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Introduction: Myocardial ischemia can result in severe cardiovascular

complications. However, the impact of clinical factors on myocardial ischemia in

individuals with T2DM remains unclear. we applied a clustering approach to identify

the variability in myocardial ischemia evaluated through Single-Photon Emission

Computed Tomography.

Methods: Retrospective statistics derived from 637 T2DM patients with myocardial

ischemia who participated in SPECT imaging at our hospital between January 2022

and September 2024 were gathered. Ischemia areas, cavity size, wall motion,

ventricular contraction, cardiac systolic coordination, End-diastolic Volume, End-

systolic Volume; Left ventricular injection fraction were assessed and analyzed.

Clustering analysis of medical data in unsupervised learning, involving the elbow

method and silhouette coefficient(cluster 1: 262; cluster 2: 375);.

Results: The Healthcare information between two groups differed in multiple

respects (1) Cluster 1 had the had the older patient(63.23 ± 12.31), longer average

duration of diabetes(10.27 ± 8.77), higher Glycated Hemoglobin(HbA1c) values

(7.69 ± 1.76), the higher level of serum creatinine (115.42 ± 106.18µmol/L);and a

higher proportion of patients with insulin treatment(40.5%) (2).Cluster 1 hadmore

males(68.8%),higher proportion of patients with smoking history(44.5%), the

higher level of Cholesterol(3.96 ± 1.12mmol/L),serum uric acid (406.78 ±

135.24µmol/L),Low-density lipoprotein cholesterol(2.08 ± 0.32mmol/L),and

was more prone to statin therapy (6.1%).The SPECT features differed across the

various clusters (1):Cluster 1 had higher proportion of Hypokinesis(38.2%),poor

ventricular contraction(57.6%),Impaired Cardiac systolic coordination(63.7%),and

abnormal LVEF(81.3%) (2).Cluster 2 had a higher proportion of total ischemia

(11.5%) and abnormal ESV(52.8%) (3).There was no significant difference in

Ischemia areas, Cavity size, Involved segments, and EDV.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2025.1668516/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1668516/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1668516/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1668516/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1668516&domain=pdf&date_stamp=2025-10-13
mailto:lisjnm123@163.com
mailto:wuzhifang01@163.com
https://doi.org/10.3389/fendo.2025.1668516
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1668516
https://www.frontiersin.org/journals/endocrinology


Abbreviations: T2DM, Type 2 diabetes mellitus; S

Emission computed tomography; EDV, End-diastoli

systolic Volume; LVEF, Left Ventricular Ejection Fr

Hemoglobin; LDL-C, low-density lipoprotein cholestero

lipoprotein cholesterol;GLP-1inhibitor, Glucagon-L

agonist; DPP-4 inhibitor, Dipeptidyl Peptidase-4 inhib

Sodium-Glucose Co-Transporter 2 inhibitor; DM, dia

ventricular.EDV, End-diastolic Volume; ESV, End-systo

ventricular injection fraction.

Liu et al. 10.3389/fendo.2025.1668516

Frontiers in Endocrinology
Discussion: Although the unsupervised clustering approach revealed differences

in various clinical and imaging characteristics, no significant differences were

observed in ischemic burden, cavity size, involved segments, or EDV.
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1 Introduction

Diabetes is a major global health burden, with its increasing

prevalence contributing to higher morbidity and mortality rates (1,

2). Data from the International Diabetes Federation (IDF) indicates

that the global population of individuals with diabetes has reached

536 million, and it is expected to rise to 783 million by 2045 (3). The

most widespread form of diabetes is T2DM.Studies have indicated

that T2DM contributes to a higher risk of cardiovascular diseases (4).

Cardiovascular disease (CVD) is the leading cause of death and

disability in T2DM (5, 6). Research has demonstrated that compared

to individuals without diabetes, those with T2DM have a two to four
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times higher risk of cardiovascular disease (CVD) (7, 8). Myocardial

ischemia(MI) is a major cardiovascular disease, which is more

commonly seen in the diabetic population than in those without

diabetes (9, 10). Additional risk factors for cardiovascular death,

including hypertension, dyslipidemia, smoking, and visceral obesity

are particularly harmful in individuals with diabetes (3, 11). T2DM

patients have different clinical features, and the comprehensive effect

of these features on myocardial ischemia still needs further study.

Machine learning (ML), a branch of artificial intelligence that

enables mining the relationships from complex datasets, has been

used to make predictions about future outcomes (12). ML-based

techniques have been successfully applied on various types of

Coronary artery disease (CAD) datasets (13–19). These algorithms

have demonstrated promising performance in the detection and

treatment of myocardial ischemia. However, Limited research has

been dedicated to exploring the use of non-supervised learning

algorithms to differentiate the varied medical features of T2DM

and examine the connections across various categories and

myocardial ischemia characteristics. Thus, we applied non-

supervised learning algorithms to examine The diversity in clinical

manifestations of T2DM based on clinical indicators and to better

understand the overall impact of medical determinants on

myocardial ischemia characteristics detected on SPECT, which

could potentially enhance personalized medical intervention.
2 Methods

The Biomedical Research Ethics Committee of our hospital

approved this retrospective study, and the requirement for written

informed consent was waived.
2.1 Study cohort

Between January 2022 to September 2024, We retrospectively

reviewed T2DM patients with myocardial ischemia identified through
Frontiers in Endocrinology 03
SPECT at our hospital. The criteria for exclusion were listed below:

Patients previously treated with percutaneous coronary intervention,

coronary bypass surgery, and cerebrovascular diseases before SPECT,

SPECT image quality was inadequate for ischemia diagnosis; deficient

clinical data; Patients with heart disease, respiratory failure, severe liver

and kidney diseases, cancer, severe infections, and other illnesses.

Finally, 637 patients with T2DM were incorporated into the study.
2.2 Acquisition of resting gated MPI

All patients underwent gated resting SPECT MPI using a single

IQ-SPECT dual-probe scanner (Symbia T16, Siemens, Germany).

After fasting for at least 4 hours, 99mTc-MIBI (740–925 MBq) was

intravenously injected. Fatty meals were consumed 15 to 20 minutes

prior to imaging. Electrodes were placed on the chest to capture

gated data. Patients remained supine with arms raised, and

acquisition began 60 minutes post-injection, lasting 8 minutes.

Imaging parameters included a 128×128 matrix, 208° rotation, 34

frames, and 25 seconds per frame. Images were reconstructed using

ordered subsets expectation maximization in fully automated mode.
2.3 SPECT analysis

The SPECT and gated SPECT images were anonymized and

visually analyzed by two experienced observers. Myocardial perfusion

was assessed by consensus using a 17-segment division of the left

ventricle (20) and a four-point grading system: 0, normal uptake; 1,

equivocal; 2, moderate reduction; and 3, severe reduction. Segments

with an uptake score ≥2 at stress were classified as having a definite

uptake reduction (21–23). Only segments with an uptake score ≥2 at

stress were considered to have a definite uptake reduction at stress.

Segments with an uptake score ≥2 at stress were classified as having a

definite uptake reduction. Total myocardial counts were determined

in each acquisition with a manually adjusted elliptical region of

interest (Figure 1).
FIGURE 1

Representative Single-Photon Emission computed tomography images of (A) Total ischemia, (B) Part ischemia, and (C) Normal.
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2.4 Unsupervised machine learning

The elbow method combined with the Silhouette coefficient

were utilized to cluster the 637 T2DM patients based on their

clinical characteristics (Figure 2), to identify the appropriate cluster

count. The core principle of this method is to reduce to the smallest

possible value the sum of squared errors between the cluster center

and the points within each cluster. As K grows, the model’s
Frontiers in Endocrinology 04
separation becomes more distinct. However, when K exceeds the

best appraisal, The cumulative squared errors no longer shows

significant changes. K-means is a clustering technique used for

grouping objects that consist of both quantitative and qualitative

data (24).

The fundamental procedures of the Silhouette coefficient and

the elbow method are described below:

(1) Select a Range of K values.
FIGURE 2

Schematic for the main steps of this study.
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Determine a possible range for K, typically starting from 2(since

the Silhouette coefficient is meaningless for K = 1)up to a reasonable

maximum value.

(2) Perform the K-means clustering.

For each K value, run the K-means algorithm and record the

following results:

SSE(Sum of squared Errors):Used for the Elbow Method.

Silhouette Coefficient: Used to evaluated clustering quality.

(3) Analyze the Elbow Method: Calculate SSE, Plot the Elbow

Point, Identify the Elbow point.

(4) Analyze the Silhouette Coefficient: Calculate the Silhouette

Coefficient, Plot the Silhouette curve, Select The Optimal K Value.

(5) Compare the Elbow Method and Silhouette Coefficient.

To determine the optimal number of clusters, we evaluated both

the elbow method and the silhouette coefficient across a range of K

values (K = 2–6). The elbow plot showed that the reduction in the

sum of squared errors plateaued after K = 2, while the silhouette

coefficient reached its maximum at K = 2. These complementary

results indicated that two clusters provided the best balance between

separation and stability. Moreover, the two-cluster solution yielded

clinically meaningful subgroups with distinct demographic,

biochemical, and imaging characteristics, further validating the

selection of K = 2.

By using the unsupervised clusteringmethod, the optimal number

of clusters that best explained the overall variance in the data was

determined.(cluster group 1: n=262, cluster group 2: n=375). The

clinical variables and myocardial ischemia characteristics were

analyzed and compared across the two cluster subgroups.

The analysis was based on Python 3.9.12 with the following

libraries: scikit-learn 1.0.2 for implementing K-means clustering and

calculating the Silhouette Coefficient, NumPy 1.21.5 for numerical

computations, and Matplotlib 3.5.1 for visualizing the Elbow Method

and Silhouette Score plots. The Jupyter Notebook environment was

used for code development and execution (Figure 3).
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2.5 Statistical analysis

Following cluster group identification, clinical information and

myocardial ischemia characteristics were compared between the

groups. Statistical analyses were conducted with SPSS software

(version 25.0; IBM, Armonk, NY, USA). Categorical variables are

presented as counts (%), while continuous variables are expressed as

mean ± standard deviation. T-tests and chi-square tests were used to

compare clinical and SPECT characteristics between cluster groups.

A two-tailed P value < 0.05 was considered statistically significant.
3 Result

3.1 Study population

The study included a total of 637 individuals with T2DM,of

whom 68.3% (435/637) were men, with an average age of 61.65 ±

14.05 years old. Unsupervised K-means clustering analysis was

performed on 29 clinical parameters of 637 T2DM subjects. The

silhouette coefficient for different values of K was calculated, and the

K value with the highest silhouette coefficient was selected as the

optimal number of clusters. The results revealed the existence of

two clinical subtypes of T2DM with myocardial ischemia, which

were classified into Cluster 1 (n=262) and Cluster 2 (n=375).

Table 1 presents the clinical characteristics of the participants in

the two cluster groups.
3.1.1 Cluster group 1
In Cluster 1, the proportions of male patients (67.6%), smoking

history (42.4%), and hypertension (34.9%) were lower than those in

Cluster 2, and serum uric acid levels were significantly lower.

Compared with Cluster 2, Cluster 1 participants had a higher
FIGURE 3

The optimal K.
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prevalence of alcohol consumption history (28.2%vs21.9%)

(Alcohol consumption history was defined as current drinking at

the time of the study, past drinking, or both.)and a longer duration

of diabetes (10.27 ± 8.77 years vs5.51 ± 7.61years). Regarding

treatment patterns, patients in Cluster 1 were more likely to use

metformin, a-glucosidase inhibitors, sulfonylureas, SGLT-2

inhibitors, and insulin, whereas a higher proportion of Cluster 2
Frontiers in Endocrinology 06
patients were untreated or received GLP-1 receptor agonists and

statins (Table 1).

3.1.2 Cluster group 2
Cluster group 2 patients had a reduced period of diabetes(5.51 ±

7.61years) and had the lower Rate of patients involving alcohol

consumption (21.9%).A larger fraction of patients in cluster group 2
TABLE 1 Baseline characteristics of the study cohort.

Variables Cluster1 (n=262) Cluster2 (n=375) P value

Male(%) 177(67.6%) 258(68.8%) 0.740

Age (years old)) 63.23±12.31 60.49±15.04 0.009

BMI (kg/m2) 25.22±4.03 25.46±4.43 0.469

Smoking history (%) 111(42.4%) 167(44.5%) 0.587

Alcohol (%) 74(28.2%) 82(21.9%) 0.065

Hypertension (%) 82(34.9%) 75(35.5%) 0.778

Systolic blood pressure (mmHg) 132.70±22.85 129.84±20.79 0.101

Diastolic blood pressure (mmHg) 77.30±14.71 77.81±15.32 0.666

Pulse (rate) 77.53±14.71 80.29±16.57 0.011

Diabetes duration(year) 10.27±8.77 5.51±7.61 <0.001

HbA1c (%) 7.69±1.76 6.35±1.68 <0.001

Fasting blood glucose(mmol/L) 8.29±7.26 6.44±2.62 <0.001

Cholesterol(mmol/L) 3.90±1.25 3.96±1.12 0.459

Triglyceride(mmol/L) 1.61±1.04 1.57±0.82 0.066

HDL-C(mmol/L) 2.51±1.02 2.52±0.83 0.178

LDL-C(mmol/L) 1.03±0.38 2.08±0.32 0.728

Serum uric acid (µmol/L) 390.56±130.98 406.78±135.24 0.066

Serum Creatinine(µmol/L) 115.42±106.18 106.38±102.70 0.009

Diabetes treatment (%)

Oral

Biguanides 64(24.4%) 71(18.9%) 0.095

Non-Sulfonylureas 7(2.7%) 14(3.7%) 0.997

a-Glucosidase inhibitor 61(23.3%) 46(12.3%) <0.001

Sulfonylureas 21(8.0%) 15(0.4%) <0.001

GLP-1 receptor agonist 2(0.8%) 26(6.9%) 0.076

DPP-4 inhibitor 11(4.2%) 21(5.6%) 0.713

SGLT-2 inhibitor 35(13.4%) 36(9.6%) 0.082

Stains 1(0.4%) 23(6.1%) 0.013

Without drugs 41(15.6%) 82(21.9%) <0.001

Insulin 106(40.5%) 58(15.5%) <0.001
Statins in Cluster 2 were likely prescribed at low-to-moderate intensity, which may partially explain the inconsistency with ischemia outcomes reported in high-dose statin clinical trials.Cluster 1
patients showed higher use of SGLT2 inhibitors and insulin, while Cluster 2 patients were more likely to receive GLP-1RA, DPP-4 inhibitors, and statins.
BMI, Body Mass Index; HbA1c, HbA1c, Glycated Hemoglobin; LDL-C, low-density lipoprotein cholesterol; HDL-C, High-density lipoprotein cholesterol; GLP-1,Glucagon-Like Peptide-
1receptor agonist; DPP-4 inhibitor, Dipeptidyl Peptidase-4 inhibitor; SGLT-2 inhibitor, Sodium-Glucose Co-Transporter 2 inhibitor;
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had received diabetes treatment, like non-Sulfonylureas, Glucagon-

Like Peptide-1(GLP-1) receptor agonist, Dipeptidyl Peptidase-4

(DPP-4) inhibitor, Statins. Moreover, without drug treatment,

Cluster 1 had 141 patients (15.6%), while Cluster 2 had 82

patients (21.9%), showing a significant difference (p < 0.001).
3.2 Connection between cluster identity
and myocardial ischemia

The characteristics of myocardial ischemia are compared across

the two clustering groups in Table 2 and Figure 4. In terms of

Ischemia areas, cluster group 1 had the higher proportion of

patients with incomplete ischemia (69.8%), Cluster group 2 had

higher proportion of complete ischemia (11.5%) (Figure 4A). Wall

motion in cluster group 1 tend to had higher proportion of

Hypokinesis and Akinesis, while normal wall motion in cluster
Frontiers in Endocrinology 07
group 2 seems more common (Figure 4C). For Ventricular

contraction, cluster group 1 had worse contraction (Figure 4D).

In terms of Cardiac systolic coordination, group 1 had a worse

proportion (Figure 4E). From the patient perspective, cluster group

1 exhibited a greater rate of abnormal ESV and LVEF (Figure 4F).

No significant variations were noted in the involved segments,

EDV, ischemia areas, and cavity size (Figure 4B) between the two

cluster groups (all P values>0.05).
4 Discussion

In this research, an unsupervised machine learning method was

applied to classify T2DM patients into subgroups with different

clinical profiles. Machine learning methods provide innovative

approaches to integrate and analyze diverse omics data, facilitating

disease-Specific biomarker discovery. These biomarkers provide the
TABLE 2 Comparison of myocardial ischemia characteristics of two cluster groups in T2DM.

Cluster(n=262) Cluster2(n=375) P value

Ischemia areas 0.065

All 26(9.9%) 43(11.5%)

Part 183(69.8%) 229(61.1%)

Normal 53(20.2%) 103(27.5%)

Cavity size 0.979

Enlarge 115(43.9%) 165(44%)

Normal 147(56.1%) 210(56%)

Wall Motion 0.005

Normal 65(24.8%) 137(36.5%)

Hypokinesis 100(38.2%) 112(29.9%)

Akinesis 97(37.0%) 126(33.6%)

Ventricular contraction 0.010

Reduced 151(57.6%) 177(47.2%)

Normal 111(42.4%) 198(52.8%)

Cardiac systolic coordination 0.004

Impaired 167(63.7%) 196(52.3%)

Normal 95(36.3%) 179(47.7%)

Patient Level

Involved segments ≥4 55(21.0%) 99(26.4%) 0.083

Involved segments <4 207(79.0%) 276(73.6%)

EDV>132 134(51.1%) 173(46.1%) 0.213

EDV<132 128(48.9%) 202(53.9%)

ESV>61 175(66.8%) 177(47.2%) <0.001

ESV<61 87(33.2%) 198(52.8%)

LVEF<50 213(81.3%) 199(53.1%) <0.001

LVEF>50 49(18.7%) 176(46.9%)
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opportunity to enhance prognostic assessment accuracy, stratified

healthcare, and the delivery of precision medicine (25, 26). This study

showed that unsupervised learning techniques can be applied to

analyze integrated healthcare data and enable the possibility of

identify distinct T2DM patient categories with varying ischemia

areas and degrees of co myocardial ischemia.
4.1 Unsupervised machine learning for
processing clinical data

It is widely recognized that diabetic patients are at greater risk for

more aggressive vascular disease, including diffuse coronary
Frontiers in Endocrinology 08
atherosclerosis, and exhibit a significantly increased occurrence of

heart failure, myocardial infarction (MI), and cardiovascular

mortality (27, 28). Diabetic patients have multitude of characteristic

features, the interaction of these contributor on myocardial ischemia

are attracting more focus. Preceding studies primarily aimed at the

limited factors for myocardial ischemia (29–31). The target of

unsupervised machine learning is to uncover clusters of patients

with analogous combinations of features, free from biases introduced

by clinical experts or information on future outcomes. As clinical data

continue to grow rapidly, clustering methods may become

increasingly valuable for analyzing the varied and multifaceted data

available processing the diverse and heterogeneous data found in

digital health data.
FIGURE 4

Characteristics of myocardial ischemia among the two clustering groups. (A) percentage of T2DM patients with different extent of ischemia;
(B) percentage of Cavity size; (C) percentage of wall Motion; (D) percentage of ventricular contraction; (E) percentage of cardiac systolic
coordination; (F) percentage of T2DM patients with involved segments ≥4, EDV, ESV, LVEF.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1668516
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2025.1668516
4.2 Correlation between myocardial
ischemia areas and clusters

The clustering approach demonstrated the ability to not only

differentiate T2DM patients with diverse clinical profiles but also to

indirectly identify distinct subgroups exhibiting various types of

myocardial ischemia. The findings revealed that cluster 2 had higher

proportion of complete ischemia. This can be attributed to the

evidence that cluster group 2 consisted of a larger number of males,

exhibited more unhealthy habits such as nicotine use and alcohol

consumption, and had elevated levels of LDL-C. Present smoking

has been classified as a threat for myocardial ischemia (32). Mild

alcohol consumption is known to be cardio protective compared

with either heavy drinking or complete abstinence (33, 34).

Treatment to reduce LDL cholesterol HDL-C levels is beneficial

to improve ischemia (35). This result draws attention to the crucial

role of effective management for T2DM patients exhibiting these

risk factors for myocardial ischemia.

In line with these risk profiles, patients in Cluster 2 were more

frequently prescribed GLP-1 receptor agonists and statins. GLP-1

receptor agonists have been reported to improve coronary

microvascular function, while statins effectively reduce LDL-C

concentrations. Nevertheless, in this cohort statin therapy was

primarily administered at low-to-moderate intensities, which may

have attenuated their cardioprotective effect. This limitation could

partly explain the persistently higher prevalence of complete

ischemia in Cluster 2, despite the seemingly more optimized

pharmacological regimen.
4.3 Heart motion function in clusters

Group1 had a higher proportion of hypokinesis and akinesis

wall motion, and ventricular contraction and cardiac systolic

coordination also worse in group 1. This might be attributed to

the fact that patients in Cluster 1 were older (63.23 ± 12.31 vs60.49 ±

15.04 years), had a longer duration of diabetes (10.27 ± 8.77vs5.51 ±

7.61 years), and exhibited poorer glycemic control, as reflected by

higher HbA1c levels (7.69 ± 1.76vs6.35 ± 1.68).A previous study

showed that wall motion is an independent predictor of ischemic

heart (36, 37). In both cross-sectional and short-term longitudinal

studies involving older adults, the status of glycemic dysregulation

add to the risk of wall motion (38, 39). Additionally, inadequate

control of diabetes mellitus (DM) was associated with subclinical

left ventricular (LV) dysfunction (40). Traditionally, aging is

regarded as a risk factor for myocardial ischemia. We infer from

our data that longstanding glycemic abnormality produces a

compounded harmful influence on LV wall motion.

Although SGLT2 inhibitors were more commonly prescribed in

Cluster 1 as a cardioprotective strategy, the prevalence of reduced

exercise tolerance and exercise incapacity remained high. This

apparent inconsistency highlights that, despite the demonstrated

efficacy of SGLT2 inhibitors in randomized controlled trials, real-

world effectiveness may be attenuated due to suboptimal adherence,

heterogeneity in therapeutic responsiveness, or patient-specific
Frontiers in Endocrinology 09
factors. These findings underscore the need for further evaluation

of treatment strategies in routine clinical practice to mitigate LV

dysfunction in high-risk T2DM populations.
4.4 Association of extent of ESV and LVEF
with ischemia

Although some differences were observed in ventricular

contraction, cardiac systolic coordination, ESV and LVEF, there

was no statistically significant difference in the ischemic areas

between the two cluster groups. A previous study demonstrated

that T2DM increase the risk of death among patients with ischemic

heart disease. Another studies showed that risk factors for

myocardial ischemia, such as hypertension, hyperlipidemia,

diabetes, smoking, obesity, age, gender, family history, can

exacerbate the severity of myocardial ischemia through different

mechanisms (41–43). These risk factors collectively contribute to

the increased severity of myocardial ischemia. Therefore, early

intervention and comprehensive management targeting these

factors are crucial.

Beyond systolic function, diastolic impairment also represents a

critical concern in T2DM. The disease promotes myocardial fibrosis

and increases ventricular stiffness, thereby contributing to diastolic

dysfunction—a hallmark mechanism of heart failure with preserved

ejection fraction (HFpEF). In line with this, Cluster 1 patients

demonstrated more pronounced abnormalities in left ventricular

end-diastolic volume (EDV) and E/E′ ratio, indicating a heightened
susceptibility to diastolic dysfunction. Importantly, these patients

also exhibited higher mean systolic blood pressure, longer disease

duration, and poorer glycemic control, whereas Cluster 2 patients

presented with slightly lower diastolic pressure. Consequently, a

wider pulse pressure was evident in Cluster 1. Given that both

hypertension and diabetes are key risk factors for HFpEF, these

pathophysiological distinctions provide additional mechanistic

support for the clustering results.
4.5 Clinical implications of unsupervised
clustering

The present study demonstrates the feasibility of applying

unsupervised clustering to classify T2DM patients with

myocardial ischemia and underscores its potential clinical

relevance. By identifying subgroups with distinct ischemic and

metabolic features, clustering provides an evidence-based

approach for personalized decision-making, enabling physicians

to tailor therapies to specific risk profiles. Its integration of SPECT-

derived functional parameters further highlights potential for early

ischemia detection, thereby improving diagnostic accuracy and

guiding timely interventions in high-risk populations. Beyond

diagnosis, clustering may assist in predicting disease progression

and stratifying cardiovascular risk, offering a valuable tool for long-

term management and proactive prevention. Overall, these findings

suggest that unsupervised learning could complement conventional
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risk assessment and foster a more precise and individualized model

of care for patients with T2DM.
5 Limitations

This study has several limitations. First, given that it is a

monocentric study, Systematic bias in selection is unavoidable,

and future multi-center studies are required to confirm these

findings. Second, since it was a retrospective analysis, ongoing

data were not available. The gradual onset and progression of

myocardial ischemia in T2DM patients requires in-depth study.

However, SPECT, a noninvasive examination, is one of the most

common imaging modalities used for assessment of ischemia (44).
6 Conclusions

This study demonstrates that unsupervised clustering methods

can effectively analyze heterogeneous clinical and imaging data

from T2DM patients with myocardial ischemia. By revealing

distinct patient subgroups, this approach provides a novel

pathway for stratifying individuals with varying ischemic burdens.

These findings highlight the methodological value of unsupervised

learning for integrating complex healthcare data and suggest

promising directions for future research aimed at refining risk

stratification and improving outcomes in T2DM populations.
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