complex etiology and heterogeneity

of human CPP. Future investigations should employ more

targeted in vitro and in vivo approaches—such as gene knockout/

knock-in models and specific pathway modulators to delineate

the precise roles of key targets within the Tlr3 signaling axis.

Additionally, well-designed clinical trials are essential to assess

the safety, efficacy, and long-term effects of luteolin as a

therapeutic or adjunctive agent for CPP. Given its natural origin

and multifaceted pharmacological properties, luteolin presents a

promising candidate for development into nutraceuticals or refined

TCM-based interventions. Nevertheless, despite the encouraging

findings, substantial further validation is required before luteolin-

based therapies for CPP can be considered for clinical application.
5 Conclusion

This study presents compelling evidence that luteolin effectively

ameliorates CPP in a danazol-induced rat model. Luteolin

treatment significantly delayed vaginal opening, reduced uterine

and ovarian weights and coefficients, and suppressed key

reproductive hormone levels (LH, FSH, and E2) in the serum.

Through an integrated approach combining network pharmacology

and transcriptomics, followed by targeted experimental validation,

we identified the suppression of immune-inflammatory signaling,

particularly via the Toll-like receptor pathway, as the primary

mechanism underlying luteolin’s therapeutic effects. Mechanistic

investigations confirmed that luteolin upregulates hypothalamic

Tlr3 expression, thereby activating a downstream cascade

involving Irf7 and Stat1, and ultimately enhancing the expression

of the effector chemokines Cxcl10 and Cxcl11. In parallel, luteolin

increased levels of anti-inflammatory cytokines (IL-4, IL-10) across

hypothalamic, serum, and ovarian tissues. This work is the first to
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delineate a Tlr3-mediated anti-inflammatory mechanism of luteolin

in the context of CPP, providing critical insight into its

pharmacological actions and strongly supporting its potential as a

novel therapeutic candidate for CPP treatment.
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SUPPLEMENTARY FIGURE 1

Luteolin 2D Structure. PubChem Compound Summary for CID 5280445,

Luteolin. Retrieved August 24, 2025 from https://pubchem.ncbi.nlm.nih.gov/
compound/Luteolin.

SUPPLEMENTARY FIGURE 2

The graph of linear correlation between RT-qPCR results and transcriptomics

results. (A) is the results of the luteolin group. (B) is the results of the model
group. R2 stands for coefficient of determination.
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