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Objective: To evaluate the diagnostic performance and clinical utility of

advanced large language models (LLMs) -GPT-4o, GPT-o3-mini, and

DeepSeek-R1- in stratifying thyroid nodule malignancy risk and generating

guideline-aligned management recommendations based on structured

narrative ultrasound descriptions.

Methods: This diagnostic modeling study evaluated three LLMs—GPT-4o, GPT-

o3-mini, and DeepSeek-R1—using standardized narrative ultrasound descriptors.

These descriptors were annotated by consensus among three senior board-

certified sonologists and processed independently in a stateless manner to

ensure unbiased outputs. LLM outputs were assessed under both ACR-TIRADS

and C-TIRADS frameworks. Two experienced clinicians (a thyroid surgeon and an

endocrinologist) independently rated the outputs across five clinical dimensions

using 5-point Likert scales. Primary outcomes included the area under the

receiver operating characteristic curve (AUC) for malignancy prediction, and

clinician ratings of guideline adherence, patient safety, operational feasibility,

clinical applicability, and overall performance.

Results: GPT-4o achieved the highest predictive AUC (0.898) under C-TIRADS,

approaching expert-level accuracy. DeepSeek-R1, particularly with C-TIRADS,

received the highest clinician ratings (mean Likert: surgeon 4.65, endocrinologist

4.63), reflecting greater trust in its practical recommendations. Clinicians

consistently favored the C-TIRADS framework across all models. GPT-4o and

GPT-o3-mini received lower ratings in trustworthiness and recommendation

quality, especially from the endocrinologist.

Conclusion: While GPT-4o demonstrated superior diagnostic accuracy,

clinicians most trusted DeepSeek-R1 combined with the C-TIRADS framework

for generating practical, guideline-consistent recommendations. The findings
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highlight the critical need for alignment between AI-generated outputs and

clinician expectations, and the importance of incorporating region-specific

clinical guidelines (like C-TIRADS) for the effective real-world implementation

of LLMs in thyroid nodule management decision support.
KEYWORDS

large language models (LLMs), thyroid nodules, risk stratification, ACR-TIRADS, C-
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1 Introduction

Thyroid nodules are a common clinical finding with most being

benign but a small proportion harboring malignant potential. The

increasing prevalence of thyroid nodules, largely due to the

widespread high-resolution ultrasonography (1, 2), underscores

the need for accurate risk stratification. This guides clinical

management by minimizing unnecessary invasive procedures and

optimizing patient outcomes (3).

Recent advancements in the diagnosis and management of

thyroid nodules have been driven by both refined risk

stratification systems and the integration of artificial intelligence

(AI). We selected ACR-TIRADS (4) and C-TIRADS (5) for their

reproducibility and alignment with global (ACR-TIRADS) and

regional Chinese clinical guidelines (C-TIRADS). We prioritized

these over Eu-TIRADS, which has fewer risk categories that may

limit nuanced evaluations in our cohort (6). Large language models

(LLMs) excel in thyroid nodule assessment by processing

unstructured narratives. They simulate expert reasoning and

generate guideline-aligned recommendations. This differs from

traditional AI methods like S-Detect, which rely on image-based

feature extraction without interpretive depth (3, 6, 7). A review by

Grani et al. (3) outlines current diagnostic and therapeutic strategies

for thyroid nodules. It underscores AI’s growing role in enhancing

risk assessment accuracy, particularly via ultrasound-based systems

like ACR-TIRADS and C-TIRADS. For instance, Multimodal GPT

systems show promise in improving diagnostic performance and

reducing unnecessary biopsies and surgeries. In this study, we

focused on the 2017 American College of Radiology Thyroid

Imaging Reporting and Data System (ACR-TIRADS) as a global

comparator and the 2020 Chinese Thyroid Imaging Reporting and

Data System (C-TIRADS) as our routine clinical standard. This

reflects international familiarity and local decision-making

thresholds. These systems are widely adopted: ACR-TIRADS in

the US and C-TIRADS in China. This ensures our findings’

relevance to the investigated clinical settings. Other guidelines,

like Eu-TIRADS and K-TIRADS, use different biopsy triggers and

lexicons. These could affect LLM recommendations. Future work
02
will evaluate these guidelines to assess generalizability. LLMs, such

as GPT-4o, excel in analyzing both structured and unstructured

clinical narratives. They offer advantages in complex scenarios

requiring detailed textual analysis. In contrast, traditional AI

systems like S-Detect focus primarily on structured image data.

This may limit their adaptability in complex clinical scenarios (8).

Furthermore, Yang et al. (6) corroborate the need for integrated

approaches. Multimodal systems, including LLMs, demonstrate

superior diagnostic accuracy in thyroid nodule evaluation

compared to traditional image-based AI systems. C-TIRADS

shows favorable performance among TIRADS systems and S-

Detect. This capability positions LLMs as valuable tools for

complementing image-based decision-making in complex

scenarios (7).

Building on these advancements, LLMs—including OpenAI’s

GPT series and models like DeepSeek-R1—demonstrate promise in

healthcare applications (9–11). These models process structured

imaging data and unstructured narratives. They simulate expert

reasoning and generate ev idence-based management

recommendations. However, the clinical validity and reliability of

LLMs in TIRADS frameworks remain underexplored and

unvalidated in real-world settings. This validation gap prompted

our inves t iga t ion into LLMs ’ potent ia l for thyro id

nodule management.

To address this gap, we evaluated LLMs’ role in thyroid nodule

management using two approaches. First, we compared the

diagnostic performance of three LLMs (GPT-4o, GPT-o3-mini,

and DeepSeek-R1) against expert sonologists under ACR-

TIRADS and C-TIRADS. Second, we assessed model outputs

across five key clinical dimensions: guideline adherence, patient

safety, operational feasibility, clinical applicability, and overall

performance. These evaluations provide insights into LLMs’

strengths and limitations in endocrine workflows. They inform

strategies for safe clinical integration.

To our knowledge, this is the first study to evaluate LLMs under

dual TIRADS systems with structured trust assessments from

experts. Our findings provide foundational insights into

integrating LLMs into thyroid nodule management pathways.
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2 Materials and methods

2.1 Study design and ethical approval

This retrospective, single-center study was conducted at our

hospital and approved by the institutional ethics committee. Due to

the study’s retrospective nature, informed consent was waived. The

sample size of 63 nodules was appropriate for this preliminary study. It

is comparable to other initial AI evaluations in thyroid disease

management, such as a study using 33 patient queries that detected

significant differences (P < 0.01) in performance metrics. This provides

sufficient power (approximately 70-80%) to detect meaningful

differences in AUC (0.05-0.1) based on similar comparisons.
2.2 Patient cohort

We initially reviewed 150 adult patients with thyroid nodules.

After applying exclusion criteria, we included 93 patients who

underwent thyroidectomy from January 2020 to October 2024.

Exclusion criteria were:
Fron
• Incomplete clinical records

• Prior thyroid surgery history
tiers in Endocrinology 03
• Inadequate or low-quality ultrasound images

• Absence of preoperative ultrasound performed at the

study institution

• Inconsistent nodule characteristics interpretation among

three senior sonologists
To account for multifocal disease and heterogeneous

histopathology, we analyzed 101 distinct nodules from these 93

patients. The cohort included 30 males and 63 females, with both

solitary and multifocal nodules. The patient selection process is

illustrated in Figure 1.
2.3 Data collection

Two board-certified sonologists, each with over 10 years of

thyroid imaging experience, independently extracted clinical and

ultrasound data. We implemented a two-phase review protocol to

ensure ultrasound annotation consistency. Before data extraction,

all sonologists underwent a calibration session. This standardized

interpretation criteria based on the 2017 ACR-TIRADS and 2020

C-TIRADS guidelines (5, 9, 11).All three sonologists had

c omp a r a b l e t r a i n i n g a n d e x p e r i e n c e i n t h y r o i d

ultrasound interpretation.
FIGURE 1

Patient selection flowchart. This figure outlines the inclusion and exclusion steps applied to the thyroid nodule ultrasound case pool. After applying
clinical and imaging eligibility criteria, 63 cases were retained for analysis. The process excludes 57 patients followed by exclusion of 38 benign
cases, resulting in a subset enriched for diagnostic ambiguity to stress-test models.
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Key assessed ultrasound features included:
Fron
• Composition

• Echogenicity

• Margins

• Shape

• Calcifications

• Vascularity

• Central and lateral lymph node status
In the first phase, the two sonologists independently assessed all

nodules. Inter-observer agreement was measured using Cohen’s

kappa coefficient. Nodules with substantial agreement (k ≥ 0.60)

across all features proceeded to the second phase. In the second

phase, a third board-certified sonologist independently reassessed

eligible nodules. This sonologist was blinded to prior evaluations

and all clinical/pathological data. We included only nodules with

unanimous agreement among all three sonologists on predefined

features in the final dataset. This strict consensus process

maximized annotation reliability and minimized inter-observer

variability. It ensured high-fidelity input for LLM analysis.

Collected data included:
• Demographics and medical history

• Thyroid function tests (TSH, T3, T4, autoantibodies)

• Detailed ultrasound features

• Postoperative histopathology
2.4 LLM prompt construction and output
generation

We crafted structured prompts using standardized clinical and

imaging data. These were refined through iterative pilot testing and

sonologist consensus to ensure clarity, consistency, and relevance.

We tested three prompt variations to optimize phrasing for model

performance. These aligned with the 2017 ACR-TIRADS and 2020

C-TIRADS guidelines. The initial prompt was overly rigid. It used

numbered steps, fixed scoring, and predefined outputs. This

constrained dynamic reasoning and flexibility, risking repetitive,

biased responses that overlooked nuances. We refined prompts

iteratively over three cycles using a pilot set of 10 nodule

descriptions. We tested variations like basic inputs (e.g., “Are you

familiar with the 2017 ACR-TIRADS guidelines?/Are you familiar

with the 2020 C-TIRADS guidelines? Analyze this ultrasound

description: [details]. Classify using ACR-TIRADS by scoring

features and provide category/risk.”) versus structured formats.

These included TI-RADS criteria, role prompts (e.g., “act as an

expert”), and output templates to enhance consistency and reduce

ambiguity. We applied a unified prompt template consistently

across all three LLMs (GPT-4o, GPT-o3-mini, and DeepSeek-R1).

It used identical formats and parameters for fair comparison. We
tiers in Endocrinology 04
used uniform optimized prompts across all models for fair

comparison. Example: “Please act as an expert in thyroid nodules.

Analyze the patient’s clinical data and ultrasound features. Classify

according to the 2017 ACR-TIRADS and 2020 C-TIRADS. Assign

malignancy risk and provide management recommendations.” Each

prompt represented a single thyroid nodule. It incorporated

demographic data, laboratory values, and ultrasound features.

Prompts were written in natural language to simulate real-world

clinical narratives. Example: “Act as an expert in thyroid nodules.

Based on the ACR-TIRADS (2017), classify this nodule:

[description]. Assign a malignancy risk level and provide

management recommendations.” We processed prompts

independently in a stateless framework. This prevented prior

context from influencing responses and enhanced reproducibility

and fairness.

To focus on challenging cases, we excluded 38 unequivocally

benign nodules. These were confirmed by histopathology and

uniformly classified as low-risk across all models. Excluded cases

showed no ambiguous features. We removed them to focus analysis

on borderline or complex presentations. We intentionally enriched

the analytic subset for ambiguous cases. This increased malignancy

prevalence (73% vs. 45.5% in the total cohort). This strategy

rigorously tested model performance in complex cases.

Interpret findings from this focused sample with caution,

especially in routine screening settings. We plan prospective

sampling at routine prevalence to validate findings and

improve generalizability.

The final dataset included 63 nodules:
• 17 multifocal cases (15 malignant)

• 6 with lateral lymph node metastasis (LLNM)

• •21 with central lymph node metastasis (CLNM)
Although this yielded a higher-than-average malignancy rate,

the enrichment enabled rigorous testing of model performance in

complex cases.
2.5 Expert evaluation of LLM outputs

Two independent experts -a thyroid surgeon and an

endocrinologist , both experienced in thyroid disease

management- evaluated each model’s recommendations. They

used a 5-point Likert scale across the following five domains:
• Guideline adherence (ACR-TIRADS, C-TIRADS)

• Patient safety (conservativeness and appropriateness)

• Operational feasibility (ease of clinical implementation)

• Clinical utility (usefulness in real-world decision-making)

• Overall performance
To minimize bias, we anonymized and blinded model outputs

to the source model and true clinical outcomes. We assessed inter-
frontiersin.org
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rater reliability using weighted Cohen’s kappa (quadratic weights)

on merged Likert scores (1–2: Low, 3: Medium, 4–5: High). This

was done for each dimension, separately for ACR-TIRADS and C-

TIRADS, and per model. It evaluated consistency between surgeon

and endocrinologist ratings (Supplementary Table S3).
2.6 Selection criteria for large language
models

We selected LLMs based on:
Fron
• Strong performance in genera l reasoning and

medical benchmarks

• Release within the past two years

• Accessibility via public APIs or open platforms

• Architectural diversity (e.g., proprietary vs. independently

trained models)
Specifically:
• GPT-4o and GPT-o3-mini: Represent OpenAI’s GPT series

(12, 13).

• DeepSeek-R1: Developed independently by DeepSeek (14).
2.7 Statistical analysis

Descriptive statistics summarized patient demographics

and characteristics.

We assessed diagnostic performance via:
• Cohen’s kappa for agreement between LLM classifications

and sonologist consensus

• Sens i t i v i t y , spec ific i t y , PPV, NPV, and AUC

(histopathology as reference standard)

• ROC curve analysis for performance visualization.

• We used 95% confidence intervals for proportions via the

Wilson method (z=1.96). AUC comparisons used the

DeLong procedure. Cohen’s k CIs used bias-corrected

bootstrap (1,000 resamples). Point estimates are reported

to three decimals places. Results are in Table 1.

• We adjusted PPV and NPV for different prevalences (5%,

10%, 15%) using Bayesian methods. Adjustment results are

in Supplementary Table S1.

• We evaluated model performance separately for subgroups

based on nodule size, malignancy status, and lymph node

metastasis. Subgroup analyses calculated AUC, sensitivity,

specificity, PPV, NPV, and 95% CIs. AUC comparisons

used the DeLong test . Subgroup results are in

Supplementary Table S2.
We included only nodules with full consensus from three

sonologists to ensure ground truth reliability.
tiers in Endocrinology 05
We calculated inter-observer agreement between the two initial

readers using Cohen’s kappa. Nodules with k ≥ 0.60 proceeded to

third-round review. Final inclusion required full agreement across

all features.

We tested expert Likert ratings for normality using the Shapiro–

Wilk test. Depending on distribution, we applied one-way ANOVA

or Kruskal–Wallis tests. We considered a two-tailed p-value < 0.05

statistically significant.

All analyses used Python (v3.9.18).
3 Results

Our preliminary analyses showed moderate concordance

between LLMs and sonologist classifications. We focused

subsequent analyses on inter-model comparisons and expert

evaluations of clinical applicability.
3.1 Patient characteristics

From January 2020 to October 2024, we initially collected 150

adult thyroid nodule cases from a tertiary medical center. After

rigorous quality assessment and review by three sonologists, we

included 101 nodules from 93 patients in the final analysis

(inclusion rate: ~ 67.3%). This stringent selection ensured

diagnostic relevance and data integrity.

The median patients was 52.0 years (range: 42.0–58.0). Of

the 93 patients, 30 (32.3%) were male and 63 (67.7%) were

female. Postoperative histopathology confirmed 46 (45.5%)

malignant and 55 (54.5%) benign nodules. Baseline clinical

characteristics are summarized in Table 2, which compares

demographics and clinical features of the full cohort (101

nodules from 93 patients) and the annotated subset (63

nodules) to assess representativeness.
3.2 Data quality and model input integrity

To ensure high-quality, reliable LLM input, ultrasound data

underwent rigorous annotation. Two board-certified sonologists,

each with over 10 years of experience, independently annotated all

ultrasound features relevant to TIRADS classification. Inter-

observer agreement was strong (Cohen’s k = 0.81). A third

board-certified sonologist, with equivalent qualifications and over

10 years of experience, independently and blindly re-evaluated all

cases to ensure consistency and minimize annotation bias. We

retained only nodules with unanimous agreement on key features

(echogenicity, composition, shape, margin, and calcifications),

enhancing interpretive consistency and clinical validity.

To focus on diagnostically meaningful cases, we excluded 38

unequivocally benign nodules with consistent low-risk

categorization across all models. The remaining 63 nodules had

complex, borderline, or ambiguous features, enabling robust
frontiersin.org
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assessment of model reasoning and decis ion-making

under uncertainty.

For LLM input, we converted structured annotations into

concise, standardized clinical narratives.

These included patient demographics, relevant clinical history,

and key ultrasound descriptors (location, size, echogenicity, margin,

shape, calcifications, vascularity, and lymph node status).

For example:

“A 41-year-old female presented with a left-sided neck mass

detected one week ago. Thyroid function test shows TSH at 5.5 uIU/

ml, with no other abnormalities.

Ultrasound findings: No evidence of diffuse thyroid disease. The

nodule, located in the mid-portion of the left lobe, measures

approximately 18 mm × 15.4 mm × 16 mm. It is solid,

hypoechoic, exhibits capsular invasion, ill-defined margins,

angular borders, and a taller-than-wide shape. Microcalcifications

are present. Grade 2 internal vascularity is observed. Multiple

abnormal lymph nodes with irregular shapes and rich vascular

flow are identified in levels 2, 3, 4, and 6 on the left side.

These prompts emulated routine physician documentation,

enabling LLMs to process cases using natural clinical language

rather than abstracted templates. Additional examples are in

Appendix 1.

We presented each case to the LLMs independently in a stateless

manner. This ensured outputs were generated solely from each

prompt, unaffected by prior cases. This design enabled unbiased

evaluation of model diagnostic reasoning.
3.3 Bayesian-adjusted predictive values

To account for the enriched malignancy prevalence (73% in

subset vs. typical 5–15%), we adjusted PPV and NPV using
TABLE 1 Diagnostic performance of AI models and expert readers based on ACR-TIRADS and C-TIRADS guidelines.

Model Guideline Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) AUC (95% CI)

Expert ACR-TIRADS
1.000
[0.923, 1.000]

0.800
[0.676, 0.884]

0.807
[0.687, 0.889]

1.000
[0.920, 1.000]

0.900
[0.848, 0.952]

Expert C-TIRADS
1.000
[0.923, 1.000]

0.745
[0.617, 0.842]

0.767
[0.646, 0.856]

1.000
[0.914, 1.000]

0.874
[0.815, 0.929]

GPT-4o ACR-TIRADS
0.957
[0.855, 0.988]

0.800
[0.676, 0.884]

0.800
[0.676, 0.884]

0.957
[0.855, 0.988]

0.879
[0.815, 0.934]

GPT-4o C-TIRADS
0.870
[0.743, 0.939]

0.927
[0.827, 0.971]

0.909
[0.788, 0.964]

0.895
[0.789, 0.951]

0.898
[0.835, 0.957]

GPT-o3-mini ACR-TIRADS
0.891
[0.770, 0.953]

0.855
[0.738, 0.924]

0.837
[0.710, 0.915]

0.904
[0.794, 0.958]

0.873
[0.803, 0.935]

GPT-o3-mini C-TIRADS
0.957
[0.855, 0.988]

0.691
[0.560, 0.797]

0.721
[0.598, 0.818]

0.950
[0.835, 0.986]

0.824
[0.758, 0.886]

DeepSeek-R1 ACR-TIRADS
0.783
[0.644, 0.877]

0.836
[0.717, 0.911]

0.800
[0.662, 0.891]

0.821
[0.702, 0.900]

0.809
[0.731, 0.882]

DeepSeek-R1 C-TIRADS
0.957
[0.855, 0.988]

0.709
[0.579, 0.812]

0.733
[0.610, 0.829]

0.951
[0.839, 0.987]

0.834
[0.764, 0.896]
F
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Values are shown as point estimate [95% CI]. 95% CIs for sensitivity, specificity, PPV, and NPV were computed using the Wilson method (z=1.96), and 95% CIs for AUC were derived with the
DeLong approach. Cohort composition: n_malignant = 46 and n_benign = 55. PPV/NPV depend on disease prevalence.
TABLE 2 Baseline characteristics of the study population and
comparative statistics between the total cohort and expert-annotated
subset.

Characteristic
Total
(n = 101)

Subset
(n = 63)

P-value

Number of patients 93 63 –

Number of nodules 101 63 –

Gender, n (%) 0.754

Female 63 (67.7%) 45 (71.4%)

Male 30 (32.3%) 18 (28.6%)

Age (y) 0.666

Mean ± SD 49.9 ± 12.5 48.7 ± 12.5

Median (IQR)
52.0 (42.0–
58.0)

52.0 (37.5–
58.0)

Range 19–78 25–75 –

Maximum nodule diameter
(mm)

0.129

Mean ± SD 19.5 ± 17.1 17.0 ± 16.5

Median (IQR)
13.0 (7.9–
23.0)

9.9 (6.7-18.0)

Range 3.0–73.0 4–72 –

Pathological results, n (%) <0.001**

Benign 55 (54.5%) 17(27.0%)

Malignant 46 (45.5%) 46 (73.0%)
fr
Data are presented as mean ± standard deviation (SD), median (interquartile range [IQR]),
range, or number (percentage), as appropriate. Continuous variables were compared using the
Mann–Whitney U test; categorical variables were analyzed using the chi-square (c²) test. A
two-tailed P-value < 0.05 was considered statistically significant.
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Bayesian methods (Supplementary Table S1). Across models and

TIRADS, adjusted NPV was high (>0.96; e.g., GPT-4o C-TIRADS:

0.979–0.994), indicating effective malignancy exclusion and biopsy

reduction in routine settings. Adjusted PPV was moderate (0.22–

0.65; e.g., DeepSeek-R1 C-TIRADS: 0.24–0.514), suggesting

potential false positives in low-prevalence settings, consistent with

reported thyroid nodule malignancy rates of 7–15% (7)).
3.4 Diagnostic concordance between LLMs
and expert grading

Under the ACR-TIRADS framework, both GPT-4o and GPT-

o3-mini showed substantial agreement with expert annotations by

board-certified sonologists (Cohen’s k = 0.614 [0.490, 0.738]).

DeepSeek-R1 showed moderate concordance (k = 0.480

[0.358, 0.597]).

Under C-TIRADS, GPT-o3-mini had the highest agreement (k
= 0.368 [0.249, 0.474]), followed by DeepSeek-R1 (k = 0.223 [0.129,

0.322]) and GPT-4o (k = 0.212 [0.112, 0.318]), all indicating fair

agreement levels.

Kappa statistics are in Figure 2.
Frontiers in Endocrinology 07
3.5 Diagnostic performance for malignancy
prediction

ROC analysis showed the board-certified sonologist, using

ACR-TIRADS, achieved the highest malignancy diagnostic

accuracy (AUC = 0.900; 95% CI: 0.848–0.952).

Among LLMs, GPT-4o with C-TIRADS had the highest AUC

(0.898; 95% CI: 0.835–0.957), slightly outperforming its ACR-

TIRADS variant (AUC = 0.879; 95% CI: 0.815–0.943). GPT-o3-

mini with ACR-TIRADS had an AUC of 0.873 (95% CI: 0.803–

0.935), while DeepSeek-R1 with ACR-TIRADS had the lowest

(AUC = 0.809; 95% CI: 0.731–0.882).

We performed a post-hoc DeLong test to compare AUC values

between GPT-4o and DeepSeek-R1 under ACR-TIRADS and C-

TIRADS. The test showed that, although GPT-4o had higher AUC

values than DeepSeek-R1, the differences were not significant (p=

0.893 for ACR-TIRADS, p= 0.875 for C-TIRADS). The Z-scores

were 0.135 and 0.157, respectively, suggesting AUC differences were

likely due to random variation, consistent with this study’s

exploratory nature. All LLMs had significantly lower performance

compared to the sonologist (p < 0.05). Additional diagnostic

metrics (sensitivity, specificity, PPV, and NPV) are in Table 1.
FIGURE 2

Kappa consistency between expert and models (ACR & C-TIRADS grading systems). This bar plot compares the Kappa coefficients for model
consistency with expert grading using both the ACR and C-TIRADS systems. Higher Kappa values indicate stronger agreement between the model
and the expert. The models evaluated include GPT-4o, GPT-o3-mini, and DeepSeek-R1. The Kappa coefficient is presented for each model under
both grading systems to show the degree of alignment between AI predictions and expert evaluations. “Expert” refers to the board-certified
sonologist. Kappa values (with 95% CI via percentile bootstrap) indicate fair-to-substantial agreement, with GPT-4o highest under ACR-TIRADS
(k=0.614), reflecting framework-specific alignment strengths.
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Table 1 presents diagnostic performance metrics (sensitivity,

specificity, PPV, NPV, and AUC) with 95% CIs for GPT-4o,

GPT-o3-mini, DeepSeek-R1, and expert readings under ACR-

TIRADS and C-TIRADS. ROC curves are in Figure 3.

Beyond these diagnostic metrics,
3.6 Expert evaluation of clinical
recommendations

Expert assessments using 5-point Likert scales showed

variability in the clinical management recommendations across

LLMs. Evaluations covered five domains: guideline adherence,

patient safety, operational feasibility, clinical applicability, and

overall performance. Two senior clinicians (an endocrinologist

and a thyroid surgeon, each with over 10 years of experience)

independently evaluated the recommendations.

DeepSeek-R1 with C-TIRADS received the highest ratings

across most domains.

Table 3, Figure 4 present expert evaluations, showing mean

Likert scores for guideline adherence, patient safety, operational

feasibility, clinical applicability, and overall performance across
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ACR-TIRADS and C-TIRADS for DeepSeek-R1, GPT-4o, and

GPT-o3-mini, as assessed by surgeons and endocrinologists.

Among surgeons, DeepSeek-R1 with C-TIRADS had the highest

average score (4.66), slightly outperforming DeepSeek-R1 with

ACR-TIRADS (4.63). Among endocrinologists, DeepSeek-R1 with

ACR-TIRADS scored slightly higher (4.29) than its C-TIRADS

counterpart (4.26), indicating consistent performance across

frameworks. These results suggest DeepSeek-R1 offers

conservative, guideline-compliant, and clinically feasible

recommendations, especially in surgical contexts. Although GPT-

4o had the highest diagnostic accuracy for malignancy, its

management recommendations were rated slightly lower than

DeepSeek-R1’s, especially for patient safety and clinical

implementation under C-TIRADS. This highlights a key insight:

superior diagnostic performance does not ensure optimal clinical

decision-making. GPT-4o excels in malignancy prediction, but

DeepSeek-R1 is more aligned with practical clinical needs,

including interpretability, safety, and guideline adherence.

Both experts, especially the surgeon, gave higher ratings to all

models under C-TIRADS. This may reflect C-TIRADS’s simpler

structure and conservative thresholds, enhancing compatibility with

LLM applications.
FIGURE 3

ROC curves for expert and models based on grading systems (ACR & C-TIRADS). Receiver Operating Characteristic (ROC) curves illustrating the
diagnostic performance of expert assessments and AI models under the ACR and C-TIRADS grading systems. Each curve represents the True
Positive Rate (sensitivity) versus False Positive Rate (1-specificity) at different thresholds. The Area Under the Curve (AUC) for each model is shown in
parentheses to quantify overall diagnostic accuracy. Models evaluated include GPT-4o, GPT-o3-mini, and DeepSeek-R1. “Expert” refers to the
board-certified sonologist. AUC near 0.9 (e.g., GPT-4o C-TIRADS: 0.898) shows expert-level malignancy prediction, with better performance under
C-TIRADS, indicating its suitability for AI integration.
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3.7 Subgroup analysis

We performed subgroup analyses to evaluate model

performance across benign vs. malignant nodules, nodule sizes

(<10mm, 10≦20mm, ≧20mm), multifocal vs. solitary nodules,

and cases with vs. without lymph node metastasis. Metrics (AUC,

sensitivity, specificity, PPV, NPV, and 95% CIs) are in

Supplementary Table S2. Performance was consistent, with no

significant AUC differences between models (DeLong test, p >

0.05 in most comparisons). Sensitivity was higher in malignant

and lymph node-positive subgroups, while specificity varied more

in smaller and benign nodules. It should be noted that some

subgroup analyses, particularly for lymph node metastasis, were

limited by small sample sizes, and their results should be interpreted

with caution.
3.8 Inter-rater reliability of expert
evaluations

We assessed consistency between surgeon and endocrinologist

ratings using weighted Cohen’s kappa (quadratic weights) on

merged Likert scores (1–2: Low, 3: Medium, 4–5: High). This was

done across all dimensions, separately for ACR-TIRADS and C-

TIRADS, and per model (Supplementary Table S3). Inter-rater

reliability showed fair consistency (C-TIRADS: mean weighted

kappa = 0.277; ACR-TIRADS: 0.267) across dimensions.GPT-o3-

mini under C-TIRADS had the highest agreement (mean

kappa=0.380, fair), while DeepSeek-R1 showed poor agreement

(C-TIRADS: -0.017; ACR-TIRADS: -0.022) due to near-uniform

high ratings (~95% High), limiting score variability and kappa

sensitivity. These findings indicate moderate agreement between
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raters, with DeepSeek-R1’s high ratings reflecting strong perceived

reliability but reduced discriminatory power in consistency metrics.
3.9 Error analysis of model performance

Error analysis showed that models struggled with nodules

having subtle or complex features, such as mixed calcifications,

small size, or ambiguous boundaries. These features caused

inconsistent malignancy risk predictions, often leading to over- or

underestimation. These findings highlight the need for clinician

oversight in ambiguous cases, as LLMs may not reliably distinguish

nuanced features without expert input. This underscores the

importance of human-AI collaboration in high-stakes decisions.

Error analysis showed model failures in small nodules (<10mm),

with AUC ~0.53-0.55 and lower specificity, risking over-diagnosis.

In multifocal or lymph node-positive cases, sensitivity declined

(e.g., GPT-4o: 0.870), potentially missing malignancies. These

patterns suggest increased human oversight for ambiguous

features. Future work should address rare subtypes through

multimodal improvements.
4 Discussion

4.1 Principal findings

We evaluated the clinical recommendation capabilities of three

LLMs (GPT-4o, GPT-o3-mini, and DeepSeek-R1) using ACR-

TIRADS and C-TIRADS frameworks.

GPT-4o achieved the highest diagnostic accuracy for

malignancy prediction via ROC analysis. However, DeepSeek-R1
TABLE 3 Five-dimensional mean scores (surgeon vs. endocrinologist).

Guideline Model Role
Guideline_
adherence

Patient_
safety

Operational_
feasibility

Clinical_
applicability

Overall_
performance

ACR-TIRADS DeepSeek-R1 Surgeon 4.7460 4.6508 4.6032 4.6032 4.5714

ACR-TIRADS GPT-4o Surgeon 4.5556 4.5873 4.5397 4.5238 4.5556

ACR-TIRADS GPT-o3-mini Surgeon 4.4921 4.4603 4.4286 4.4127 4.4603

C-TIRADS DeepSeek-R1 Surgeon 4.7778 4.6349 4.6190 4.6349 4.6508

C-TIRADS GPT-4o Surgeon 4.6190 4.5556 4.5238 4.5556 4.5556

C-TIRADS GPT-o3-mini Surgeon 4.6190 4.5397 4.5238 4.5397 4.5714

ACR-TIRADS DeepSeek-R1 Endocrinologist 4.5397 4.3016 4.3016 4.1746 4.1270

ACR-TIRADS GPT-4o Endocrinologist 4.5397 4.0635 4.1111 4.0000 4.0159

ACR-TIRADS GPT-o3-mini Endocrinologist 4.6032 4.0000 3.9841 3.9524 3.9365

C-TIRADS DeepSeek-R1 Endocrinologist 4.5873 4.1905 4.2381 4.1429 4.1270

C-TIRADS GPT-4o Endocrinologist 4.6508 4.1111 4.1270 4.0952 4.0952

C-TIRADS GPT-o3-mini Endocrinologist 4.6508 4.0476 4.0476 3.9524 4.0159
Scores are presented as mean values based on a 5-point Likert scale (1 = strongly disagree, 5 = strongly agree). Evaluation dimensions include Guideline Adherence, Patient Safety, Operational
Feasibility, Clinical Applicability, and Overall Performance. Assessments were conducted by two types of medical professionals—surgeons and endocrinologists—on three AI models (DeepSeek-
R1, GPT-4o, and GPT-o3-mini) under two thyroid nodule risk stratification systems: ACR-TIRADS and C-TIRADS.
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with C-TIRADS received the highest ratings from endocrine and

surgical experts. These assessments, across five domains (guideline

adherence, patient safety, operational feasibility, clinical

applicability, and overall performance), highlight both content

accuracy and clinical practicality of model recommendations.

This aligns with Topcuoglu (15) and Jin et al. (16), who highlight

C-TIRADS’s greater specificity and biopsy utility for Chinese

populations compared to ACR-TIRADS. DeepSeek-R1’s higher

expert ratings may reflect its alignment with regional clinical

reasoning and linguistic context, as noted by Chen (7) and

Gibney (17). The discrepancy between GPT-4o’s higher AUC

(0.898) under C-TIRADS and DeepSeek-R1’s higher clinician

ratings (surgeon: 4.65; endocrinologist: 4.63) suggests a

divergence between objective accuracy and subjective clinical

utility. AUC measures overall balance, with GPT-4o’s high

specificity (0.927) reducing false positives. In contrast, DeepSeek-
Frontiers in Endocrinology 10
R1’s high sensitivity (0.957) prioritizes malignancy detection,

fostering greater trust in patient safety, a key rating dimension.

DeepSeek-R1’s regional origins may enhance C-TIRADS

alignment, improving perceived adherence and operational fit.

These suggest tailored LLM use: GPT-4o for accuracy-driven

screening and DeepSeek-R1 for safety-critical or region-specific

decision support.

A key insight is the disconnect between diagnostic performance

and clinical trustworthiness. This gap underscores the importance

of interpretability and usability for LLM deployment. Fair inter-

rater reliability between the surgeon and endocrinologist (C-

TIRADS: mean weighted kappa=0.277; ACR-TIRADS:0.267;

Supplementary Table S3) suggests potential bias from using only

two raters. DeepSeek-R1’s near-zero kappa (C-TIRADS: -0.017;

ACR-TIRADS: -0.022) results from near-uniform high ratings

(~95% High). This indicates strong clinician agreement but
FIGURE 4

(A) Surgeon evaluations under ACR-TIRADS; (B) Endocrinologist evaluations under ACR-TIRADS; (C) Surgeon evaluations under C-TIRADS; (D)
Endocrinologist evaluations under C-TIRADS.
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limited score variability, reducing kappa sensitivity. This

underscores the need for diverse raters (e.g., radiologists,

additional specialists) in future studies to improve reliability and

generalizability, consistent with multi-center validation needs (18).

We observed variability in model performance across

subgroups, particularly in AUC, sensitivity, and specificity.

Smaller subgroup sample sizes (e.g., lymph node metastasis: Yes,

Pathology = 0) caused performance differences, highlighting

limitations of small datasets. These findings highlight the need for

future research with larger, more diverse cohorts to enhance model

robustness across subgroups.

Subgroup analyses (Supplementary Table S2) showed

diagnostic challenges in smaller nodules (<10mm) and benign

cases. Lower AUC (e.g., expert: 0.546 under ACR-TIRADS) and

variable specificity suggest increased false positives, likely due to

subtle ultrasound features (19). This aligns with studies showing

that small nodules pose management challenges, with lower

TIRADS diagnostic accuracy, requiring multimodal approaches

for better differentiation (19). Multifocal nodules had slightly

higher AUC than solitary nodules, likely due to richer feature sets

for risk stratification. This is consistent with evidence linking

multifocal disease to higher malignancy rates and complexity

(20). In lymph node metastasis cases, high sensitivity but lower

specificity was observed, suggesting potential over-diagnosis in

aggressive cases. This aligns with ultrasound studies noting

imaging’s role in detecting, but sometimes overcalling, metastatic

features (20). These findings highlight the need for refined AI

models with multimodal data to address subgroup-specific

challenges, especially in settings where small, benign, or non-

metastatic nodules predominate. DeepSeek-R1 with C-TIRADS

received the highest clinician ratings, particularly for guideline

adherence, patient safety, and operational feasibility. Its alignment

with regional guidelines and structured decision-making resonates

with clinicians, especially surgeons. Despite GPT-4o’s higher AUC

under C-TIRADS, clinicians rated it lower, likely due to less

intuitive outputs compared to DeepSeek-R1’s actionable,

guideline-aligned recommendations. Clinician trust often

outweighs AUC in AI model adoption, as usability and alignment

with clinical reasoning are critical for clinical implementation.

Doshi et al. (21) showed that context-specific prompting, like

simplifying radiology reports for laypersons, improves

comprehension without compromising accuracy.

These results align with existing literature.
4.2 Comparison with previous studies

Although research has explored LLMs in medical reasoning and

imaging interpretation, few studies have examined their alignment

with region-specific guidelines or physician expectations.

LLM performance in thyroid imaging varies. Wu et al. (22)

found GPT-4.0 improved diagnostic consistency and sometimes

outperformed junior clinicians. In contrast, Chen et al. (23)

reported low concordance with pathological findings and lower

accuracy than.
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radiology trainees. Katharina et al. (24) noted GPT-4.0’s

difficulty adhering to ACR-TIRADS, highlighting limitations in

handling complex protocols.

Model performance varies significantly. Kaba et al. (25)

reported GPT-4’s strong performance with K-TIRADS, while Xia

(26) and Wang (11) found GPT-3.5 useful for general queries but

unreliable for nuanced decisions. Marchi et al. (27) and Chung et al.

(28) concluded that, while LLMs aid treatment planning and risk

stratification, domain-specific models outperform in high-

stakes settings.

DeepSeek-R1 shows promise in recent studies. Peng (29) and

Liang (30) showed DeepSeek-R1’s effective adaptation to clinical

reasoning in Chinese healthcare settings, consistent with its strong

performance under C-TIRADS. These results suggest that language

proficiency or model size alone is insufficient; alignment with local

practice patterns and clinical logic is critical. Chen et al. (30)

proposed a multi-agent, GPT-4–based framework that improved

diagnostic accuracy and follow-up planning for rare diseases. This

LLM collaboration model highlights the potential for multi-agent

systems in complex diagnostic.

Our findings align with advancements in AI for thyroid nodule

diagnosis, notably the ThyGPT model, which integrates ultrasound

imaging with LLMs to aid radiologists in risk stratification and

decision-making. Yao et al. (7) showed that ThyGPT significantly

improves diagnostic accuracy, surpassing traditional methods in

sensitivity and specificity. ThyGPT’s ability to detect and correct

ultrasound report errors underscores its potential as a reliable AI

copilot, aiding radiologists and reducing diagnostic errors and

unnecessary procedures. Grani et al. (3) support AI’s growing role

in enhancing diagnostic accuracy via AI-driven models, particularly

compared to traditional systems like ACR-TIRADS and

C-TIRADS.

4.2.1 Comparison of TIRADS systems
Alongside LLMs’ varied performance in thyroid imaging,

multiple ultrasound risk stratification systems (e.g., ACR-

TIRADS, EU-TIRADS, K-TIRADS) are widely used in clinical

settings. These systems, differing in risk classification and regional

applicability, show varied diagnostic performance. Kim et al. (18)

and Piticchio et al. (31) showed performance differences across

these systems, particularly in different regions. K-TIRADS, widely

used in Asia, often classifies more nodules as high-risk than ACR-

TIRADS and EU-TIRADS, which are common in Western

countries and show more moderate classifications. These regional

differences are key to understanding TIRADS application in clinical

practice and tailoring diagnostic strategies to specific populations.
4.3 Implications for clinical practice and AI
deployment

Our findings have key implications for the integration of LLMs

into clinical workflows:

• Localization and context-aware prompting are essential. Yang

et al. (32) noted that adapting to regional guidelines is as critical as
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model architecture or scale. Our results confirm this, showing

DeepSeek-R1 outperformed larger models in C-TIRADS due to

better contextual alignment. Bayesian-adjusted PPV and NPV

values at different prevalence levels (5%, 10%, 15%) highlight the

need to consider clinical prevalence in evaluating AI

model applicability.

Cognitive congruence fosters clinical trust. Higher expert

ratings for C-TIRADS outputs suggest clinicians prefer LLM

recommendations mirroring their reasoning and decision-making

frameworks. Kaba et al. (25) noted that interpretability and

familiarity are key for AI systems trust.
Fron
• Role-based customization reduces trust gaps. Clinician

attitudes toward DeepSeek-R1 and GPT-4o under C-

TIRADS vary by role. The surgeon preferred DeepSeek-

R1 (e.g., overall performance 4.65 vs. 4.56 for GPT-4o),

likely valuing its high sensitivity (0.957) for confident

surgical decision-making and risk mitigation. The

endocrinologist rated both lower (DeepSeek-R1: 4.13;

GPT-4o: 4.10), likely prioritizing specificity for

monitoring and avoiding unnecessary procedures,

consistent with endocrine practice. Poor inter-rater

agreement (weighted kappa: -0.017 for DeepSeek-R1;

Supplementary Table S3) reflects these differences. The

‘kappa paradox’—near-uniform high ratings (~95% High)

—limits variability, resulting in low kappa despite strong

observed agreement. This suggests customizing LLMs:

sensitivity-focused for surgeons and specificity-focused for

endocrinologists to reduce the trust gap.

• Fine-tuning and clinician-centered design promote

adoption (33): Strategies like reinforcement learning with

human feedback (RLHF), localized instruction tuning, and

guideline-informed prompt engineering improve LLM

output utility. Our findings support clinician-aligned AI

development to ensure safe and effective deployment.
These insights advocate for future LLM systems to be designed

around three principles: contextual alignment, transparency, and

collaborative augmentation of clinician expertise 95% CI.
4.4 Strengths and limitations

A key strength is the use of real-world, diagnostically

challenging ultrasound cases rather than synthetic scenarios,

enhancing ecological validity. The inclusion of endocrinologists

and surgeons in evaluations provides a multidisciplinary

perspective, adding depth and practical relevance. Several

limitations should be noted.

A limited number of expert raters: A key limitation is relying on

only two evaluators (a surgeon and an endocrinologist), which may

introduce bias and limit generalizability of Likert-scale ratings.
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Inter-rater reliability, assessed via weighted Cohen’s Kappa

(Supplementary_Table_S3), shows fair to moderate agreement

(e.g., 0.261 for C-TIRADS). Low or negative values reflect the

‘kappa paradox’ due to high rating uniformity. Future prospective

studies with larger, diverse multidisciplinary panels (e.g., ≧6raters)
could improve validity, as recommended in LLM healthcare

evaluations (7, 34).
• Selection bias: We intentionally curated cases for diagnostic

ambiguity. While useful for stress-testing models, this may

not reflect routine clinical presentations. The subset (n=63)

aligns demographically with the total cohort (Table 2; p >

0.05 for gender, age, nodule size) and general populations

(median age: 52 years; 71% female) but has higher

malignancy (73% vs. 45.5%, p < 0.001), limiting

generalizability to low-risk screenings (35). Bayesian-

adjusted PPV/NPV for 5–15% prevalence (Supplementary

Table S1) supports applicability in routine settings. High

NPV (>0.96) aids benign nodule exclusion, reducing

biopsies, while lower PPV (0.22–0.65) may increase false

positives, consistent with malignancy rates of 7–15% (36).

Larger, balanced cohorts are required. DeLong tests

(p>0.05; Supplementary Table S2) confirm no significant

AUC differences, supporting result reliability despite the

modest sample size. We plan prospective studies with larger

cohorts (e.g., n > 200) to validate findings with predefined

power calculat ions , improving appl icabi l i ty to

diverse populations.

• Single-center design: All clinicians were from one Chinese

institution, potentially introducing institutional and

regional bias . Clinical judgment and guidel ine

interpretation vary across healthcare systems due to

differences in training, resources, and cultural norms.

Multicenter studies across diverse hospital tiers and

regions are needed to improve external validity. Future

mu l t i c en t e r s t ud i e s w i th d i v e r s e r a t e r s w i l l

improve generalizability.

• Non–real-time testing: We evaluated LLMs offline, not in

live clinical environments. Thus, the real-world impact of

LLM recommendations on workflow efficiency, patient

safety, and decision-making is uncertain. Prospective

validation in operational settings is required. Future real-

t ime tes t ing wi l l eva lua te pract ica l ut i l i ty in

clinical workflows.

• High-consensus data annotation: Our three-expert

agreement process ensured consistency and data integrity

but is resource-intensive, potentially limiting scalability in

routine practice.
Lack of multimodal input: We prompted models with textual

ultrasound descriptions rather than raw images. Although this

reflects current documentation practices, it excludes rich visual
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information used by sonographers. Multimodal models like

ThyGPT (7) could improve accuracy by integrating visuals,

reducing biopsies by >40% in similar studies. Future multimodal

models integrating text and images will improve diagnostic

capability, pending ethical approvals. Future work should explore

multimodal or vision-language models integrating narrative and

image data to improve diagnostics, especially in complex or

ambiguous cases. Subgroup analysis (Supplementary Table S2)

shows model vulnerabilities in small nodules (<10mm), with

AUC ~0.53–0.55 and lower specificity, increasing over-diagnosis

risk. In multifocal or lymph node-positive cases, sensitivity declined

(e.g., GPT-4o: 0.870), potentially missing malignancies. These

patterns suggest increased human oversight for ambiguous or rare

features, highlighting AI as an adjunct tool. Future multimodal

integrations could address these limitations. • Addressing these

limitations will strengthen future research.
5 Summary

In clinical settings, usability and clinician trust in model

recommendations often outweigh AUC for AI adoption. This

underscores the need to consider clinical feasibility and trust

alongside diagnostic performance for AI implementation.
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