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Background: Recently, central precocious puberty (CPP) is becoming a major
public health concern worldwide due to its enhanced prevalence. Traditional
Chinese medicine (TCM) compounds offer unique therapeutic advantages for
treating this condition, and luteolin, a bioactive monomer compound commonly
found in these herbs, has drawn increasing attention. However, the therapeutic
effects of luteolin on CPP development remain unclear.

Methods: A danazol-induced CPP model was established in Sprague-Dawley rats to
explore the potential therapeutic effects of luteolin. Sexual development indicators,
organ coefficients, gonadal histopathology, and sex hormone levels were evaluated
to assess treatment outcomes. Additionally, a comprehensive approach involving
network pharmacology, molecular docking, and transcriptomic analyses was used
to identify luteolin-related signaling pathways and target proteins involved in CPP
treatment. Finally, we carried out enzyme-linked immunosorbent assay (ELISA) and
reverse transcription- quantitative polymerase chain reaction (RT-gqPCR) for finding
validation and exploring the underlying mechanisms.

Results: In the danazol-induced CPP model, luteolin treatment significantly
decreased the abundances of Estradiol (E2), luteinizing hormone serum, and
follicle-stimulating hormone in sera; reduced organ coefficients and ovarian and
uterine wet weights; and delayed vaginal opening. Network pharmacology and
transcriptomic analyses revealed that luteolin exerted its therapeutic effects
mainly by modulating immune and inflammatory pathways, including the
tumor necrosis factor-a, Toll-like receptor, and IL-17 signaling pathways.
Molecular docking demonstrated stable binding of luteolin to key targets such
as Cxcl10, Cxclll, Statl, TIr3, and Irf7. ELISA results confirmed that luteolin
inhibited pro-inflammatory cytokines while promoting anti-inflammatory
factors in the CPP model. Furthermore, RT-gqPCR analysis revealed that luteolin
enhanced Irf7 and Statl expression within the Toll-like receptor pathway, mainly
by upregulating Tlr3, thereby enhancing the abundances of downstream effector
molecules Cxcl10 and Cxcl1l.
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Conclusion: This study is the first to determine that luteolin ameliorates CPP
via the Toll-like receptor signaling pathway. These findings enhance our
understanding of luteolin’s pharmacological actions and support its potential
role in CPP treatment.

children, luteolin, danazol, precocious puberty, transcriptomics, reverse transcription-
quantitative polymerase chain reaction

1 Introduction

The global incidence of precocious puberty (PP), a common
perdiatric endocrine disorder, has increased steadily over the past
25 years (1, 2). By classical definition, PP refers to premature
puberty initiation at ages of <8 and 9 years respectively for
females and males. PP not only compromises final adult height
owing to accelerated bone maturation but also increases the
risk of metabolic, reproductive, and psychological disorders in
affected children (3, 4). The onset of PP is closely associated with
environmental, dietary, and nutritional factors (5). Notably,
these factors can directly activate hypothalamic orexin signaling,
induce an inflammatory state, and subsequently trigger premature
gonadotropin-releasing hormone (GnRH) neuron activation,
leading to central PP (CPP) development (6-8). Based on
etiology, precocious puberty can be classified into three types:
central precocious puberty, peripheral precocious puberty, and
incomplete precocious puberty, approximately 80% of PP cases
are classified as CPP (9). Although GnRH analogs (GnRHa) are
recommended as the standard treatment for CPP (10), they have
strict indications and contraindications and are associated with high
costs (11). Therefore, identifying novel therapeutic alternatives that
are both effective and safe for CPP is of paramount importance.

Traditional Chinese medicine (TCM) formulations have shown
promising potential in CPP treatment, offering a multi-targeted
therapeutic approach (12). For example, compounds such as
“Zhibai Dihuang Pill” and “Fuyou Formula,” both rich in luteolin,
have demonstrated clear efficacy and a favorable safety profile in
managing CPP (13, 14). The flavonoid luteolin is abundant in
various fruits, vegetables, and several Chinese herbal medicines.
High concentrations of luteolin are present in dietary sources such
as celery, chili peppers, lettuce, spinach, and thyme, as well as in
medicinal herbs including perilla (Perilla frutescens) leaves,
Origanum vulgare, and Juniperus communis (15).It is known
to regulate multiple cellular signaling pathways potentially
involved in endocrine function. This suggests its potential role in
rebalancing the dysregulated hypothalamic-pituitary-gonadal axis
(HPGA) observed in CPP (16). Moreover, luteolin exhibits anti-
inflammatory, antioxidant, and neuroprotective properties (17).
Despite its therapeutic promise, the precise interventional effects
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and underlying mechanisms of luteolin in the context of CPP
remain inadequately understood.

For evaluating luteolin’s efficacy during CPP treatment and
investigating the underlying biological pathways, we designed this
research. A danazol-induced CPP model was first established in
Sprague-Dawley (SD) rats to assess the efficacy of luteolin
treatment, administration of danazol during the neonatal period
disrupts the feedback mechanisms of sex hormones and
neuropeptide networks during the critical developmental window
of the hypothalamus, prematurely activating the HPGA. This leads
to an early increase in LH/FSH and estradiol levels, resulting in a
precocious puberty phenotype in female rats (18, 19). Network
pharmacology and transcriptomics, both widely applied in the
study of TCM, were employed to elucidate the molecular
mechanisms involved. As a method of unveiling the complex
interactions between TCM effective compounds and their target
proteins, the utility of molecular docking and network
pharmacology analyses has been validated (20). Transcriptomics
offers in-depth insights into gene expression patterns and
regulatory networks, enabling the identification of key pathways
modulated by TCM interventions (21). Utilizing these techniques
in a comprehensive manner, we herein identified the key gene
expression changes and major signaling pathways influenced
by luteolin during CPP treatment (22). Finally, the transcription
and secretion levels of specific signaling molecules were
appraised for result verification. Collectively, our findings reveal
novel comprehension supporting the utilization of luteolin for
CPP management.

2 Materials and methods
2.1 Drugs and reagents

Livzon Pharmaceutical Group (Zhuhai, China), A&D
Technology Corporation (Beijing, China), and National Institutes
for Food and Drug Control (Beijing, China) were the respective
providers for leuprorelin acetate microspheres, danazol, and TCM
reference standard luteolin (94.40% purity, 111520-202006),
Chemical formula: C15H1006; molecular weight: 286.24 g86.24:a
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FIGURE 1

Flowchart outlining the in vivo experimental design and assay for this study.

chemical structure shown in Supplementary Figure 1. Pentobarbital
sodium (Sigma-Aldrich, USA) was used as the anesthetic agent. All
remaining chemicals employed herein met ultra-pure specifications.

2.2 Animal grouping and drug
administration

Rat dams and the corresponding female offspring were
acquired from the Animal Center of Three Gorges University on
postnatal day (PND) 3. Housing conditions included evenly divided
illuminated-non-illuminated scheme and unlimited food and water
supply. At PND 21, the pups were weaned and separated from their
mothers. All experimental procedures conformed to the Helsinki
Declaration and received approval from the Animal Experimental
Center of Hubei University of Traditional Chinese Medicine
(approval number: HUCMS00311960).

The animals were randomly assigned to five groups, namely
control, model, triptorelin (positive control), luteolin high-dose
(HD), and luteolin low-dose (LD) groups, with 6 rats per group.
On PND 5, 300 pg/25 pL of danazol (in a 1:1 mixture of ethylene
glycol and ethanol, v/v) was administered to the rats in the model,
triptorelin, and luteolin groups via subcutaneous injection. The
control group received 25 pL of the glycol/ethanol vehicle alone
(19, 20). Starting on PND 15, the triptorelin group was administered
100 pg/kg of triptorelin via subcutaneous injection. The luteolin LD
and HD groups were intragastrically administered 60 and 100 mg/kg
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of luteolin, respectively, while equal volumes of physiological saline
were provided to the rats not subjected to luteolin or triptorelin
treatments via intragastrical administration. From PND 20 onward, a
vaginal opening was monitored and recorded daily as an indicator of
pubertal onset. Following one full estral cycle, rats exhibiting open
vagina were subjected to diestrous euthanization, while the rest were
sacrificed at a corresponding phase of the cycle. The specific
procedure is as follows: Rats were anesthetized by intraperitoneal
injection of pentobarbital sodium (50 mg/kg). After ensuring that the
rats were in a state of deep anesthesia, the blood of abdominal aorta
was collected. After the blood collection was completed, euthanasia
was performed in strict accordance with the AVMA Guidelines for
the Euthanasia of Animals (2020 Edition). Use the thumb and index
finger to press down on the head and neck, while the other hand
grasps the tail or hind limbs. Quickly and forcefully pull the
hindquarters backward and upward to dislocate the cervical
vertebrae. Check the animal’s heartbeat and the pupils to confirm
death. Hypothalamic tissues harvested meticulously from sacrificed
rats were snap-frozen with LN2 and kept inside the -80°C freezer.
The uterus and ovaries were dissected for weight measurement to
calculate organ coefficients. Hematoxylin and eosin (H&E) staining
was carried out utilizing half of the tissues, which were subjected to
fixation within paraformaldehyde (4%), with the rest utilized for
other analyses being kept inside the -80°C freezer. Besides,
Abdominal aortic blood was centrifuged (3,500 rpm, 20 min, 4°C)
for separation of serum samples. The prepared sera were kept inside a
-80°C freezer (Figure 1).
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2.3 Histopathological analysis

Fixed ovarian and uterine tissues were dehydrated and paraffin
embedded. The embedded tissues were sectioned (5 tm) and then
sequentially subjected to xylene deparaffinization and rehydration
with graded decreased concentrations of ethanol in water. H&E
staining was performed on all sections. After staining, images were
captured using a Nikon Eclipse C1 digital camera connected to a
Nikon DS-FI2 digital microscope (Nikon, Japan). Uterine tissue
sections were imaged at 100x magnification. Endometrial thickness
was measured (in mm) at five different locations on each slide
employing Image-Pro Plus 6.0 for calculating the average value.
For ovarian tissue, the number of corpora lutea was counted on
each slide.

2.4 Enzyme Linked Immunosorbent Assay
detection

The serum abundances of Estradiol (E2), luteinizing hormone
(LH), and follicle-stimulating hormone (FSH) were measured using
commercially available ELISA kits (Cusabio Biotech Co., Ltd.,
Wuhan, China). For each assay, 50 pL of rat serum was added to
each sample well.

The abundances of tumor necrosis factor-oo (TNF-o),
Interleukin 4 (IL-4), Interleukin 17 (IL-17), Interleukin 10 (IL-10)
and Interleukin 6 (IL-6) were assessed using ELISA kits from
Elabscience Biotechnology Inc. (Wuhan, China). Protein extracts
from hypothalamic and ovarian tissues were analyzed. Cytokine
levels in tissue homogenates were normalized to total protein levels
determined through bicinchoninic acid assay quantification. For the
analysis of ovarian tissue, 40 uL of rat serum was added to each
sample well.

All ELISA procedures were performed according to the
manufacturer’s protocols. Hormone and cytokine measurements
were performed following the recommended guidelines to ensure
accuracy and reproducibility.

2.5 Network pharmacology analysis

An extensive search of the databases of OMIM (https://
omim.org/), DisGeNET (https://www.disgenet.org/), and
GeneCards (https://www.genecards.org/) led to the identification
of 2,603 CPP-associated Homo sapiens targets, among which
2,383 unique targets remained after deduplication. Potential
luteolin targets were retrieved from the SwissTargetPrediction
(http://swisstargetprediction.ch/), PharmMapper (http://www.lilab-
ecust.cn/pharmmapper/), Sea (https://sea.bkslab.org/), and TCMSP
(http://tcmspnw.com/) databases, resulting in 147 non-redundant
targets. Two target networks, one for CPP and one for luteolin, were
constructed using Cytoscape v3.10.0 and the stringApp plugin. The
overlap between the two networks was assessed, and key nodes were
identified based on degree values exceeding the average, indicating
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their potential importance in the interaction network. The R (v4.0.1)
package DESeq2 (v1.30.0) was employed for screening genes
displaying differential expression (DEGs), with the cutoff
fold change and adjusted p-value values respectively being 1.5 and
0.05. Afterwards, clusterProfiler (v3.18.1) was utilized for Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology
(GO) functional characterization of the DEGs.

2.6 Molecular docking studies

For simulating the type and strength of luteolin-protein
interactions in silico, we employed the AutoDock Vina 1.2.2 (http://
autodock.scripps.edu/) software (23). PubChem Compound (https://
pubchem.ncbi.nlm.nih.gov/) and RCSB Protein Data Bank (http://
www.rcsb.org/pdb/home/home.do) were respectively queried for
acquiring the stereochemical structures of luteolin and its target
molecules Cxcl10 (PDB ID: 1080), Cxclll (IRJT), Irf7 (2061),
Statl (1YVL), and TIr3 (1ZIW) (24). Prior to the simulations,
PDBQT files were created for all the aforementioned molecules. To
improve docking accuracy, water molecules were replaced with
polar hydrogen atoms. The grid box (30 x 30 x 30 A, 0.05-nm
spacing) for each target protein was centered over the active domain
and to ensure sufficient space for free molecular movement.

2.7 Transcriptome profiling

TRIzol (Invitrogen) was employed for isolation of total RNA from
hypothalamic tissues, which was subjected to DNase I (Takara)
treatment (25). For quantifying and assessing the integrity of RNA,
1% agarose gel electrophoresis, spectrophotometry with NanoDrop
2000, and automated electrophoresis with the Agilent 2100
Bioanalyzer system were carried out. Differential gene expression
analysis for samples with biological replicates was conducted using
the DESeq R package (v1.10.1) to identify DEGs (adjusted p-value
< 0.05). For samples without biological replicates, read counts were
normalized using a scaling factor provided by the edgeR R package,
with significance defined as Q-value of < 0.005 and |log2(fold change)|
> 1. Additionally, DESeq2 (v1.30.0) was used to conduct differential
expression analysis, with significance thresholds set at an adjusted P-
value < 0.05 and fold change > 1.5. Finally, ClusterProfiler (v.3.18.1)
was adopted for GO and KEGG functional characterizations of the
DEGs (26, 27).

2.8 Reverse transcription- quantitative
polymerase chain reaction assays

The TaKaRa RNAiso kit (Cat No. 9109) was adopted for
isolation of hypothalamic tissue total RNA, with its quality and
quantity being appraised with the spectrophotometric and gel-
electrophoretic methods mentioned above. The PrimeScriptTM RT
Reagent Kit (TAKARA, RR037A) was adopted for reversely
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TABLE 1 Primer table.

Gene 553
GAPDH TCTCTGCTCCTCCCTGTTC
Irf7 GCAAGAGGAAATGCTGGGTTG
Cxd10 TGAAAGCGGTGAGCCAAAGA
Stat1 GAGAGGTCTCAACGCTGACC
Tir3 TCACTTCGAGGGTTGGAGGA
Cxdll CCTGGCTATGATCATCTGGG

transcribing one microgram RNA sample into cDNA through a 15-
min incubation at 37°C, with the reaction being terminated by a 5-s
heating step at 85°C. Afterwards, 2 uL of the cDNA and 0.5 uM
primer pairs (synthesized by Beijing Qingke) were assembled with
the YEASEN Hieff qPCR SYBR Green Master Mix (No Rox) (Cat
No. 11201ES08) into a reaction system as specified by the
manufacturer. Thermocycling initiated with a 3-min denaturation
step at 95°C. Forty subsequent cycles involved 10 s at 95°C, 0.5 min
at 60°C, and 0.5 min at 72°C. Specificity of primers was confirmed
via a melting curve analysis, for which the temperature was
increased stepwise at a rate of 0.5°C/5 s from 65°C to 95°C.
Primer sequences for target genes and reference genes (GAPDH
or B-actin) are provided in the Supplementary Material. The
abundances of target transcripts relative to those of internal
reference genes were determined through the 27**Ct algorithm
(28). Table 1 details the sequences of RT-qPCR primers.

2.9 Statistical analysis

Statistical analysis was conducted employing SPSS (v29.0) and
GraphPad Prism (v8.02) software. Results are expressed in the form
of mean * standard deviation. Independent groups were
comparatively analyzed in a pairwise manner employing unpaired
t-tests or one-way analysis of variance with least significant
difference post-hoc testing for two and more than two groups,
respectively. Statistical significance was defined as P < 0.05.

3 Results

3.1 Luteolin inhibits danazol-induced CPP
formation in SD rats

Organ sampling photographs showed that, following danazol
administration, the fallopian tubes, uterus, and ovaries were
significantly enlarged in the model group rats relative to the
control counterparts. Conversely, the reproductive organs in the
triptorelin and luteolin LD and HD groups were noticeably smaller
compared to those in the model group (Figure 2A). H&E staining
revealed that the model group exhibited a thickened endometrium,
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553 PCR Products (bp)
ACACCGACCTTCACCATCT 87
TAGCTTCCATCTGCCATGCT 196
CTAGCCGCACACTGGGTAAA 129
CACCCATCATTCCAGAGGCA 198
TGCCGTGTATTCGAACTGCT 106
TTGTCACAGCCGTTACTCGG 150

a reduced number of primary and secondary oocytes in the ovaries,
and an increased number of mature oocytes and corpora lutea
compared to the control group. In comparison, the triptorelin and
luteolin LD and HD groups showed a reversal of these changes, with
increased numbers of primary and secondary oocytes and reduced
numbers of mature oocytes and corpora lutea (Figures 2B,C). We
also analyzed the rats’ body weight and found that it increased
evidently in the model group relative to all the other groups, except
the triptorelin group, suggesting a regulatory effect of luteolin on
body weight (Figure 2D). Statistical analysis of uterine wall
thickness revealed that the model group had a significantly
thicker uterine wall compared with all other groups, again with
the exception of the triptorelin group (Figure 2E). Additionally, the
model rats showcased increased number of corpora lutea relative to
the controls, a change that was reversed by luteolin and triptorelin
treatments (Figure 2F).

ELISA was used to measure serum estradiol, LH, and FSH
levels. All three hormones exhibited a similar trend: the model
group had significantly elevated E2, LH, and FSH levels relative to
the controls. Conversely, hormone levels in both the luteolin-
treated and triptorelin-treated groups were markedly reduced
relative to the CPP rats. The findings reveal that danazol
modeling accelerates sexual development by increasing sex
hormone levels, while both luteolin and triptorelin interventions
effectively suppress this effect (Figure 3). Furthermore, luteolin
not only significantly inhibited sexual development in the
modeled rats—exerting a therapeutic effect comparable to
triptorelin—but also demonstrated a greater impact in reducing
body weight.

3.2 Predictive network pharmacology

Using network pharmacology based on TCM, we predicted the
potential targets of luteolin and CPP. A total of 147 luteolin-related
targets, 2,382 CPP-related targets, and 59 overlapping (intersection)
targets were identified (Figure 4A). GO analysis indicated that
luteolin may exert therapeutic effects on CPP through modulating
the expression of genes exhibiting biological process, molecular
function, and cellular component-associated functionalities
(Figure 4B). KEGG pathway enrichment analysis revealed that, in
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FIGURE 2

Effects of luteolin on uterine wall thickness and fallopian tubes. (A) Macroscopic view of bilateral ovaries and uterus. (B) Microscopic observation of
uterine wall by HE staining (original magnification,100x and 200x). (C) Microscopic observation of Ovarian follicle were observed by HE staining
(original magnification, 100x and 200x). (D) Luteolin can reduce weight. (E) Luteolin reduces the thickness of uterine wall. (F) Luteolin reduces the

number of corpus luteum in ovary. *P<0.05; **P<0.01; ***P<0.001.

addition to endocrine-related pathways such as endocrine
resistance, luteolin was significantly associated with immune-
related pathways. These included IL-17, T cell receptor, and Toll-
like receptor signaling cascades, as well as Human cytomegalovirus
infection, Hepatitis B, and Human T-cell leukemia virus 1
infection (Figure 4C).

3.3 Transcriptomic insights

Transcriptomic analysis of hypothalamic tissue was performed to
determine the molecular pathways influenced by danazol and luteolin
treatments. The analysis led to the identification of 702 and 663 DEGs
between the control group vs. model group and model group vs.
luteolin-treated group comparisons, respectively. For the two cohorts
of DEGs, 248 and 371 exhibited enhanced expression and 454 and 292
displayed reduced expression, respectively. By intersecting the DEGs
from both comparisons, a total of 272 common DEGs were identified

Frontiers in Endocrinology

(Figures 5A-C). Subsequently, hierarchical clustering analysis was
performed to group these DEGs based on their expression profiles
across different samples. This analysis revealed distinct gene expression
patterns, allowing for the identification of genes with similar regulatory
behavior, involved in related signaling pathways or biological
functions. Figure 5B illustrates that gene expression patterns are
consistent within each group, while notable differences are observed
between groups. To further characterize gene expression variations, we
conducted principal component analysis using the expression data
from individual samples. The principal components 1 (PC1) and 2
(PC2) were calculated to capture the major variance between samples,
and the position of each sample was plotted as a distinct colored point
on the coordinate axes. The spatial distances between points reflect the
clustering relationships, indicating the degree of similarity or
dissimilarity between samples (Figure 5D). Functional
characterization of the 272 common DEGs was then carried out
through KEGG and GO analyses. GO annotation reflected that the
DEGs primarily exhibited enrichment with immunologic processes of
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FIGURE 3

Effects of the luteolin on serum levels of the sex hormones. (A—C) Luteolin reduced the serum LH (A), FSH (B), and E2 (C) levels. ***P<0.001.
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immune response, inflammatory response, and antigen processing and
presentation (Figure 5E). As for pathways, the DEGs predominantly
displayed enrichment with NOD-like receptor, RIG-I-like receptor,
Toll-like receptor, and JAK-STAT signaling cascades, as well as antigen
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processing and presentation, among others (Figure 5F), which are
largely involved in immune-related functions. These findings support
the hypothesis that luteolin may alleviate CPP by modulating immune
and inflammatory signaling.
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Transcriptomics results. (A) Volcano plot of differentially expressed genes between Control vs Model and Model vs Luteolin. (B) Clustering plot of
differentially expressed genes between Control vs Model and Model vs Luteolin. (C) Venn diagram of differentially expressed genes between Control vs
Model and Model vs Luteolin. (D) PCA plot of Control vs Model and Model vs Luteolin. (E) GO analysis plot of differentially expressed genes between
Control vs Model and Model vs Luteolin. (F) KEGG analysis plot of differentially expressed genes between Control vs Model and Model vs Luteolin.

3.4 Integrative transcriptomic and network
pharmacology analysis

For further exploring the mechanistic insights into CPP’s
therapeutic effects on CPP, we integrated KEGG pathway results
from both network pharmacology and transcriptomic analyses. By
identifying overlapping pathways between the two methods, we
constructed a new KEGG enrichment profile based on their
intersection, identifying 34 shared pathways (Figure 6A). Of these
shared pathways, 14 were directly related to immune and
inflammatory responses, including the C-type lectin receptor,
TNF, prolactin, IL-17, NF-xB, T cell receptor, and Toll-like
receptor signaling cascades, as well as the Toll pathway in
humans, cytokine-cytokine receptor interaction, viral protein
interaction with cytokine and cytokine receptor, Thl and Th2 cell
differentiation, Th17 cell differentiation, leukocyte transendothelial
migration, and intestinal immune network for IgA production.
According to this analysis, we focused on the Toll-like receptor
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signaling pathway as a representative inflammatory pathway.
Transcriptomic analysis identified five DEGs involved in this
pathway: Tlr3, Irf7, Statl, Cxcl10, and Cxcl11. The upstream and
downstream regulatory relationships among these genes are
illustrated in Figure 6B.

3.5 Molecular docking

Molecular docking analysis using AutoDock Vina v1.2.2 was
performed to examine the binding affinities between luteolin and its
target proteins. The docking results provided the binding poses and
interaction profiles of luteolin with five protein targets, and the
corresponding binding energies were calculated. The analysis
revealed that luteolin interacted with its targets through strong
electrostatic interactions and visible hydrogen bonds (Figure 7). The
binding energies were as follows: -6.1 kcal/mol for Cxcl10, -6.3 kcal/
mol for Cxcll1, -7.1 kcal/mol for Statl,-6.9 kcal/mol for TIr3, and
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TABLE 2 Molecular docking binding energy table.

Name Affinity (kcal/mol)

Irf7 -6.3
Statl -7.1
TIr3 -6.9
Cxclll -6.3

-7.1 kcal/mol for Irf7, suggesting stable and favorable binding
interactions (Table 2).

3.6 Luteolin inhibits inflammatory reaction

The danazol-induced model group exhibited decreased levels of
IL-4 and IL-10 and increased levels of IL-6, IL-17, and TNF-o,
across the serum, gonads, and hypothalamus, compared to the
control group. In contrast, treatment with both low and high doses
of luteolin, as well as triptorelin, led to IL-4 and IL-10 upregulation
and IL-6, IL-17, and TNF-o. downregulation in all three tissues.
These results suggest that danazol-induced CPP is associated with a
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FIGURE 8

Immune factor detection results heat map. ###P<0.001 compared to the control group; and *P<0.05; **P<0.01; ***P<0.001 compared to the
model group. Red indicates an upregulation difference, and blue indicates a downregulation difference.

Model

10.3389/fendo.2025.1666932

systemic inflammatory state characterized by suppressed anti-
inflammatory and high pro-inflammatory cytokines. Luteolin and
triptorelin both reversed this imbalance, with high-dose luteolin
demonstrating a stronger anti-inflammatory effect than the low
dose, suggesting a clear dose-response relationship (Figure 8).

3.7 Toll-like receptor signaling pathway
modulation by luteolin

To further validate our findings, we selected several immune-
related genes for analysis. RT-qPCR results showed a strong linear
correlation with transcriptomic data (Supplementary Figure 2),
confirming the reliability of the transcriptomic results. The
regulatory effects of luteolin and triptorelin on genes associated
with the Toll-like receptor signaling pathway were examined by RT-
qPCR. Five target genes, Cxcl10, Statl, Irf7, Cxcll11, and TIr3, were
analyzed. Compared to the control group These genes showed
varying degrees of downregulation in the model group. However,
treatment with luteolin led to upregulation of all five genes relative
to the model group, suggesting that luteolin may restore the
expression of key components in this signaling pathway (Figure 9).

Lauteolin ( Low)Luteolin( High)  Triptorelin
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The expression levels of five genes in the hypothalamus of CPP rats were detected using the RT-gPCR method in the control group, model group,
and luteolin group. (A) RT-gPCR results for Irf7. (B) RT-qPCR results for Cxcl10. (C) RT-gPCR results for Cxclll. (D) RT-gPCR results for Statl. (E) RT-

qPCR results for Tlr3. *P<0.05; **P<0.01; ***P<0.001.

4 Discussion

CPP, marked by the early onset of secondary sexual characteristics,
is caused by premature activation of the HPGA and can negatively
affect final adult height and psychological well-being (29, 30). TCM
presents a promising complementary strategy for CPP management,
with potential benefits in modulating endocrine function and
enhancing treatment outcomes (18). Both clinical and preclinical
studies have demonstrated that TCM, either as monotherapy or in
combination with GnRHa, can effectively reduce uterine and ovarian
volume, lower serum E2, FSH, and LH levels and delay bone age
advancement (12). Network pharmacology analyses have further
highlighted key bioactive components in TCM—such as quercetin,
[-sitosterol, and luteolin—that target critical signaling pathways
including MAPK and PI3K-Akt, providing a mechanistic basis for
their therapeutic effects (31). This study explored the therapeutic
potential and underlying mechanisms of luteolin, a flavonoid
monomer commonly found in TCM formulations for CPP, using a
danazol-induced rat model.

The danazol-induced CPP rat model, which mimics accelerated
activation of HPGA and early sexual maturation, effectively
demonstrated the therapeutic potential of luteolin (19, 31). In this
study, triptorelin, a widely used GnRHa was used as the positive
control (32, 33). To evaluate luteolin’s efficacy in treating CPP, rats
were administered luteolin at 60 and 100 mg/kg doses, which
significantly delayed vaginal opening, reduced uterine and ovarian
weights and coefficients, and lowered serum E2, LH, and FSH levels.
These phenotypic improvements are consistent with effects
previously reported for TCM formulations (34, 35). Notably,
luteolin exhibited therapeutic efficacy comparable to that of
triptorelin across these key parameters. Histological analysis via
H&E staining further confirmed that both luteolin and triptorelin
suppressed uterine wall thickening and follicular maturation.

To elucidate the underlying mechanisms of luteolin therapeutic
effects, both network pharmacology and hypothalamic
transcriptomic analyses were conducted. Network pharmacology
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identified 59 common targets of luteolin associated with CPP, many
of which are closely related to inflammatory processes, innate
immunity, and adaptive immune responses. RNA sequencing
revealed substantial differential gene expression between the
luteolin-treated and model groups, as well as between the control
and model groups. GO enrichment analysis highlighted significant
involvement in biological processes such as inflammatory response,
chemokine activity, innate immune response, and antigen
processing and presentation. Consistent with these findings,
KEGG pathway analysis showed enrichment in pathways related
to cytokine-cytokine receptor interaction, chemokine signaling,
antigen processing and presentation, and apoptosis. Critically, this
integrated multi-omics approach converged on immune
dysregulation, strongly implicating the Toll-like receptor signaling
pathway as a central mechanism in luteolin’s therapeutic action
against CPP. Previous studies have demonstrated a link between PP
and aberrant immune function, particularly through the heightened
release of pro-inflammatory cytokines—findings that align with our
results (36-38). Additionally, various studies have reported on
luteolin’s anti-inflammatory and neuroprotective properties,
further supporting its potential role in modulating neuroimmune
pathways implicated in CPP (39-41).

Experimental validation further supported the immune-
inflammatory mechanism of luteolin action. ELISA assays revealed
that luteolin significantly decreased the levels of IL-6, IL-17, TNF-o
(pro-inflammatory cytokines) and increased the levels of IL-4 and IL-
10 (anti-inflammatory cytokines) in the hypothalamus, serum, and
ovarian tissues. Importantly, RT-qPCR analysis confirmed the
activation of the Toll-like receptor signaling pathway as predicted
by transcriptomic data. Luteolin significantly upregulated the
expression of TIr3 in the hypothalamus, which further enhanced
the expression of Irf7 and Statl transcription factors, ultimately
leading to increased levels of effector chemokines Cxcll0 and
Cxcl1l. Molecular docking results further validated these findings,
demonstrating stable binding of luteolin to Cxcl10, Cxclll, Statl,
TIr3, and Irf7. Trl3, located within the endosomal compartment of
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dendritic cells, is essential for immune function and has been linked
to multiple pathological conditions, including infections, cancer,
autoimmune diseases, and allergies (42). IRF7 plays diverse and
multifunctional roles in various biological processes and is linked
to inflammation, androgen secretion, and endometrial immune
regulation (43). Cxcl10 and Cxclll are chemokines implicated not
only in immune disorders but also in cancer progression and T cell-
mediated immune responses (44). Notably, recent studies have
demonstrated that Cxcl10 can disrupt gap junction protein alpha 1
(GJA1) homeostasis between oocytes and granulosa cells, thereby
impairing follicular development and ovulation (45). These findings
delineate a novel mechanistic cascade wherein luteolin exerts its
therapeutic effect against CPP through activation of the Tlr3/Irf7/
Statl/Cxcl10- Cxcl1l axis. Although transcriptomic data suggested
possible involvement of other inflammatory pathways, like IL-17 and
TNF signaling, the Toll-like receptor pathway emerged as the
predominant and experimentally validated mechanism. This
discovery is particularly significant in light of emerging evidence
linking hypothalamic inflammation to premature activation of the
HPGA in CPP pathogenesis (7, 8).

The study has several limitations. Although the danazol-
induced rat model is valuable for mimicking aspects of CPP, it
may fall short in capturing the complex etiology and heterogeneity
of human CPP. Future investigations should employ more
targeted in vitro and in vivo approaches—such as gene knockout/
knock-in models and specific pathway modulators to delineate
the precise roles of key targets within the TIr3 signaling axis.
Additionally, well-designed clinical trials are essential to assess
the safety, efficacy, and long-term effects of luteolin as a
therapeutic or adjunctive agent for CPP. Given its natural origin
and multifaceted pharmacological properties, luteolin presents a
promising candidate for development into nutraceuticals or refined
TCM-based interventions. Nevertheless, despite the encouraging
findings, substantial further validation is required before luteolin-
based therapies for CPP can be considered for clinical application.

5 Conclusion

This study presents compelling evidence that luteolin effectively
ameliorates CPP in a danazol-induced rat model. Luteolin
treatment significantly delayed vaginal opening, reduced uterine
and ovarian weights and coefficients, and suppressed key
reproductive hormone levels (LH, FSH, and E2) in the serum.
Through an integrated approach combining network pharmacology
and transcriptomics, followed by targeted experimental validation,
we identified the suppression of immune-inflammatory signaling,
particularly via the Toll-like receptor pathway, as the primary
mechanism underlying luteolin’s therapeutic effects. Mechanistic
investigations confirmed that luteolin upregulates hypothalamic
Tlr3 expression, thereby activating a downstream cascade
involving Irf7 and Statl, and ultimately enhancing the expression
of the effector chemokines Cxcl10 and Cxcl11. In parallel, luteolin
increased levels of anti-inflammatory cytokines (IL-4, IL-10) across
hypothalamic, serum, and ovarian tissues. This work is the first to
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delineate a Tlr3-mediated anti-inflammatory mechanism of luteolin
in the context of CPP, providing critical insight into its
pharmacological actions and strongly supporting its potential as a
novel therapeutic candidate for CPP treatment.
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