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Objective: To evaluate the diagnostic performance and clinical utility of
advanced large language models (LLMs) -GPT-40, GPT-03-mini, and
DeepSeek-R1- in stratifying thyroid nodule malignancy risk and generating
guideline-aligned management recommendations based on structured
narrative ultrasound descriptions.

Methods: This diagnostic modeling study evaluated three LLMs—GPT-40, GPT-
03-mini, and DeepSeek-R1—using standardized narrative ultrasound descriptors.
These descriptors were annotated by consensus among three senior board-
certified sonologists and processed independently in a stateless manner to
ensure unbiased outputs. LLM outputs were assessed under both ACR-TIRADS
and C-TIRADS frameworks. Two experienced clinicians (a thyroid surgeon and an
endocrinologist) independently rated the outputs across five clinical dimensions
using 5-point Likert scales. Primary outcomes included the area under the
receiver operating characteristic curve (AUC) for malignancy prediction, and
clinician ratings of guideline adherence, patient safety, operational feasibility,
clinical applicability, and overall performance.

Results: GPT-40 achieved the highest predictive AUC (0.898) under C-TIRADS,
approaching expert-level accuracy. DeepSeek-R1, particularly with C-TIRADS,
received the highest clinician ratings (mean Likert: surgeon 4.65, endocrinologist
4.63), reflecting greater trust in its practical recommendations. Clinicians
consistently favored the C-TIRADS framework across all models. GPT-40 and
GPT-03-mini received lower ratings in trustworthiness and recommendation
quality, especially from the endocrinologist.

Conclusion: While GPT-40 demonstrated superior diagnostic accuracy,
clinicians most trusted DeepSeek-R1 combined with the C-TIRADS framework
for generating practical, guideline-consistent recommendations. The findings
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highlight the critical need for alignment between Al-generated outputs and
clinician expectations, and the importance of incorporating region-specific
clinical guidelines (like C-TIRADS) for the effective real-world implementation
of LLMs in thyroid nodule management decision support.

large language models (LLMs), thyroid nodules, risk stratification, ACR-TIRADS, C-
TIRADS, clinical decision-making

1 Introduction

Thyroid nodules are a common clinical finding with most being
benign but a small proportion harboring malignant potential. The
increasing prevalence of thyroid nodules, largely due to the
widespread high-resolution ultrasonography (1, 2), underscores
the need for accurate risk stratification. This guides clinical
management by minimizing unnecessary invasive procedures and
optimizing patient outcomes (3).

Recent advancements in the diagnosis and management of
thyroid nodules have been driven by both refined risk
stratification systems and the integration of artificial intelligence
(AI). We selected ACR-TIRADS (4) and C-TIRADS (5) for their
reproducibility and alignment with global (ACR-TIRADS) and
regional Chinese clinical guidelines (C-TIRADS). We prioritized
these over Eu-TIRADS, which has fewer risk categories that may
limit nuanced evaluations in our cohort (6). Large language models
(LLMs) excel in thyroid nodule assessment by processing
unstructured narratives. They simulate expert reasoning and
generate guideline-aligned recommendations. This differs from
traditional Al methods like S-Detect, which rely on image-based
feature extraction without interpretive depth (3, 6, 7). A review by
Grani et al. (3) outlines current diagnostic and therapeutic strategies
for thyroid nodules. It underscores AI's growing role in enhancing
risk assessment accuracy, particularly via ultrasound-based systems
like ACR-TIRADS and C-TIRADS. For instance, Multimodal GPT
systems show promise in improving diagnostic performance and
reducing unnecessary biopsies and surgeries. In this study, we
focused on the 2017 American College of Radiology Thyroid
Imaging Reporting and Data System (ACR-TIRADS) as a global
comparator and the 2020 Chinese Thyroid Imaging Reporting and
Data System (C-TIRADS) as our routine clinical standard. This
reflects international familiarity and local decision-making
thresholds. These systems are widely adopted: ACR-TIRADS in
the US and C-TIRADS in China. This ensures our findings’
relevance to the investigated clinical settings. Other guidelines,
like Eu-TIRADS and K-TIRADS, use different biopsy triggers and
lexicons. These could affect LLM recommendations. Future work
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will evaluate these guidelines to assess generalizability. LLMs, such
as GPT-4o, excel in analyzing both structured and unstructured
clinical narratives. They offer advantages in complex scenarios
requiring detailed textual analysis. In contrast, traditional AI
systems like S-Detect focus primarily on structured image data.
This may limit their adaptability in complex clinical scenarios (8).
Furthermore, Yang et al. (6) corroborate the need for integrated
approaches. Multimodal systems, including LLMs, demonstrate
superior diagnostic accuracy in thyroid nodule evaluation
compared to traditional image-based AI systems. C-TIRADS
shows favorable performance among TIRADS systems and S-
Detect. This capability positions LLMs as valuable tools for
complementing image-based decision-making in complex
scenarios (7).

Building on these advancements, LLMs—including OpenATl’s
GPT series and models like DeepSeek-R1—demonstrate promise in
healthcare applications (9-11). These models process structured
imaging data and unstructured narratives. They simulate expert
reasoning and generate evidence-based management
recommendations. However, the clinical validity and reliability of
LLMs in TIRADS frameworks remain underexplored and
unvalidated in real-world settings. This validation gap prompted
our investigation into LLMs’ potential for thyroid
nodule management.

To address this gap, we evaluated LLMs’ role in thyroid nodule
management using two approaches. First, we compared the
diagnostic performance of three LLMs (GPT-40, GPT-03-mini,
and DeepSeek-R1) against expert sonologists under ACR-
TIRADS and C-TIRADS. Second, we assessed model outputs
across five key clinical dimensions: guideline adherence, patient
safety, operational feasibility, clinical applicability, and overall
performance. These evaluations provide insights into LLMs’
strengths and limitations in endocrine workflows. They inform
strategies for safe clinical integration.

To our knowledge, this is the first study to evaluate LLMs under
dual TIRADS systems with structured trust assessments from
experts. Our findings provide foundational insights into
integrating LLMs into thyroid nodule management pathways.
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2 Materials and methods
2.1 Study design and ethical approval

This retrospective, single-center study was conducted at our
hospital and approved by the institutional ethics committee. Due to
the study’s retrospective nature, informed consent was waived. The
sample size of 63 nodules was appropriate for this preliminary study. It
is comparable to other initial Al evaluations in thyroid disease
management, such as a study using 33 patient queries that detected
significant differences (P < 0.01) in performance metrics. This provides
sufficient power (approximately 70-80%) to detect meaningful
differences in AUC (0.05-0.1) based on similar comparisons.

2.2 Patient cohort

We initially reviewed 150 adult patients with thyroid nodules.
After applying exclusion criteria, we included 93 patients who
underwent thyroidectomy from January 2020 to October 2024.
Exclusion criteria were:

Incomplete clinical records

Prior thyroid surgery history

10.3389/fendo.2025.1667809

+ Inadequate or low-quality ultrasound images

* Absence of preoperative ultrasound performed at the
study institution

* Inconsistent nodule characteristics interpretation among
three senior sonologists

To account for multifocal disease and heterogeneous
histopathology, we analyzed 101 distinct nodules from these 93
patients. The cohort included 30 males and 63 females, with both
solitary and multifocal nodules. The patient selection process is
illustrated in Figure 1.

2.3 Data collection

Two board-certified sonologists, each with over 10 years of
thyroid imaging experience, independently extracted clinical and
ultrasound data. We implemented a two-phase review protocol to
ensure ultrasound annotation consistency. Before data extraction,
all sonologists underwent a calibration session. This standardized
interpretation criteria based on the 2017 ACR-TIRADS and 2020
C-TIRADS guidelines (5, 9, 11).All three sonologists had
comparable training and experience in thyroid
ultrasound interpretation.

150 patients aged>18years underwent

Thyroid surgery in our hospital

Exclude

|

57 patients due to (a) incomplete
clinical records, (b) prior thyroid
surgery, (c) inadequate imaging data,
and (d) absence of preoperative
ultrasound evaluation at our hospital
inadequate imaging

v

93 patients with 101 thyroid nodules were classified
according to the ACR TI-RADS/C-TIRADS)

framework

Exclude

v

»| 38 benign cases

63 Cases were included to LLMs input

FIGURE 1

Patient selection flowchart. This figure outlines the inclusion and exclusion steps applied to the thyroid nodule ultrasound case pool. After applying
clinical and imaging eligibility criteria, 63 cases were retained for analysis. The process excludes 57 patients followed by exclusion of 38 benign
cases, resulting in a subset enriched for diagnostic ambiguity to stress-test models.
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Key assessed ultrasound features included:

* Composition

* Echogenicity

* Margins

+ Shape

* Calcifications

*  Vascularity

» Central and lateral lymph node status

In the first phase, the two sonologists independently assessed all
nodules. Inter-observer agreement was measured using Cohen’s
kappa coefficient. Nodules with substantial agreement (i > 0.60)
across all features proceeded to the second phase. In the second
phase, a third board-certified sonologist independently reassessed
eligible nodules. This sonologist was blinded to prior evaluations
and all clinical/pathological data. We included only nodules with
unanimous agreement among all three sonologists on predefined
features in the final dataset. This strict consensus process
maximized annotation reliability and minimized inter-observer
variability. It ensured high-fidelity input for LLM analysis.

Collected data included:

* Demographics and medical history

* Thyroid function tests (TSH, T3, T4, autoantibodies)
e Detailed ultrasound features

* Postoperative histopathology

2.4 LLM prompt construction and output
generation

We crafted structured prompts using standardized clinical and
imaging data. These were refined through iterative pilot testing and
sonologist consensus to ensure clarity, consistency, and relevance.
We tested three prompt variations to optimize phrasing for model
performance. These aligned with the 2017 ACR-TIRADS and 2020
C-TIRADS guidelines. The initial prompt was overly rigid. It used
numbered steps, fixed scoring, and predefined outputs. This
constrained dynamic reasoning and flexibility, risking repetitive,
biased responses that overlooked nuances. We refined prompts
iteratively over three cycles using a pilot set of 10 nodule
descriptions. We tested variations like basic inputs (e.g., “Are you
familiar with the 2017 ACR-TIRADS guidelines?/Are you familiar
with the 2020 C-TIRADS guidelines? Analyze this ultrasound
description: [details]. Classify using ACR-TIRADS by scoring
features and provide category/risk.”) versus structured formats.
These included TI-RADS criteria, role prompts (e.g., “act as an
expert”), and output templates to enhance consistency and reduce
ambiguity. We applied a unified prompt template consistently
across all three LLMs (GPT-40, GPT-03-mini, and DeepSeek-R1).
It used identical formats and parameters for fair comparison. We
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used uniform optimized prompts across all models for fair
comparison. Example: “Please act as an expert in thyroid nodules.
Analyze the patient’s clinical data and ultrasound features. Classify
according to the 2017 ACR-TIRADS and 2020 C-TIRADS. Assign
malignancy risk and provide management recommendations.” Each
prompt represented a single thyroid nodule. It incorporated
demographic data, laboratory values, and ultrasound features.
Prompts were written in natural language to simulate real-world
clinical narratives. Example: “Act as an expert in thyroid nodules.
Based on the ACR-TIRADS (2017), classify this nodule:
[description]. Assign a malignancy risk level and provide
management recommendations.” We processed prompts
independently in a stateless framework. This prevented prior
context from influencing responses and enhanced reproducibility
and fairness.

To focus on challenging cases, we excluded 38 unequivocally
benign nodules. These were confirmed by histopathology and
uniformly classified as low-risk across all models. Excluded cases
showed no ambiguous features. We removed them to focus analysis
on borderline or complex presentations. We intentionally enriched
the analytic subset for ambiguous cases. This increased malignancy
prevalence (73% vs. 45.5% in the total cohort). This strategy
rigorously tested model performance in complex cases.

Interpret findings from this focused sample with caution,
especially in routine screening settings. We plan prospective
sampling at routine prevalence to validate findings and
improve generalizability.

The final dataset included 63 nodules:

17 multifocal cases (15 malignant)
6 with lateral lymph node metastasis (LLNM)
» 21 with central lymph node metastasis (CLNM)

Although this yielded a higher-than-average malignancy rate,
the enrichment enabled rigorous testing of model performance in
complex cases.

2.5 Expert evaluation of LLM outputs

Two independent experts -a thyroid surgeon and an
endocrinologist, both experienced in thyroid disease
management- evaluated each model’s recommendations. They
used a 5-point Likert scale across the following five domains:

* Guideline adherence (ACR-TIRADS, C-TIRADS)
 Patient safety (conservativeness and appropriateness)

* Operational feasibility (ease of clinical implementation)

* Clinical utility (usefulness in real-world decision-making)
*  Opverall performance

To minimize bias, we anonymized and blinded model outputs
to the source model and true clinical outcomes. We assessed inter-
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rater reliability using weighted Cohen’s kappa (quadratic weights)
on merged Likert scores (1-2: Low, 3: Medium, 4-5: High). This
was done for each dimension, separately for ACR-TIRADS and C-
TIRADS, and per model. It evaluated consistency between surgeon
and endocrinologist ratings (Supplementary Table S3).

2.6 Selection criteria for large language
models

We selected LLMs based on:

* Strong performance in general reasoning and
medical benchmarks

* Release within the past two years

*  Accessibility via public APIs or open platforms

* Architectural diversity (e.g., proprietary vs. independently
trained models)

Specifically:

*  GPT-40 and GPT-03-mini: Represent OpenAI’s GPT series
(12, 13).
*  DeepSeek-R1: Developed independently by DeepSeek (14).

2.7 Statistical analysis

Descriptive statistics summarized patient demographics
and characteristics.
We assessed diagnostic performance via:

* Cohen’s kappa for agreement between LLM classifications
and sonologist consensus

* Sensitivity, specificity, PPV, NPV, and AUC
(histopathology as reference standard)

* ROC curve analysis for performance visualization.

* We used 95% confidence intervals for proportions via the
Wilson method (z=1.96). AUC comparisons used the
DeLong procedure. Cohen’s k¥ CIs used bias-corrected
bootstrap (1,000 resamples). Point estimates are reported
to three decimals places. Results are in Table 1.

*  We adjusted PPV and NPV for different prevalences (5%,
10%, 15%) using Bayesian methods. Adjustment results are
in Supplementary Table S1.

*  We evaluated model performance separately for subgroups
based on nodule size, malignancy status, and lymph node
metastasis. Subgroup analyses calculated AUC, sensitivity,
specificity, PPV, NPV, and 95% ClIs. AUC comparisons
used the DeLong test. Subgroup results are in
Supplementary Table S2.

We included only nodules with full consensus from three
sonologists to ensure ground truth reliability.
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We calculated inter-observer agreement between the two initial
readers using Cohen’s kappa. Nodules with 1« > 0.60 proceeded to
third-round review. Final inclusion required full agreement across
all features.

We tested expert Likert ratings for normality using the Shapiro-
Wilk test. Depending on distribution, we applied one-way ANOVA
or Kruskal-Wallis tests. We considered a two-tailed p-value < 0.05
statistically significant.

All analyses used Python (v3.9.18).

3 Results

Our preliminary analyses showed moderate concordance
between LLMs and sonologist classifications. We focused
subsequent analyses on inter-model comparisons and expert
evaluations of clinical applicability.

3.1 Patient characteristics

From January 2020 to October 2024, we initially collected 150
adult thyroid nodule cases from a tertiary medical center. After
rigorous quality assessment and review by three sonologists, we
included 101 nodules from 93 patients in the final analysis
(inclusion rate: ~ 67.3%). This stringent selection ensured
diagnostic relevance and data integrity.

The median patients was 52.0 years (range: 42.0-58.0). Of
the 93 patients, 30 (32.3%) were male and 63 (67.7%) were
female. Postoperative histopathology confirmed 46 (45.5%)
malignant and 55 (54.5%) benign nodules. Baseline clinical
characteristics are summarized in Table 2, which compares
demographics and clinical features of the full cohort (101
nodules from 93 patients) and the annotated subset (63
nodules) to assess representativeness.

3.2 Data quality and model input integrity

To ensure high-quality, reliable LLM input, ultrasound data
underwent rigorous annotation. Two board-certified sonologists,
each with over 10 years of experience, independently annotated all
ultrasound features relevant to TIRADS classification. Inter-
observer agreement was strong (Cohen’s ¥ = 0.81). A third
board-certified sonologist, with equivalent qualifications and over
10 years of experience, independently and blindly re-evaluated all
cases to ensure consistency and minimize annotation bias. We
retained only nodules with unanimous agreement on key features
(echogenicity, composition, shape, margin, and calcifications),
enhancing interpretive consistency and clinical validity.

To focus on diagnostically meaningful cases, we excluded 38
unequivocally benign nodules with consistent low-risk
categorization across all models. The remaining 63 nodules had
complex, borderline, or ambiguous features, enabling robust
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TABLE 1 Diagnostic performance of Al models and expert readers based on ACR-TIRADS and C-TIRADS guidelines.

Guideline Sensitivity (95% Cl) = Specificity (95% CI) PPV (95% CI) NPV (95% CI) AUC (95% Cl)
1.000 0.800 0.807 1.000 0.900
Expert ACR-TIRADS
*pe [0.923, 1.000] [0.676, 0.884] [0.687, 0.889] [0.920, 1.000] [0.848, 0.952]
1.000 0.745 0.767 1.000 0.874
E _TIRAD
pert C-TIRADS [0.923, 1.000] [0.617, 0.842] [0.646, 0.856] [0.914, 1.000] [0.815, 0.929]
Pt ACRUTIRADS 0.957 0.800 0.800 0.957 0.879
[0.855, 0.988] [0.676, 0.884] [0.676, 0.884] [0.855, 0.988] [0.815, 0.934]
Pt CATIRADS 0.870 0.927 0.909 0.895 0.898
[0.743, 0.939] [0.827, 0.971] [0.788, 0.964] [0.789, 0.951] [0.835, 0.957]
GPT-osmini | ACRTIRADS 0.891 0.855 0.837 0.904 0.873
[0.770, 0.953] [0.738, 0.924] [0.710, 0.915] [0.794, 0.958] [0.803, 0.935]
0.957 0.691 0.721 0.950 0.824
PT-03-mini _TIRAD
GPT-03-mini ¢ S [0.855, 0.988] [0.560, 0.797] [0.598, 0.818] [0.835, 0.986] [0.758, 0.886]
) ) . 821 )
— ACRUTIRADS 0.783 0.836 0.800 0.8 0.809
[0.644, 0.877] [0.717, 0.911] [0.662, 0.891] [0.702, 0.900] [0.731, 0.882]
0.957 0.709 0.733 0.951 0.834
DeepSeek-R1 C-TIRADS
[0.855, 0.988] [0.579, 0.812] [0.610, 0.829] [0.839, 0.987] [0.764, 0.896]

Values are shown as point estimate [95% CI]. 95% ClIs for sensitivity, specificity, PPV, and NPV were computed using the Wilson method (z=1.96), and 95% CIs for AUC were derived with the
DeLong approach. Cohort composition: n_malignant = 46 and n_benign = 55. PPV/NPV depend on disease prevalence.

assessment of model reasoning and decision-making
under uncertainty.

For LLM input, we converted structured annotations into
concise, standardized clinical narratives.

These included patient demographics, relevant clinical history,
and key ultrasound descriptors (location, size, echogenicity, margin,
shape, calcifications, vascularity, and lymph node status).
For example:

“A 41-year-old female presented with a left-sided neck mass
detected one week ago. Thyroid function test shows TSH at 5.5 ulU/
ml, with no other abnormalities.

Ultrasound findings: No evidence of diffuse thyroid disease. The
nodule, located in the mid-portion of the left lobe, measures
approximately 18 mm x 15.4 mm x 16 mm. It is solid,
hypoechoic, exhibits capsular invasion, ill-defined margins,
angular borders, and a taller-than-wide shape. Microcalcifications
are present. Grade 2 internal vascularity is observed. Multiple
abnormal lymph nodes with irregular shapes and rich vascular
flow are identified in levels 2, 3, 4, and 6 on the left side.

These prompts emulated routine physician documentation,
enabling LLMs to process cases using natural clinical language
rather than abstracted templates. Additional examples are in
Appendix 1.

We presented each case to the LLMs independently in a stateless
manner. This ensured outputs were generated solely from each
prompt, unaffected by prior cases. This design enabled unbiased
evaluation of model diagnostic reasoning.

3.3 Bayesian-adjusted predictive values

To account for the enriched malignancy prevalence (73% in
subset vs. typical 5-15%), we adjusted PPV and NPV using

Frontiers in Endocrinology

TABLE 2 Baseline characteristics of the study population and
comparative statistics between the total cohort and expert-annotated
subset.

Characteristic SRl P-value
(n = 63)

Number of patients 93 63 -
Number of nodules 101 63 -
Gender, n (%) 0.754
Female 63 (67.7%) 45 (71.4%)
Male 30 (32.3%) 18 (28.6%)
Age (y) 0.666
Mean + SD 499 + 12,5 48.7 + 12,5

52.0 (42.0- 52.0 (37.5-
Median (IQR) 58.0)( 58.0)(
Range 19-78 25-75 -
Maximum nodule diameter
(mm) 0.129
Mean + SD 195+ 17.1 17.0 £ 16.5
Median (IQR) ; :g)(7.9- 9.9 (6.7-18.0)
Range 3.0-73.0 4-72 -
Pathological results, n (%) <0.001**
Benign 55 (54.5%) 17(27.0%)
Malignant 46 (45.5%) 46 (73.0%)

Data are presented as mean + standard deviation (SD), median (interquartile range [IQR]),
range, or number (percentage), as appropriate. Continuous variables were compared using the
Mann-Whitney U test; categorical variables were analyzed using the chi-square ()°) test. A
two-tailed P-value < 0.05 was considered statistically significant.
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Bayesian methods (Supplementary Table S1). Across models and
TIRADS, adjusted NPV was high (>0.96; e.g., GPT-40 C-TIRADS:
0.979-0.994), indicating effective malignancy exclusion and biopsy
reduction in routine settings. Adjusted PPV was moderate (0.22-
0.65; e.g., DeepSeek-R1 C-TIRADS: 0.24-0.514), suggesting
potential false positives in low-prevalence settings, consistent with
reported thyroid nodule malignancy rates of 7-15% (7)).

3.4 Diagnostic concordance between LLMs
and expert grading

Under the ACR-TIRADS framework, both GPT-40 and GPT-
03-mini showed substantial agreement with expert annotations by
board-certified sonologists (Cohen’s ¥ = 0.614 [0.490, 0.738]).
0.480

DeepSeek-R1 showed moderate concordance (K
[0.358, 0.597]).

Under C-TIRADS, GPT-03-mini had the highest agreement (k
=0.368 [0.249, 0.474]), followed by DeepSeek-R1 (1 = 0.223 [0.129,
0.322]) and GPT-40 (x = 0.212 [0.112, 0.318]), all indicating fair
agreement levels.

Kappa statistics are in Figure 2.

10.3389/fendo.2025.1667809

3.5 Diagnostic performance for malignancy
prediction

ROC analysis showed the board-certified sonologist, using
ACR-TIRADS, achieved the highest malignancy diagnostic
accuracy (AUC = 0.900; 95% CI: 0.848-0.952).

Among LLMs, GPT-40 with C-TIRADS had the highest AUC
(0.898; 95% CI: 0.835-0.957), slightly outperforming its ACR-
TIRADS variant (AUC = 0.879; 95% CI: 0.815-0.943). GPT-03-
mini with ACR-TIRADS had an AUC of 0.873 (95% CI: 0.803-
0.935), while DeepSeek-R1 with ACR-TIRADS had the lowest
(AUC = 0.809; 95% CI: 0.731-0.882).

We performed a post-hoc DeLong test to compare AUC values
between GPT-40 and DeepSeek-R1 under ACR-TIRADS and C-
TIRADS. The test showed that, although GPT-40 had higher AUC
values than DeepSeek-R1, the differences were not significant (p=
0.893 for ACR-TIRADS, p= 0.875 for C-TIRADS). The Z-scores
were 0.135 and 0.157, respectively, suggesting AUC differences were
likely due to random variation, consistent with this study’s
exploratory nature. All LLMs had significantly lower performance
compared to the sonologist (p < 0.05). Additional diagnostic
metrics (sensitivity, specificity, PPV, and NPV) are in Table 1.

Kappa Consistency: Expert vs Models (ACR & C-TIRADS)

1.0
Grading System
[ ACR
[0 C-TIRADS
0.8

0.6 1
4
K%
c
@
ey
[}
(@]
0.4 1
0.2 1
0.0 -
GPT-40 GPT-03-mini DeepSeek-R1
Model
FIGURE 2

Kappa consistency between expert and models (ACR & C-TIRADS grading systems). This bar plot compares the Kappa coefficients for model
consistency with expert grading using both the ACR and C-TIRADS systems. Higher Kappa values indicate stronger agreement between the model
and the expert. The models evaluated include GPT-40, GPT-03-mini, and DeepSeek-R1. The Kappa coefficient is presented for each model under
both grading systems to show the degree of alignment between Al predictions and expert evaluations. "Expert” refers to the board-certified
sonologist. Kappa values (with 95% Cl via percentile bootstrap) indicate fair-to-substantial agreement, with GPT-40 highest under ACR-TIRADS

(k=0.614), reflecting framework-specific alignment strengths.
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Table 1 presents diagnostic performance metrics (sensitivity,
specificity, PPV, NPV, and AUC) with 95% CIs for GPT-4o,
GPT-03-mini, DeepSeek-R1, and expert readings under ACR-
TIRADS and C-TIRADS. ROC curves are in Figure 3.

Beyond these diagnostic metrics,

3.6 Expert evaluation of clinical
recommendations

Expert assessments using 5-point Likert scales showed
variability in the clinical management recommendations across
LLMs. Evaluations covered five domains: guideline adherence,
patient safety, operational feasibility, clinical applicability, and
overall performance. Two senior clinicians (an endocrinologist
and a thyroid surgeon, each with over 10 years of experience)
independently evaluated the recommendations.

DeepSeek-R1 with C-TIRADS received the highest ratings
across most domains.

Table 3, Figure 4 present expert evaluations, showing mean
Likert scores for guideline adherence, patient safety, operational
feasibility, clinical applicability, and overall performance across

10.3389/fendo.2025.1667809

ACR-TIRADS and C-TIRADS for DeepSeek-R1, GPT-40, and
GPT-03-mini, as assessed by surgeons and endocrinologists.
Among surgeons, DeepSeek-R1 with C-TIRADS had the highest
average score (4.66), slightly outperforming DeepSeek-R1 with
ACR-TIRADS (4.63). Among endocrinologists, DeepSeek-R1 with
ACR-TIRADS scored slightly higher (4.29) than its C-TIRADS
counterpart (4.26), indicating consistent performance across
frameworks. These results suggest DeepSeek-R1 offers
conservative, guideline-compliant, and clinically feasible
recommendations, especially in surgical contexts. Although GPT-
40 had the highest diagnostic accuracy for malignancy, its
management recommendations were rated slightly lower than
DeepSeek-R1’s, especially for patient safety and clinical
implementation under C-TIRADS. This highlights a key insight:
superior diagnostic performance does not ensure optimal clinical
decision-making. GPT-40 excels in malignancy prediction, but
DeepSeek-R1 is more aligned with practical clinical needs,
including interpretability, safety, and guideline adherence.

Both experts, especially the surgeon, gave higher ratings to all
models under C-TIRADS. This may reflect C-TIRADS’s simpler
structure and conservative thresholds, enhancing compatibility with
LLM applications.

ROC Curves (based on Grade)

True Positive Rate

0.2

0.0 £ : !

Expert ACR (AUC=0.900)

Expert C-TIRADS (AUC=0.873)
GPT-40 ACR (AUC=0.878)

GPT-40 C-TIRADS (AUC=0.898)
GPT-03-mini ACR (AUC=0.873)
GPT-03-mini C-TIRADS (AUC=0.824)
DeepSeek-R1 ACR (AUC=0.809)
DeepSeek-R1 C-TIRADS (AUC=0.833)
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FIGURE 3

ROC curves for expert and models based on grading systems (ACR & C-TIRADS). Receiver Operating Characteristic (ROC) curves illustrating the
diagnostic performance of expert assessments and Al models under the ACR and C-TIRADS grading systems. Each curve represents the True
Positive Rate (sensitivity) versus False Positive Rate (1-specificity) at different thresholds. The Area Under the Curve (AUC) for each model is shown in
parentheses to quantify overall diagnostic accuracy. Models evaluated include GPT-40, GPT-03-mini, and DeepSeek-R1. "Expert” refers to the
board-certified sonologist. AUC near 0.9 (e.g., GPT-40 C-TIRADS: 0.898) shows expert-level malignancy prediction, with better performance under

C-TIRADS, indicating its suitability for Al integration.
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TABLE 3 Five-dimensional mean scores (surgeon vs. endocrinologist).

10.3389/fendo.2025.1667809

Guideline Guideline_ Patient_ Ope.ra.t.ional_ Clini.cal_. _ Overall_
adherence safety feasibility applicability = performance
ACR-TIRADS | DeepSeek-R1 Surgeon 4.7460 4.6508 4.6032 4.6032 4.5714
ACR-TIRADS  GPT-do Surgeon 45556 45873 45397 4.5238 4.5556
ACR-TIRADS GPT-03-mini Surgeon 4.4921 4.4603 4.4286 4.4127 4.4603
C-TIRADS DeepSeek-R1 Surgeon 47778 4.6349 4.6190 4.6349 4.6508
C-TIRADS GPT-4o Surgeon 4.6190 45556 45238 4.5556 4.5556
C-TIRADS GPT-03-mini Surgeon 46190 45397 45238 4.5397 45714
ACR-TIRADS DeepSeek-R1 Endocrinologist 4.5397 43016 4.3016 4.1746 4.1270
ACR-TIRADS  GPT-4o Endocrinologist ~ 4.5397 4.0635 41111 4.0000 4.0159
ACR-TIRADS  GPT-03-mini Endocrinologist = 4.6032 4.0000 3.9841 3.9524 3.9365
C-TIRADS DeepSeek-R1 Endocrinologist 4.5873 4.1905 4.2381 4.1429 4.1270
C-TIRADS GPT-40 Endocrinologist | 4.6508 41111 4.1270 4.0952 4.0952
C-TIRADS GPT-03-mini Endocrinologist = 4.6508 4.0476 40476 3.9524 40159

Scores are presented as mean values based on a 5-point Likert scale (1 = strongly disagree, 5 = strongly agree). Evaluation dimensions include Guideline Adherence, Patient Safety, Operational
Feasibility, Clinical Applicability, and Overall Performance. Assessments were conducted by two types of medical professionals—surgeons and endocrinologists—on three AI models (DeepSeek-
R1, GPT-40, and GPT-03-mini) under two thyroid nodule risk stratification systems: ACR-TIRADS and C-TIRADS.

3.7 Subgroup analysis

We performed subgroup analyses to evaluate model
performance across benign vs. malignant nodules, nodule sizes
(<10mm, 10=20mm, 220mm), multifocal vs. solitary nodules,
and cases with vs. without lymph node metastasis. Metrics (AUC,
sensitivity, specificity, PPV, NPV, and 95% CIs) are in
Supplementary Table S2. Performance was consistent, with no
significant AUC differences between models (DeLong test, p >
0.05 in most comparisons). Sensitivity was higher in malignant
and lymph node-positive subgroups, while specificity varied more
in smaller and benign nodules. It should be noted that some
subgroup analyses, particularly for lymph node metastasis, were
limited by small sample sizes, and their results should be interpreted
with caution.

3.8 Inter-rater reliability of expert
evaluations

We assessed consistency between surgeon and endocrinologist
ratings using weighted Cohen’s kappa (quadratic weights) on
merged Likert scores (1-2: Low, 3: Medium, 4-5: High). This was
done across all dimensions, separately for ACR-TIRADS and C-
TIRADS, and per model (Supplementary Table S3). Inter-rater
reliability showed fair consistency (C-TIRADS: mean weighted
kappa = 0.277; ACR-TIRADS: 0.267) across dimensions.GPT-03-
mini under C-TIRADS had the highest agreement (mean
kappa=0.380, fair), while DeepSeek-R1 showed poor agreement
(C-TIRADS: -0.017; ACR-TIRADS: -0.022) due to near-uniform
high ratings (~95% High), limiting score variability and kappa
sensitivity. These findings indicate moderate agreement between

Frontiers in Endocrinology

raters, with DeepSeek-R1’s high ratings reflecting strong perceived
reliability but reduced discriminatory power in consistency metrics.

3.9 Error analysis of model performance

Error analysis showed that models struggled with nodules
having subtle or complex features, such as mixed calcifications,
small size, or ambiguous boundaries. These features caused
inconsistent malignancy risk predictions, often leading to over- or
underestimation. These findings highlight the need for clinician
oversight in ambiguous cases, as LLMs may not reliably distinguish
nuanced features without expert input. This underscores the
importance of human-AI collaboration in high-stakes decisions.
Error analysis showed model failures in small nodules (<10mm),
with AUC ~0.53-0.55 and lower specificity, risking over-diagnosis.
In multifocal or lymph node-positive cases, sensitivity declined
(e.g., GPT-40: 0.870), potentially missing malignancies. These
patterns suggest increased human oversight for ambiguous
features. Future work should address rare subtypes through
multimodal improvements.

4 Discussion
4.1 Principal findings

We evaluated the clinical recommendation capabilities of three
LLMs (GPT-40, GPT-03-mini, and DeepSeek-R1) using ACR-
TIRADS and C-TIRADS frameworks.

GPT-40 achieved the highest diagnostic accuracy for
malignancy prediction via ROC analysis. However, DeepSeek-R1

frontiersin.org
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FIGURE 4
(A) Surgeon evaluations under ACR-TIRADS; (B) Endocrinologist evaluations under ACR-TIRADS; (C) Surgeon evaluations under C-TIRADS; (D)
Endocrinologist evaluations under C-TIRADS.

with C-TIRADS received the highest ratings from endocrine and ~ RI’s high sensitivity (0.957) prioritizes malignancy detection,
surgical experts. These assessments, across five domains (guideline  fostering greater trust in patient safety, a key rating dimension.
adherence, patient safety, operational feasibility, clinical ~DeepSeek-R1’s regional origins may enhance C-TIRADS
applicability, and overall performance), highlight both content  alignment, improving perceived adherence and operational fit.
accuracy and clinical practicality of model recommendations.  These suggest tailored LLM use: GPT-40 for accuracy-driven
This aligns with Topcuoglu (15) and Jin et al. (16), who highlight  screening and DeepSeek-R1 for safety-critical or region-specific
C-TIRADS’s greater specificity and biopsy utility for Chinese  decision support.

populations compared to ACR-TIRADS. DeepSeek-R1’s higher A key insight is the disconnect between diagnostic performance
expert ratings may reflect its alignment with regional clinical  and clinical trustworthiness. This gap underscores the importance
reasoning and linguistic context, as noted by Chen (7) and  of interpretability and usability for LLM deployment. Fair inter-
Gibney (17). The discrepancy between GPT-40’s higher AUC  rater reliability between the surgeon and endocrinologist (C-
(0.898) under C-TIRADS and DeepSeek-R1’s higher clinician =~ TIRADS: mean weighted kappa=0.277; ACR-TIRADS:0.267;
ratings (surgeon: 4.65; endocrinologist: 4.63) suggests a  Supplementary Table S3) suggests potential bias from using only
divergence between objective accuracy and subjective clinical  two raters. DeepSeek-R1’s near-zero kappa (C-TIRADS: -0.017;
utility. AUC measures overall balance, with GPT-40’s high ~ ACR-TIRADS: -0.022) results from near-uniform high ratings
specificity (0.927) reducing false positives. In contrast, DeepSeek-  (~95% High). This indicates strong clinician agreement but
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limited score variability, reducing kappa sensitivity. This
underscores the need for diverse raters (e.g., radiologists,
additional specialists) in future studies to improve reliability and
generalizability, consistent with multi-center validation needs (18).

We observed variability in model performance across
subgroups, particularly in AUC, sensitivity, and specificity.
Smaller subgroup sample sizes (e.g., lymph node metastasis: Yes,
Pathology = 0) caused performance differences, highlighting
limitations of small datasets. These findings highlight the need for
future research with larger, more diverse cohorts to enhance model
robustness across subgroups.

Subgroup analyses (Supplementary Table S2) showed
diagnostic challenges in smaller nodules (<10mm) and benign
cases. Lower AUC (e.g., expert: 0.546 under ACR-TIRADS) and
variable specificity suggest increased false positives, likely due to
subtle ultrasound features (19). This aligns with studies showing
that small nodules pose management challenges, with lower
TIRADS diagnostic accuracy, requiring multimodal approaches
for better differentiation (19). Multifocal nodules had slightly
higher AUC than solitary nodules, likely due to richer feature sets
for risk stratification. This is consistent with evidence linking
multifocal disease to higher malignancy rates and complexity
(20). In lymph node metastasis cases, high sensitivity but lower
specificity was observed, suggesting potential over-diagnosis in
aggressive cases. This aligns with ultrasound studies noting
imaging’s role in detecting, but sometimes overcalling, metastatic
features (20). These findings highlight the need for refined AI
models with multimodal data to address subgroup-specific
challenges, especially in settings where small, benign, or non-
metastatic nodules predominate. DeepSeek-R1 with C-TIRADS
received the highest clinician ratings, particularly for guideline
adherence, patient safety, and operational feasibility. Its alignment
with regional guidelines and structured decision-making resonates
with clinicians, especially surgeons. Despite GPT-40’s higher AUC
under C-TIRADS, clinicians rated it lower, likely due to less
intuitive outputs compared to DeepSeek-R1’s actionable,
guideline-aligned recommendations. Clinician trust often
outweighs AUC in AI model adoption, as usability and alignment
with clinical reasoning are critical for clinical implementation.
Doshi et al. (21) showed that context-specific prompting, like
simplifying radiology reports for laypersons, improves
comprehension without compromising accuracy.

These results align with existing literature.

4.2 Comparison with previous studies

Although research has explored LLMs in medical reasoning and
imaging interpretation, few studies have examined their alignment
with region-specific guidelines or physician expectations.

LLM performance in thyroid imaging varies. Wu et al. (22)
found GPT-4.0 improved diagnostic consistency and sometimes
outperformed junior clinicians. In contrast, Chen et al. (23)
reported low concordance with pathological findings and lower
accuracy than.
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radiology trainees. Katharina et al. (24) noted GPT-4.0’s
difficulty adhering to ACR-TIRADS, highlighting limitations in
handling complex protocols.

Model performance varies significantly. Kaba et al. (25)
reported GPT-4’s strong performance with K-TIRADS, while Xia
(26) and Wang (11) found GPT-3.5 useful for general queries but
unreliable for nuanced decisions. Marchi et al. (27) and Chung et al.
(28) concluded that, while LLMs aid treatment planning and risk
stratification, domain-specific models outperform in high-
stakes settings.

DeepSeek-R1 shows promise in recent studies. Peng (29) and
Liang (30) showed DeepSeek-R1’s effective adaptation to clinical
reasoning in Chinese healthcare settings, consistent with its strong
performance under C-TIRADS. These results suggest that language
proficiency or model size alone is insufficient; alignment with local
practice patterns and clinical logic is critical. Chen et al. (30)
proposed a multi-agent, GPT-4-based framework that improved
diagnostic accuracy and follow-up planning for rare diseases. This
LLM collaboration model highlights the potential for multi-agent
systems in complex diagnostic.

Our findings align with advancements in AI for thyroid nodule
diagnosis, notably the ThyGPT model, which integrates ultrasound
imaging with LLMs to aid radiologists in risk stratification and
decision-making. Yao et al. (7) showed that ThyGPT significantly
improves diagnostic accuracy, surpassing traditional methods in
sensitivity and specificity. ThyGPT’s ability to detect and correct
ultrasound report errors underscores its potential as a reliable AI
copilot, aiding radiologists and reducing diagnostic errors and
unnecessary procedures. Grani et al. (3) support AT’s growing role
in enhancing diagnostic accuracy via Al-driven models, particularly
compared to traditional systems like ACR-TIRADS and
C-TIRADS.

4.2.1 Comparison of TIRADS systems

Alongside LLMs’ varied performance in thyroid imaging,
multiple ultrasound risk stratification systems (e.g., ACR-
TIRADS, EU-TIRADS, K-TIRADS) are widely used in clinical
settings. These systems, differing in risk classification and regional
applicability, show varied diagnostic performance. Kim et al. (18)
and Piticchio et al. (31) showed performance differences across
these systems, particularly in different regions. K-TIRADS, widely
used in Asia, often classifies more nodules as high-risk than ACR-
TIRADS and EU-TIRADS, which are common in Western
countries and show more moderate classifications. These regional
differences are key to understanding TIRADS application in clinical
practice and tailoring diagnostic strategies to specific populations.

4.3 Implications for clinical practice and Al
deployment

Our findings have key implications for the integration of LLMs
into clinical workflows:

« Localization and context-aware prompting are essential. Yang
et al. (32) noted that adapting to regional guidelines is as critical as
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model architecture or scale. Our results confirm this, showing
DeepSeek-R1 outperformed larger models in C-TIRADS due to
better contextual alignment. Bayesian-adjusted PPV and NPV
values at different prevalence levels (5%, 10%, 15%) highlight the
need to consider clinical prevalence in evaluating Al
model applicability.

Cognitive congruence fosters clinical trust. Higher expert
ratings for C-TIRADS outputs suggest clinicians prefer LLM
recommendations mirroring their reasoning and decision-making
frameworks. Kaba et al. (25) noted that interpretability and
familiarity are key for AI systems trust.

* Role-based customization reduces trust gaps. Clinician
attitudes toward DeepSeek-R1 and GPT-40 under C-
TIRADS vary by role. The surgeon preferred DeepSeek-
RI (e.g., overall performance 4.65 vs. 4.56 for GPT-40),
likely valuing its high sensitivity (0.957) for confident
surgical decision-making and risk mitigation. The
endocrinologist rated both lower (DeepSeek-R1: 4.13;
GPT-40: 4.10), likely prioritizing specificity for
monitoring and avoiding unnecessary procedures,
consistent with endocrine practice. Poor inter-rater
agreement (weighted kappa: -0.017 for DeepSeek-RI;
Supplementary Table S3) reflects these differences. The
‘kappa paradox’—near-uniform high ratings (~95% High)
—limits variability, resulting in low kappa despite strong
observed agreement. This suggests customizing LLMs:
sensitivity-focused for surgeons and specificity-focused for
endocrinologists to reduce the trust gap.

e Fine-tuning and clinician-centered design promote
adoption (33): Strategies like reinforcement learning with
human feedback (RLHF), localized instruction tuning, and
guideline-informed prompt engineering improve LLM
output utility. Our findings support clinician-aligned AI
development to ensure safe and effective deployment.

These insights advocate for future LLM systems to be designed
around three principles: contextual alignment, transparency, and
collaborative augmentation of clinician expertise 95% CIL.

4.4 Strengths and limitations

A key strength is the use of real-world, diagnostically
challenging ultrasound cases rather than synthetic scenarios,
enhancing ecological validity. The inclusion of endocrinologists
and surgeons in evaluations provides a multidisciplinary
perspective, adding depth and practical relevance. Several
limitations should be noted.

A limited number of expert raters: A key limitation is relying on
only two evaluators (a surgeon and an endocrinologist), which may
introduce bias and limit generalizability of Likert-scale ratings.
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Inter-rater reliability, assessed via weighted Cohen’s Kappa
(Supplementary_Table_S3), shows fair to moderate agreement
(e.g., 0.261 for C-TIRADS). Low or negative values reflect the
‘kappa paradox’ due to high rating uniformity. Future prospective
studies with larger, diverse multidisciplinary panels (e.g., Z6raters)
could improve validity, as recommended in LLM healthcare
evaluations (7, 34).

¢ Selection bias: We intentionally curated cases for diagnostic
ambiguity. While useful for stress-testing models, this may
not reflect routine clinical presentations. The subset (n=63)
aligns demographically with the total cohort (Table 2; p >
0.05 for gender, age, nodule size) and general populations
(median age: 52 years; 71% female) but has higher
malignancy (73% vs. 45.5%, p < 0.001), limiting
generalizability to low-risk screenings (35). Bayesian-
adjusted PPV/NPV for 5-15% prevalence (Supplementary
Table S1) supports applicability in routine settings. High
NPV (>0.96) aids benign nodule exclusion, reducing
biopsies, while lower PPV (0.22-0.65) may increase false
positives, consistent with malignancy rates of 7-15% (36).
Larger, balanced cohorts are required. DeLong tests
(p>0.05; Supplementary Table S2) confirm no significant
AUC differences, supporting result reliability despite the
modest sample size. We plan prospective studies with larger
cohorts (e.g., n > 200) to validate findings with predefined
power calculations, improving applicability to
diverse populations.

 Single-center design: All clinicians were from one Chinese
institution, potentially introducing institutional and
regional bias. Clinical judgment and guideline
interpretation vary across healthcare systems due to
differences in training, resources, and cultural norms.
Multicenter studies across diverse hospital tiers and
regions are needed to improve external validity. Future
multicenter studies with diverse raters will
improve generalizability.

* Non-real-time testing: We evaluated LLMs offline, not in
live clinical environments. Thus, the real-world impact of
LLM recommendations on workflow efficiency, patient
safety, and decision-making is uncertain. Prospective
validation in operational settings is required. Future real-
time testing will evaluate practical utility in
clinical workflows.

* High-consensus data annotation: Our three-expert
agreement process ensured consistency and data integrity
but is resource-intensive, potentially limiting scalability in
routine practice.

Lack of multimodal input: We prompted models with textual

ultrasound descriptions rather than raw images. Although this
reflects current documentation practices, it excludes rich visual
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information used by sonographers. Multimodal models like
ThyGPT (7) could improve accuracy by integrating visuals,
reducing biopsies by >40% in similar studies. Future multimodal
models integrating text and images will improve diagnostic
capability, pending ethical approvals. Future work should explore
multimodal or vision-language models integrating narrative and
image data to improve diagnostics, especially in complex or
ambiguous cases. Subgroup analysis (Supplementary Table S2)
shows model vulnerabilities in small nodules (<10mm), with
AUC ~0.53-0.55 and lower specificity, increasing over-diagnosis
risk. In multifocal or lymph node-positive cases, sensitivity declined
(e.g., GPT-40: 0.870), potentially missing malignancies. These
patterns suggest increased human oversight for ambiguous or rare
features, highlighting AI as an adjunct tool. Future multimodal
integrations could address these limitations. « Addressing these
limitations will strengthen future research.

5 Summary

In clinical settings, usability and clinician trust in model
recommendations often outweigh AUC for AI adoption. This
underscores the need to consider clinical feasibility and trust
alongside diagnostic performance for AI implementation.
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