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Introduction: Myocardial ischemia can result in severe cardiovascular
complications. However, the impact of clinical factors on myocardial ischemia in
individuals with T2DM remains unclear. we applied a clustering approach to identify
the variability in myocardial ischemia evaluated through Single-Photon Emission
Computed Tomography.

Methods: Retrospective statistics derived from 637 T2DM patients with myocardial
ischemia who participated in SPECT imaging at our hospital between January 2022
and September 2024 were gathered. Ischemia areas, cavity size, wall motion,
ventricular contraction, cardiac systolic coordination, End-diastolic Volume, End-
systolic Volume; Left ventricular injection fraction were assessed and analyzed.
Clustering analysis of medical data in unsupervised learning, involving the elbow
method and silhouette coefficient(cluster 1: 262; cluster 2: 375);.

Results: The Healthcare information between two groups differed in multiple
respects (1) Cluster 1 had the had the older patient(63.23 + 12.31), longer average
duration of diabetes(10.27 + 8.77), higher Glycated Hemoglobin(HbAlc) values
(7.69 + 1.76), the higher level of serum creatinine (115.42 + 106.18umol/L);and a
higher proportion of patients with insulin treatment(40.5%) (2).Cluster 1 had more
males(68.8%).higher proportion of patients with smoking history(44.5%), the
higher level of Cholesterol(3.96 + 1.12mmol/L),serum uric acid (406.78 +
135.24umol/L),Low-density lipoprotein cholesterol(2.08 + 0.32mmol/L),and
was more prone to statin therapy (6.1%).The SPECT features differed across the
various clusters (1):Cluster 1 had higher proportion of Hypokinesis(38.2%),poor
ventricular contraction(57.6%),Impaired Cardiac systolic coordination(63.7%),and
abnormal LVEF(81.3%) (2).Cluster 2 had a higher proportion of total ischemia
(11.5%) and abnormal ESV(52.8%) (3).There was no significant difference in
Ischemia areas, Cavity size, Involved segments, and EDV.
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Discussion: Although the unsupervised clustering approach revealed differences
in various clinical and imaging characteristics, no significant differences were
observed in ischemic burden, cavity size, involved segments, or EDV.

machine learning, elbow method, silhouette coefficient, myocardial ischemia, diabetes
mellitus, single-photon emission computed tomography

Materials and methods

In this stage,Unsupervised Machine Learning was used to detect
the optimal K(Elbow method and Silhouette coefficient)

A retrospective study in
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GRAPHICAL ABSTRACT
Summary of the study design and key findings.

Abbreviations: T2DM, Type 2 diabetes mellitus; SPECT, Single-Photon
Emission computed tomography; EDV, End-diastolic Volume; ESV, End-
systolic Volume; LVEF, Left Ventricular Ejection Fraction;HbAlc,Glycated
Hemoglobin; LDL-C, low-density lipoprotein cholesterol; HDL-C, High-density
lipoprotein cholesterol; GLP-1linhibitor, Glucagon-Like Peptide-lreceptor
agonist; DPP-4 inhibitor, Dipeptidyl Peptidase-4 inhibitor;SGLT-2 inhibitor,
Sodium-Glucose Co-Transporter 2 inhibitor; DM, diabetes mellitus; LV, left
ventricular. EDV, End-diastolic Volume; ESV, End-systolic Volume; LVEF, Left

ventricular injection fraction.
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1 Introduction

Diabetes is a major global health burden, with its increasing
prevalence contributing to higher morbidity and mortality rates (1,
2). Data from the International Diabetes Federation (IDF) indicates
that the global population of individuals with diabetes has reached
536 million, and it is expected to rise to 783 million by 2045 (3). The
most widespread form of diabetes is T2DM.Studies have indicated
that T2DM contributes to a higher risk of cardiovascular diseases (4).

Cardiovascular disease (CVD) is the leading cause of death and
disability in T2DM (5, 6). Research has demonstrated that compared
to individuals without diabetes, those with T2DM have a two to four
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times higher risk of cardiovascular disease (CVD) (7, 8). Myocardial
ischemia(MI) is a major cardiovascular disease, which is more
commonly seen in the diabetic population than in those without
diabetes (9, 10). Additional risk factors for cardiovascular death,
including hypertension, dyslipidemia, smoking, and visceral obesity
are particularly harmful in individuals with diabetes (3, 11). T2DM
patients have different clinical features, and the comprehensive effect
of these features on myocardial ischemia still needs further study.

Machine learning (ML), a branch of artificial intelligence that
enables mining the relationships from complex datasets, has been
used to make predictions about future outcomes (12). ML-based
techniques have been successfully applied on various types of
Coronary artery disease (CAD) datasets (13-19). These algorithms
have demonstrated promising performance in the detection and
treatment of myocardial ischemia. However, Limited research has
been dedicated to exploring the use of non-supervised learning
algorithms to differentiate the varied medical features of T2DM
and examine the connections across various categories and
myocardial ischemia characteristics. Thus, we applied non-
supervised learning algorithms to examine The diversity in clinical
manifestations of T2DM based on clinical indicators and to better
understand the overall impact of medical determinants on
myocardial ischemia characteristics detected on SPECT, which
could potentially enhance personalized medical intervention.

2 Methods

The Biomedical Research Ethics Committee of our hospital
approved this retrospective study, and the requirement for written
informed consent was waived.

2.1 Study cohort

Between January 2022 to September 2024, We retrospectively
reviewed T2DM patients with myocardial ischemia identified through

10.3389/fendo.2025.1668516

SPECT at our hospital. The criteria for exclusion were listed below:
Patients previously treated with percutaneous coronary intervention,
coronary bypass surgery, and cerebrovascular diseases before SPECT,
SPECT image quality was inadequate for ischemia diagnosis; deficient
clinical data; Patients with heart disease, respiratory failure, severe liver
and kidney diseases, cancer, severe infections, and other illnesses.
Finally, 637 patients with T2DM were incorporated into the study.

2.2 Acquisition of resting gated MPI

All patients underwent gated resting SPECT MPI using a single
IQ-SPECT dual-probe scanner (Symbia T16, Siemens, Germany).
After fasting for at least 4 hours, 99mTc-MIBI (740-925 MBq) was
intravenously injected. Fatty meals were consumed 15 to 20 minutes
prior to imaging. Electrodes were placed on the chest to capture
gated data. Patients remained supine with arms raised, and
acquisition began 60 minutes post-injection, lasting 8 minutes.
Imaging parameters included a 128x128 matrix, 208° rotation, 34
frames, and 25 seconds per frame. Images were reconstructed using
ordered subsets expectation maximization in fully automated mode.

2.3 SPECT analysis

The SPECT and gated SPECT images were anonymized and
visually analyzed by two experienced observers. Myocardial perfusion
was assessed by consensus using a 17-segment division of the left
ventricle (20) and a four-point grading system: 0, normal uptake; 1,
equivocal; 2, moderate reduction; and 3, severe reduction. Segments
with an uptake score >2 at stress were classified as having a definite
uptake reduction (21-23). Only segments with an uptake score >2 at
stress were considered to have a definite uptake reduction at stress.
Segments with an uptake score >2 at stress were classified as having a
definite uptake reduction. Total myocardial counts were determined
in each acquisition with a manually adjusted elliptical region of

interest (Figure 1).

FIGURE 1

Representative Single-Photon Emission computed tomography images of (A) Total ischemia, (B) Part ischemia, and (C) Normal.
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2.4 Unsupervised machine learning

The elbow method combined with the Silhouette coefficient
were utilized to cluster the 637 T2DM patients based on their
clinical characteristics (Figure 2), to identify the appropriate cluster
count. The core principle of this method is to reduce to the smallest
possible value the sum of squared errors between the cluster center
and the points within each cluster. As K grows, the model’s

10.3389/fendo.2025.1668516

separation becomes more distinct. However, when K exceeds the
best appraisal, The cumulative squared errors no longer shows
significant changes. K-means is a clustering technique used for
grouping objects that consist of both quantitative and qualitative
data (24).

The fundamental procedures of the Silhouette coefficient and
the elbow method are described below:

(1) Select a Range of K values.

Unsupervised machine learning
Y - R ) 7 \\\'
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FIGURE 2
Schematic for the main steps of this study.
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Determine a possible range for K, typically starting from 2(since
the Silhouette coefficient is meaningless for K = 1)up to a reasonable
maximum value.

(2) Perform the K-means clustering.

For each K value, run the K-means algorithm and record the
following results:

SSE(Sum of squared Errors):Used for the Elbow Method.

Silhouette Coefficient: Used to evaluated clustering quality.

(3) Analyze the Elbow Method: Calculate SSE, Plot the Elbow
Point, Identify the Elbow point.

(4) Analyze the Silhouette Coefficient: Calculate the Silhouette
Coefficient, Plot the Silhouette curve, Select The Optimal K Value.
(5) Compare the Elbow Method and Silhouette Coefficient.

To determine the optimal number of clusters, we evaluated both
the elbow method and the silhouette coefficient across a range of K
values (K = 2-6). The elbow plot showed that the reduction in the
sum of squared errors plateaued after K = 2, while the silhouette
coefficient reached its maximum at K = 2. These complementary
results indicated that two clusters provided the best balance between
separation and stability. Moreover, the two-cluster solution yielded
clinically meaningful subgroups with distinct demographic,
biochemical, and imaging characteristics, further validating the
selection of K = 2.

By using the unsupervised clustering method, the optimal number
of clusters that best explained the overall variance in the data was
determined.(cluster group 1: n=262, cluster group 2: n=375). The
clinical variables and myocardial ischemia characteristics were
analyzed and compared across the two cluster subgroups.
The analysis was based on Python 3.9.12 with the following
libraries: scikit-learn 1.0.2 for implementing K-means clustering and
calculating the Silhouette Coefficient, NumPy 1.21.5 for numerical
computations, and Matplotlib 3.5.1 for visualizing the Elbow Method
and Silhouette Score plots. The Jupyter Notebook environment was
used for code development and execution (Figure 3).

Elbow Method for Optimal K

10.3389/fendo.2025.1668516

2.5 Statistical analysis

Following cluster group identification, clinical information and
myocardial ischemia characteristics were compared between the
groups. Statistical analyses were conducted with SPSS software
(version 25.0; IBM, Armonk, NY, USA). Categorical variables are
presented as counts (%), while continuous variables are expressed as
mean + standard deviation. T-tests and chi-square tests were used to
compare clinical and SPECT characteristics between cluster groups.
A two-tailed P value < 0.05 was considered statistically significant.

3 Result
3.1 Study population

The study included a total of 637 individuals with T2DM,of
whom 68.3% (435/637) were men, with an average age of 61.65 +
14.05 years old. Unsupervised K-means clustering analysis was
performed on 29 clinical parameters of 637 T2DM subjects. The
silhouette coefficient for different values of K was calculated, and the
K value with the highest silhouette coefficient was selected as the
optimal number of clusters. The results revealed the existence of
two clinical subtypes of T2DM with myocardial ischemia, which
were classified into Cluster 1 (n=262) and Cluster 2 (n=375).
Table 1 presents the clinical characteristics of the participants in
the two cluster groups.

3.1.1 Cluster group 1

In Cluster 1, the proportions of male patients (67.6%), smoking
history (42.4%), and hypertension (34.9%) were lower than those in
Cluster 2, and serum uric acid levels were significantly lower.
Compared with Cluster 2, Cluster 1 participants had a higher
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FIGURE 3
The optimal K.

Frontiers in Endocrinology

05

2 4 6 8
Number of clusters (K)

frontiersin.org


https://doi.org/10.3389/fendo.2025.1668516
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Liu et al.

TABLE 1 Baseline characteristics of the study cohort.

10.3389/fendo.2025.1668516

Variables Clusterl (n=262) Cluster2 (n=375) P value
Male(%) 177(67.6%) 258(68.8%) 0.740

Age (years old)) 63.23+12.31 60.49+15.04 0.009

BMI (kg/m2) 25.22+4.03 25.46+4.43 0.469

Smoking history (%) 111(42.4%) 167(44.5%) 0.587

Alcohol (%) 74(28.2%) 82(21.9%) 0.065
Hypertension (%) 82(34.9%) 75(35.5%) 0.778
Systolic blood pressure (mmHg) 132.70+22.85 129.84+20.79 0.101

Diastolic blood pressure (mmHg) 77.30+14.71 77.81£15.32 0.666

Pulse (rate) 77.53+14.71 80.29+16.57 0.011

Diabetes duration(year) 10.27+8.77 5.51+7.61 <0.001

HbAlc (%) 7.69%1.76 6.35+1.68 <0.001

Fasting blood glucose(mmol/L) 8.29+7.26 6.44+2.62 <0.001
Cholesterol(mmol/L) 3.90+1.25 3.96+1.12 0.459
Triglyceride(mmol/L) 1.61+1.04 1.57+0.82 0.066

HDL-C(mmol/L) 2.51+1.02 2.52+0.83 0.178

LDL-C(mmol/L) 1.03+0.38 2.08+0.32 0.728

Serum uric acid (umol/L) 390.56+130.98 406.78+135.24 0.066

Serum Creatinine(umol/L) 115.42+106.18 106.38+102.70 0.009

Diabetes treatment (%)

Oral

Biguanides 64(24.4%) 71(18.9%) 0.095
Non-Sulfonylureas 7(2.7%) 14(3.7%) 0.997
a-Glucosidase inhibitor 61(23.3%) 46(12.3%) <0.001
Sulfonylureas 21(8.0%) 15(0.4%) <0.001
GLP-1 receptor agonist 2(0.8%) 26(6.9%) 0.076
DPP-4 inhibitor 11(4.2%) 21(5.6%) 0.713
SGLT-2 inhibitor 35(13.4%) 36(9.6%) 0.082
Stains 1(0.4%) 23(6.1%) 0.013
Without drugs 41(15.6%) 82(21.9%) <0.001
Insulin 106(40.5%) 58(15.5%) <0.001

Statins in Cluster 2 were likely prescribed at low-to-moderate intensity, which may partially explain the inconsistency with ischemia outcomes reported in high-dose statin clinical trials.Cluster 1
patients showed higher use of SGLT2 inhibitors and insulin, while Cluster 2 patients were more likely to receive GLP-1RA, DPP-4 inhibitors, and statins.

BMI, Body Mass Index; HbAlc, HbAlc, Glycated Hemoglobin; LDL-C, low-density lipoprotein cholesterol; HDL-C, High-density lipoprotein cholesterol; GLP-1,Glucagon-Like Peptide-
Ireceptor agonist; DPP-4 inhibitor, Dipeptidyl Peptidase-4 inhibitor; SGLT-2 inhibitor, Sodium-Glucose Co-Transporter 2 inhibitor;

prevalence of alcohol consumption history (28.2%vs21.9%)
(Alcohol consumption history was defined as current drinking at
the time of the study, past drinking, or both.)and a longer duration
of diabetes (10.27 + 8.77 years vs5.51 * 7.6lyears). Regarding
treatment patterns, patients in Cluster 1 were more likely to use
metformin, o-glucosidase inhibitors, sulfonylureas, SGLT-2
inhibitors, and insulin, whereas a higher proportion of Cluster 2

Frontiers in Endocrinology

patients were untreated or received GLP-1 receptor agonists and
statins (Table 1).

3.1.2 Cluster group 2

Cluster group 2 patients had a reduced period of diabetes(5.51 +
7.61years) and had the lower Rate of patients involving alcohol
consumption (21.9%).A larger fraction of patients in cluster group 2
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had received diabetes treatment, like non-Sulfonylureas, Glucagon-
Like Peptide-1(GLP-1) receptor agonist, Dipeptidyl Peptidase-4
(DPP-4) inhibitor, Statins. Moreover, without drug treatment,
Cluster 1 had 141 patients (15.6%), while Cluster 2 had 82
patients (21.9%), showing a significant difference (p < 0.001).

3.2 Connection between cluster identity
and myocardial ischemia

The characteristics of myocardial ischemia are compared across
the two clustering groups in Table 2 and Figure 4. In terms of
Ischemia areas, cluster group 1 had the higher proportion of
patients with incomplete ischemia (69.8%), Cluster group 2 had
higher proportion of complete ischemia (11.5%) (Figure 4A). Wall
motion in cluster group 1 tend to had higher proportion of
Hypokinesis and Akinesis, while normal wall motion in cluster

10.3389/fendo.2025.1668516

group 2 seems more common (Figure 4C). For Ventricular
contraction, cluster group 1 had worse contraction (Figure 4D).
In terms of Cardiac systolic coordination, group 1 had a worse
proportion (Figure 4E). From the patient perspective, cluster group
1 exhibited a greater rate of abnormal ESV and LVEF (Figure 4F).
No significant variations were noted in the involved segments,
EDV, ischemia areas, and cavity size (Figure 4B) between the two
cluster groups (all P values>0.05).

4 Discussion

In this research, an unsupervised machine learning method was
applied to classify T2DM patients into subgroups with different
clinical profiles. Machine learning methods provide innovative
approaches to integrate and analyze diverse omics data, facilitating
disease-Specific biomarker discovery. These biomarkers provide the

TABLE 2 Comparison of myocardial ischemia characteristics of two cluster groups in T2DM.

Cluster(n=262) Cluster2(n=375) P value
Ischemia areas 0.065
All 26(9.9%) 43(11.5%)
Part 183(69.8%) 229(61.1%)
Normal 53(20.2%) 103(27.5%)
Cavity size 0.979
Enlarge 115(43.9%) 165(44%)
Normal 147(56.1%) 210(56%)
Wall Motion 0.005
Normal 65(24.8%) 137(36.5%)
Hypokinesis 100(38.2%) 112(29.9%)
Akinesis 97(37.0%) 126(33.6%)
Ventricular contraction 0.010
Reduced 151(57.6%) 177(47.2%)
Normal 111(42.4%) 198(52.8%)
Cardiac systolic coordination 0.004
Impaired 167(63.7%) 196(52.3%)
Normal 95(36.3%) 179(47.7%)
Patient Level
Involved segments >4 55(21.0%) 99(26.4%) 0.083
Involved segments <4 207(79.0%) 276(73.6%)
EDV>132 134(51.1%) 173(46.1%) 0.213
EDV<132 128(48.9%) 202(53.9%)
ESV>61 175(66.8%) 177(47.2%) <0.001
ESV<61 87(33.2%) 198(52.8%)
LVEF<50 213(81.3%) 199(53.1%) <0.001
LVEF>50 49(18.7%) 176(46.9%)
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FIGURE 4
Characteristics of myocardial ischemia among the two clustering groups. (A) percentage of T2DM patients with different extent of ischemia;
(B) percentage of Cavity size; (C) percentage of wall Motion; (D) percentage of ventricular contraction; (E) percentage of cardiac systolic
coordination; (F) percentage of T2DM patients with involved segments >4, EDV, ESV, LVEF.

opportunity to enhance prognostic assessment accuracy, stratified
healthcare, and the delivery of precision medicine (25, 26). This study
showed that unsupervised learning techniques can be applied to
analyze integrated healthcare data and enable the possibility of
identify distinct T2DM patient categories with varying ischemia
areas and degrees of co myocardial ischemia.

4.1 Unsupervised machine learning for
processing clinical data

It is widely recognized that diabetic patients are at greater risk for
more aggressive vascular disease, including diffuse coronary
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atherosclerosis, and exhibit a significantly increased occurrence of
heart failure, myocardial infarction (MI), and cardiovascular
mortality (27, 28). Diabetic patients have multitude of characteristic
features, the interaction of these contributor on myocardial ischemia
are attracting more focus. Preceding studies primarily aimed at the
limited factors for myocardial ischemia (29-31). The target of
unsupervised machine learning is to uncover clusters of patients
with analogous combinations of features, free from biases introduced
by clinical experts or information on future outcomes. As clinical data
continue to grow rapidly, clustering methods may become
increasingly valuable for analyzing the varied and multifaceted data

available processing the diverse and heterogeneous data found in
digital health data.
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4.2 Correlation between myocardial
ischemia areas and clusters

The clustering approach demonstrated the ability to not only
differentiate T2DM patients with diverse clinical profiles but also to
indirectly identify distinct subgroups exhibiting various types of
myocardial ischemia. The findings revealed that cluster 2 had higher
proportion of complete ischemia. This can be attributed to the
evidence that cluster group 2 consisted of a larger number of males,
exhibited more unhealthy habits such as nicotine use and alcohol
consumption, and had elevated levels of LDL-C. Present smoking
has been classified as a threat for myocardial ischemia (32). Mild
alcohol consumption is known to be cardio protective compared
with either heavy drinking or complete abstinence (33, 34).
Treatment to reduce LDL cholesterol HDL-C levels is beneficial
to improve ischemia (35). This result draws attention to the crucial
role of effective management for T2DM patients exhibiting these
risk factors for myocardial ischemia.

In line with these risk profiles, patients in Cluster 2 were more
frequently prescribed GLP-1 receptor agonists and statins. GLP-1
receptor agonists have been reported to improve coronary
microvascular function, while statins effectively reduce LDL-C
concentrations. Nevertheless, in this cohort statin therapy was
primarily administered at low-to-moderate intensities, which may
have attenuated their cardioprotective effect. This limitation could
partly explain the persistently higher prevalence of complete
ischemia in Cluster 2, despite the seemingly more optimized
pharmacological regimen.

4.3 Heart motion function in clusters

Groupl had a higher proportion of hypokinesis and akinesis
wall motion, and ventricular contraction and cardiac systolic
coordination also worse in group 1. This might be attributed to
the fact that patients in Cluster 1 were older (63.23 + 12.31 vs60.49 +
15.04 years), had a longer duration of diabetes (10.27 + 8.77vs5.51 +
7.61 years), and exhibited poorer glycemic control, as reflected by
higher HbAlc levels (7.69 + 1.76vs6.35 + 1.68).A previous study
showed that wall motion is an independent predictor of ischemic
heart (36, 37). In both cross-sectional and short-term longitudinal
studies involving older adults, the status of glycemic dysregulation
add to the risk of wall motion (38, 39). Additionally, inadequate
control of diabetes mellitus (DM) was associated with subclinical
left ventricular (LV) dysfunction (40). Traditionally, aging is
regarded as a risk factor for myocardial ischemia. We infer from
our data that longstanding glycemic abnormality produces a
compounded harmful influence on LV wall motion.

Although SGLT2 inhibitors were more commonly prescribed in
Cluster 1 as a cardioprotective strategy, the prevalence of reduced
exercise tolerance and exercise incapacity remained high. This
apparent inconsistency highlights that, despite the demonstrated
efficacy of SGLT2 inhibitors in randomized controlled trials, real-
world effectiveness may be attenuated due to suboptimal adherence,
heterogeneity in therapeutic responsiveness, or patient-specific
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factors. These findings underscore the need for further evaluation
of treatment strategies in routine clinical practice to mitigate LV
dysfunction in high-risk T2DM populations.

4.4 Association of extent of ESV and LVEF
with ischemia

Although some differences were observed in ventricular
contraction, cardiac systolic coordination, ESV and LVEF, there
was no statistically significant difference in the ischemic areas
between the two cluster groups. A previous study demonstrated
that T2DM increase the risk of death among patients with ischemic
heart disease. Another studies showed that risk factors for
myocardial ischemia, such as hypertension, hyperlipidemia,
diabetes, smoking, obesity, age, gender, family history, can
exacerbate the severity of myocardial ischemia through different
mechanisms (41-43). These risk factors collectively contribute to
the increased severity of myocardial ischemia. Therefore, early
intervention and comprehensive management targeting these
factors are crucial.

Beyond systolic function, diastolic impairment also represents a
critical concern in T2DM. The disease promotes myocardial fibrosis
and increases ventricular stiffness, thereby contributing to diastolic
dysfunction—a hallmark mechanism of heart failure with preserved
ejection fraction (HFpEF). In line with this, Cluster 1 patients
demonstrated more pronounced abnormalities in left ventricular
end-diastolic volume (EDV) and E/E’ ratio, indicating a heightened
susceptibility to diastolic dysfunction. Importantly, these patients
also exhibited higher mean systolic blood pressure, longer disease
duration, and poorer glycemic control, whereas Cluster 2 patients
presented with slightly lower diastolic pressure. Consequently, a
wider pulse pressure was evident in Cluster 1. Given that both
hypertension and diabetes are key risk factors for HFpEF, these
pathophysiological distinctions provide additional mechanistic
support for the clustering results.

4.5 Clinical implications of unsupervised
clustering

The present study demonstrates the feasibility of applying
unsupervised clustering to classify T2DM patients with
myocardial ischemia and underscores its potential clinical
relevance. By identifying subgroups with distinct ischemic and
metabolic features, clustering provides an evidence-based
approach for personalized decision-making, enabling physicians
to tailor therapies to specific risk profiles. Its integration of SPECT-
derived functional parameters further highlights potential for early
ischemia detection, thereby improving diagnostic accuracy and
guiding timely interventions in high-risk populations. Beyond
diagnosis, clustering may assist in predicting disease progression
and stratifying cardiovascular risk, offering a valuable tool for long-
term management and proactive prevention. Overall, these findings
suggest that unsupervised learning could complement conventional
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risk assessment and foster a more precise and individualized model
of care for patients with T2DM.

5 Limitations

This study has several limitations. First, given that it is a
monocentric study, Systematic bias in selection is unavoidable,
and future multi-center studies are required to confirm these
findings. Second, since it was a retrospective analysis, ongoing
data were not available. The gradual onset and progression of
myocardial ischemia in T2DM patients requires in-depth study.
However, SPECT, a noninvasive examination, is one of the most
common imaging modalities used for assessment of ischemia (44).

6 Conclusions

This study demonstrates that unsupervised clustering methods
can effectively analyze heterogeneous clinical and imaging data
from T2DM patients with myocardial ischemia. By revealing
distinct patient subgroups, this approach provides a novel
pathway for stratifying individuals with varying ischemic burdens.
These findings highlight the methodological value of unsupervised
learning for integrating complex healthcare data and suggest
promising directions for future research aimed at refining risk
stratification and improving outcomes in T2DM populations.
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