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Association between
triglyceride-glucose index
and obstructive sleep apnea
severity in hypertensive
patients with co-existing
OSA: a cross-sectional study
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Shudan Deng™?, Xiaolin Hao"?, Ying Zhang™? and Xiaoling Gao**

The Second Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China,
2Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical
University, Taiyuan, Shanxi, China

Study objectives: To evaluate the association between the triglyceride-glucose
(TyG) index and obstructive sleep apnea (OSA) severity in hypertensive patients
with comorbid OSA, particularly in non-obese subgroups.

Methods: This cross-sectional study consecutively enrolled 653 hypertensive
patients with snoring and excessive daytime sleepiness from the Second Hospital
of Shanxi Medical University between 2022 and 2023. After confirming OSA
diagnosis by polysomnography, 562 eligible participants were stratified into mild/
moderate/severe OSA groups. The TyG index was calculated as In[fasting
triglycerides (mg/dL) x glucose (mg/dL)/2]. Multivariable ordinal logistic
regression was performed to identify predictors of OSA severity, with subgroup
analyses stratified by BMI. Linear regression was employed to examine the
association between the TyG index and the apnea-hypopnea index (AHI).
Results: In the fully adjusted model, the TyG index showed the strongest
independent association with OSA severity progression (OR = 1.885, 95%
Cl:1.107-3.209), demonstrating greater explanatory value than BMI based on
standardized B coefficients. This association demonstrated striking phenotypic
specificity, with significant correlation restricted to non-obese individuals
(adjusted OR = 2.804, 95%Cl:1.547-5.083) versus obese counterparts.
Stratification by TyG tertiles revealed progressive AHI escalation with increasing
tertiles (B = 8.265 per tertile, P < 0.001), indicating a dose-response relationship.
Conclusions: The TyG index surpasses conventional obesity metrics in stratifying
OSA severity among hypertensive patients with OSA. These findings support its
utility as a pathophysiology-guided risk stratification tool for OSA-related
cardiometabolic complications in hypertension management.

triglyceride-glucose index, obstructive sleep apnea, hypertension, insulin
resistance, biomarker
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Background

Obstructive sleep apnea (OSA), the predominant sleep-
associated respiratory disorder worldwide, poses substantial
healthcare burdens. Global epidemiological surveillance estimates
that 936 million individuals are affected by OSA, including 425
million with moderate-to-severe disease requiring therapeutic
intervention (1). Notably, OSA exhibits a pronounced
comorbidity profile with hypertension, atrial fibrillation, and
heart failure (2-4). A critical bidirectional pathophysiological
relationship exists between OSA and hypertension:
epidemiological studies indicate that nearly 50% of OSA patients
have concurrent hypertension, while 30%-50% of hypertensive
individuals have comorbid OSA (5, 6). This interdependent
comorbidity not only complicates clinical management but also
substantially elevates the risk of adverse cardiovascular events (7, 8).

Although the AHI remains the gold standard for quantifying
OSA severity, evidence reveals its limited correlation with metabolic
pathophysiology, particularly in reflecting insulin resistance
progression and lipid profile abnormalities (9, 10).These
metabolic alterations are strongly associated with hypertension-
mediated target organ damage. Notably, IR and related metabolic
abnormalities have been demonstrated to independently correlate
with both end-organ injury and adverse cardiovascular outcomes in
OSA populations (11). In patients with coexisting hypertension and
OSA, metabolic dysregulation may accelerate disease progression
through mechanisms involving inflammatory activation and
oxidative stress (12). Consequently, identifying biomarkers
capable of simultaneously capturing respiratory dysfunction and
metabolic perturbations holds critical clinical significance for risk
stratification and therapeutic targeting in this high-risk cohort.

The TyG index, calculated from fasting serum lipid and
glycemic parameters, has emerged as a reliable surrogate marker
for quantifying insulin resistance in modern metabolic profiling
studies (13). Clinical studies have demonstrated elevated TyG index
levels in both hypertensive and OSA populations (14, 15). A cross-
sectional analysis identified the TyG index as the strongest
independent indicator of incident hypertension (16), while a
prospective cohort study established its association with an
increased risk of OSA development (17). Nevertheless, the clinical
utility of the TyG index in stratifying OSA progression among
hypertensive patients with concurrent OSA has not been
systematically investigated, underscoring an unaddressed
mechanistic link between impaired metabolic homeostasis and
cardiovascular-pulmonary multimorbidity.

This study proposes the TyG index as a biomarker associated
with OSA severity in patients with hypertension and OSA,
addressing current evidence limitations in this population.
Employing a cross-sectional design, we systematically evaluate the
association between TyG index levels and polysomnographic
parameters. These findings may not only advance risk
stratification protocols but also inform the development of
individualized therapeutic strategies for this high-risk population,
thereby bridging the clinical translation gap in cardiometabolic-
sleep disorder comorbidity management.
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Methods
Subjects and study design

A cross-sectional study was conducted involving patients with
hypertension and symptoms such as snoring and daytime
sleepiness, who were admitted to the Second Hospital of Shanxi
Medical University between January 2022 and December 2023. The
study cohort comprised six hundred and fifty-three consecutively
enrolled participants meeting predefined inclusion criteria.
Polysomnographic monitoring was subsequently performed, and
based on the results, hypertensive patients with OSA were
categorized into three groups: HIN with mild OSA, HTN with
moderate OSA, and HTN with severe OSA (Figure 1).

Hypertension diagnosis required fulfillment of either criterion: (1)
sustained elevation of blood pressure (SBP =140 mmHg and/or DBP
>90 mmHg) across three consecutive measurements, or (2) physician-
confirmed hypertension diagnosis with active antihypertensive
regimen. OSA diagnosis required: 1) Clinical manifestations
including nocturnal snoring, excessive daytime sleepiness, sleep-
related choking, or cardiometabolic comorbidities (e.g., coronary
artery disease, type 2 diabetes); 2) Polysomnography demonstrating
obstructive apnea-hypopnea index (AHI) >5 events/hour. OSA
confirmation mandated fulfillment of both clinical and PSG criteria
according to American Academy of Sleep Medicine guidelines.

The exclusion criteria were: 1) Sleep disorders resulting from
psychiatric conditions; 2) A definite diagnosis of secondary
hypertension unrelated to OSA; 3) Acute or chronic heart failure,
severe arrhythmias, valvular heart disease, cardiomyopathy, aortic
dissection, and other related conditions; 4) Acute or chronic
infections, anemia, hemorrhagic disorders, autoimmune diseases,
severe liver or kidney dysfunction, or malignant tumors; 5) Patients
currently receiving continuous positive airway pressure (CPAP) therapy.

The Institutional Review Board at Shanxi Medical University’s
Second Affiliated Hospital granted ethical clearance for this
investigation(2025YX181), with documented informed consent
obtained from all study participants.

Polysomnographic monitoring

Overnight polysomnography (PSG) was performed using the
Embla N7000 system (Natus Medical Incorporated, Pleasanton, CA)
following standardized protocols. Patients were instructed to abstain
from alcohol, caffeine-containing beverages, and psychotropic
medications for 24 hours preceding the examination. EEG
recordings were obtained through surface electrodes positioned in
accordance with the International 10-20 system configuration.
Respiratory monitoring included dual-channel pressure transducer
and thermistor sensors for simultaneous nasal/oral airflow detection.
Peripheral capillary oxygen saturation (SpO2) was continuously
monitored using a Nonin 8000R fingertip oximeter (Nonin
Medical, Plymouth, MN).All PSG data underwent blinded analysis
by two board-certified sleep specialists using the American Academy
of Sleep Medicine scoring criteria (version 2.3; 2016). Inter-rater
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reliability was maintained through consensus-based resolution of
scoring discrepancies, with unresolved cases being adjudicated by a
senior sleep specialist (>15 years clinical experience).

Data collection and measurements

Demographic parameters (gender, age, smoking history, alcohol
intake) and clinical identifiers were prospectively documented.
Venous blood specimens were obtained following >8 hours of
nocturnal fasting for multianalyte assessment, quantifying:
hematologic indices (WBC, Hb, PLT), hepatic function panel
(ALT, AST, TBIL, DBIL), renal markers (UREA, Scr), lipid
metabolism profile (TC, TG, HDL, LDL), glycemic regulators
(FBG, HbA1lc), and coagulation parameter D-Di. Insulin resistance
evaluation employed the validated TyG algorithm: In[(TG x FBG)/2],
with lipid and glucose measurements standardized in mg/dL.

Standard polysomnography captured 18 core variables: Total
Sleep Time (TST), Sleep Latency (SL), Sleep Efficiency (SE), REM
Latency (RL), Oxygen Saturation [average (AvgSpO,) and minimum
(LSpO,)], Heart Rate (AvgHR), Sleep Stage Distribution [REM% and
NREM phases (N1%, N2%, N3%)], Apnea Duration (LAD), and
Respiratory Event Indices [HI, TAI, OAIL CAI, MAI, AHI].

Statistical analysis

Statistical analyses and graphical visualizations in this study were
performed utilizing R software (version 4.2.1) and IBM SPSS
Statistics (version 25.0). Continuous variables underwent
distribution normality evaluation using Shapiro-Wilk methodology.

Hypertensive patient with
suspected OSA
(2022.01-2023.12,n=653)

;

Completed polysomnography

10.3389/fendo.2025.1669661

Parametric data adopted mean + SD summarization, whereas non-
parametric measures utilized median (IQR) descriptors. Discrete
variables employed frequency enumeration with proportional
quantification. Group comparisons among HTN patients with
mild/moderate/severe OSA utilized one-way ANOVA with
Bonferroni post hoc correction (normal data), Kruskal-Wallis test
(non-normal data), and Chi- square/Fisher’s exact tests (categorical
variables). OSA severity associated factors were identified through
univariate screening followed by multivariate ordinal logistic
regression, with effects quantified by adjusted ORs (95% CI). TyG
tertile-stratified analyses included ANOVA/Kruskal-Wallis tests for
baseline comparisons, Spearman correlations for sleep parameter
associations, and linear regression models for AHI determinants,
with two-tailed P < 0.05 defining significance.

Results

Clinical and biochemical characteristics in
HTN with mild OSA, moderate OSA, and
severe OSA groups

This cross-sectional study enrolled 562 patients with
concomitant hypertension and OSA, comprising 415 males
(73.8%) and 147 females (26.2%). Participants were stratified into
three groups based on OSA severity: 99 patients with hypertension
and mild OSA (HTN-mild OSA), 111 with hypertension and
moderate OSA (HTN-moderate OSA), and 352 with hypertension
and severe OSA (HTN-severe OSA). The mean ages across groups
were 53.34 + 15.59 years, 55.41 + 13.90 years, and 52.30 + 13.31
years (Table 1).

(n=653)
P Exclude patients with incomplete
v clinical and PSG data.
Patients with complete clinical
and PSG data(n=631)
Exclude
patients with central sleep apnea.
> patients undergoing CPAP therapy.
v patients with severe heart disease,
liver and kidney diseases, etc.
Final sample patients with AHI < 5.
(n=562)
FIGURE 1
Flowchart of study sample selection.
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TABLE 1 Demographic and clinical characteristics of participantsby the severity of OSA.

HTN-moderate OSA

HTN-severe OSA

Variable HTN-mild OSA(n=99) (n=111) (n=352) P value
Male,n(%) 68(68.7%) 83(74.8%) 264(75.0%) 0.437
Age(years) 5334 + 1559 55.41 + 13.90 5230 + 13.31 0.116
BMI(kg/m?) 26.03(24.24-29.35) 26.85(25.09-30.12) 29.04(26.46-31.94) <0.001
Smoking,n(%) 48(48.5%) 59(53.2%) 170(48.3%) 0.661
Drinking,n(%) 60(60.6%) 74(66.7%) 207(58.8%) 0.335
WBC(10A9/L) 7.03(5.61-8.24) 6.63(5.78-8.24) 6.91(5.55-8.25) 0.702
Hb(g/L) 149.55 + 20.63 149.04 + 17.72 149.19 + 23.18 0.985
PLT(10A9/L) 237(199-289) 227(180-267) 224(182-270) 0.078
ALT(U/L) 28.70(15.20-38.80) 23.70(14.90-35.60) 25.65(18.33-40.78) 0.116
AST(U/L) 22.50(17.80-27.50) 21.60(17.60-27.70) 22.65(18.80-30.10) 0.183
TBIL(umol/L) 13.40(10.00-18.40) 13.00(9.70-18.20) 14.25(10.63-17.98) 0.541
DBIL(umol/L) 2.70(2.00-3.10) 2.60(1.85-3.40) 2.60(1.90-3.50) 0.865
UREA(mmol/L) 5.10(4.36-6.20) 5.10(4.10-6.00) 5.45(4.50-6.30) 0.054
Scr(umol/L) 70.00(60.00-83.76) 72.00(61.19-81.00) 74.00(61.00-84.78) 0.192
TC(mmol/L) 4.58(3.60-5.25) 4.52(3.58-5.05) 4.58(3.91-5.26) 0.075
TG(mmol/L) 1.73(1.19-2.30) 1.76(1.23-2.44) 2.14(1.48-2.69) 0.001
HDL(mmol/L) 1.10(0.90-1.29) 1.12(0.89-1.24) 1.12(0.91-1.28) 0.967
LDL(mmol/L) 2.06(1.60-2.65) 2.14(1.62-2.64) 2.24(1.68-2.86) 0.077
FBG(mmol/L) 5.26(4.68-5.87) 5.16(4.77-5.93) 5.67(5.03-6.67) <0.001
TyG index 8.92(8.52-9.28) 9.04(8.55-9.28) 9.17(8.79-9.50) <0.001
D-Di(ng/mL) 62.00(0.98-109.00) 61.00(28.00-114.00) 64.00(3.94-116.00) 0451
HbA1c(%) 6.00(5.60-6.40) 5.90(5.60-6.40) 6.20(5.70-6.78) 0.004

Comparative analysis revealed no statistically significant
intergroup differences in smoking history, alcohol consumption,
or the following clinical parameters: WBC, Hb, PLT, ALT, AST,
TBIL, DBIL, UREA, Scr, TC, HDL, LDL, and D-dimer levels (all
P>0.05).Notably, the HTN-severe OSA group demonstrated
significantly elevated metabolic indices compared to other groups,
including BMI, TG, FBG, TyG index (P < 0.001), and HbAlc
(Table 1, Figure 2). These findings suggest a distinct metabolic
profile associated with OSA severity in hypertensive patients.

Ordinal logistic regression analysis of OSA
severity in HTN-OSA comorbidity

We employed ordinal logistic regression to identify
determinants of OSA severity progression in patients with
comorbid hypertension and OSA. Initial univariate analysis
revealed significant associations between OSA severity and BMI,
TC, LDL-C, FBG, TyG index, and HbAlc(all P < 0.05) (Figure 3).
However, multivariate regression demonstrated that only TyG
index and BMI retained independent associations with OSA
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severity stratification. Specifically, each 1-unit elevation in TyG
index corresponded to an 88.5% increased likelihood of advancing
to higher OSA severity grades (OR = 1.885, 95%CI 1.107-3.209,
P = 0.019), while a 1 kg/m2 increment in BMI was associated
with an 11.0% risk escalation (OR = 1.110, 95%CI 1.061-1.161, P <
0.001) (Figure 3). Notably, TyG index exhibited a substantially
greater effect magnitude than conventional metabolic markers,
suggesting that insulin resistance may play a central role in the
pathophysiological progression of OSA. Importantly, traditional
metabolic parameters including TC,TG, LDL-C, FBG, and HbAlc
lost statistical significance in multivariable modeling (P> 0.10),
suggesting that the TyG index holistically encapsulates the
pathophysiological interplay between glucose-lipid dysregulation
and OSA progression.

ROC curve analysis of TyG index
ROC curve analysis was performed to evaluate the diagnostic

performance of the TyG index in distinguishing between middle-
severe OSA (event group, 1) and mild OSA (non-event group, 0).
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The AUC was 0.601 (95% CI 0.537-0.665, P = 0.002), indicating
moderate discrimination. The sensitivity was 0.644, suggesting the
TyG index correctly identified 64.4% of middle-severe OSA cases.
However, the specificity was low at 0.356, reflecting a higher rate of
false positives. The Youden’s index was 8.9569, indicating a
suboptimal balance between sensitivity and specificity (Figure 4).
These results highlight that while the TyG index has statistical
significance, its diagnostic ability for OSA severity remains limited,

warranting further optimization.

Subgroup analysis based on BMI categories

Subsequent subgroup analyses stratified by BMI revealed non-
significant interaction terms (P>0.05) in the main effect model,
suggesting no statistically significant joint effect between TyG index
and BMI on the outcome variable. This observation implies
independent rather than interactive effects of TyG index and BMI
on OSA severity progression. Notably, in non-obese individuals
(BMI<30 kg/m?), TyG index demonstrated a significant positive
association with OSA severity (adjusted OR = 2.804, 95% CI:1.547-
5.083; P = 0.001), whereas this relationship was abolished in the
obese subgroup (BMI > 30 kg/m? OR = 0.384, 95% CI:0.086-1.721;
P = 0.211). Intriguingly, triglyceride levels exhibited a paradoxical
protective association with OSA severity exclusively in non-obese
participants (OR = 0.840, 95% CI:0.720-0.981; P = 0.028),
potentially indicating the existence of population-specific lipid
redistribution mechanisms that modulate cardiometabolic risk
profiles in this subpopulation (Figure 5).

A
TG (mmol/L)
7.51 P<0.01
5.0 ns
(¢]

od®
2.51
0.0 r e'OSA

. _ OSA
\—\‘\'N-m‘\s\%qs_ﬁ\ode"ati\gﬁ-se\l ef

FIGURE 2
Comparison of TG and FBG levels among the three groups.
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Clinical and biochemical characteristics by
TyG index

To elucidate the role of the TyG index in patients with
coexisting hypertension and OSA, we stratified participants into
tertiles based on TyG index values: Tertile 1 (n=188, TyG index <
8.84), Tertile 2 (n=192, 8.85 < TyG index < 9.28), and Tertile 3
(n=182, TyG index > 9.29). Median TyG indices with interquartile
ranges were 8.51 (8.24 - 8.69), 9.12 (9.00 - 9.21), and 9.66 (9.45 -
9.88) across the respective tertiles. Significant intergroup differences
were observed in age, BMI, alcohol consumption, WBC, Hb, PLT,
ALT, AST, DBIL, TG, TC, LDL, HDL, FBG, TyG index, D-Di, and
HbA1lc (all P < 0.05) (Table 2).

Sleep monitoring parameters of
participants grouped by TyG index

To further elucidate the relationship between the TyG index
and hypertensive patients with co-existing OSA, we conducted a
comparative analysis of polysomnographic parameters across TyG
index tertiles. The TyG-stratified cohorts exhibited stepwise
elevation in respiratory disturbance severity, with median AHI
progressively increasing across tertiles [Tertile 1: 30.58(15.14-
51.65) vs Tertile 2: 37.46(22.55-66.57) vs Tertile 3: 46.45(29.02-
71.79); P < 0.001]. Concurrent graded impairment manifested in
nocturnal hypoxemia profiles, evidenced by marked attenuation of
LSpO,in the highest TyG tertile[Tertile 3: 77.00(65.50-83.00)vs
Tertile 2: 77.00(66.25-84.00) vs Tertile 1:80.50(73.25-86.00), P <

B
FBG (mmol/L)
20 - P <0.001
—ns
151 ¢
°
°
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%
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5
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Variable
Demographics

Male

Age

BMI

Smoking

Drinking
Laboratory

WBC

Hb

PLT

ALT

AST

TBIL

DBIL

UREA

Scr
Lipid Metabolism

TC

TG

HDL

LDL
Glucose Metabolism

FBG

HbA1c
Composite Indicator

TyG index
Other

D-Di

FIGURE 3

Forest plot of risk factors for OSA severity in HTN-OSA comorbidity.

Univariate OR(95%CI) P Value Multivariate OR(95%CI) P Value

1.215 (0.837-1.766)  0.305
0.991 (0.979-1.003)  0.135
1.120 (1.074-1.168) <0.001
0.929 (0.666-1.294)  0.661
0.848 (0.602-1.195)  0.346
0.979 (0.908-1.055)  0.579
1.000 (0.992-1.007)  0.932
0.998 (0.995-1.000)  0.072
1.003 (0.996-1.010)  0.423
1.005 (0.994-1.017)  0.366
1.014 (0.991-1.038)  0.24
1.038 (0.943-1.141)  0.442
1.061 (0.998-1.127)  0.059
1.003 (1.000-1.007)  0.058
1.174 (1.017-1.354)  0.028
1.039 (0.953-1.133)  0.386
0.761 (0.458-1.266)  0.293
1.328 (1.074-1.644)  0.009
1.230 (1.090-1.390)  0.001
1.183 (1.001-1.397)  0.049
1.718 (1.310-2.252) <0.001
1.000 (0.999-1.001)  0.576

1.00

0.75

Sensitivity
o
g

0.25

0.00| .f

AUC = 0.601
95% CI: 0.537 - 0.665

0.00 0.25

FIGURE 4

0.50 0.75 1.00
1 - Specificity

ROC curve analysis of TyG index.
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0.001]. Furthermore, significant statistical differences were observed
among the three groups in parameters such as average heart rate,
longest apnea duration, total apnea Index, and obstructive Apnea
Index (Table 3).

Correlation between TyG index and AHI

The TyG index demonstrated significant correlations with key
polysomnographic markers of OSA severity. Notably, it exhibited a
positive association with the AHI(p=0.214, P < 0.001), alongside
progressive correlations with respiratory event metrics including
sleep efficiency (p=0.096, P = 0.023), longest apnea duration
(p=0.095, P = 0.024), total apnea index (p=0.168, P < 0.001),
obstructive apnea index (p=0.166, P < 0.001), and mixed apnea
index (p=0.098, P = 0.020) (Figure 5). Concurrently, inverse
correlations emerged with oxygenation parameters, showing
reduced AvgSpO,(p=-0.087, P = 0.040) and LSpO,(p=-0.161, P <
0.001).Furthermore, the study found a positive correlation between
AHI and laboratory indicators such as UREA, TC, TG, LDL, FBG,
TyG, and HbAlc (Figure 6).
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BMI<30kg/m? BMI230kg/m?
Characteristic OR (95% Cl) P value OR (95% Cl) P value Forest Plot
Male 1.399(0.878-2.230) 0.158 1.185(0.502-2.798) 0.699 —
*
Age 1.002(0.986-1.018) 0.809 1.000(0.974-1.027) 0.980 *
——
—_—_——
TC 0.917(0.717-1.172) 0.489 1.401(0.848-2.314) 0.188 i
.—:—‘—.
TG 0.840(0.720-0.981) 0.028 1.185(0.776-1.808) 0.431 - ——
¢
LDL 1.264(0.902-1.771 0.173 0.899(0.451-1.793 0.763
( ) ( ) +
FBG 0.962(0.787-1.176) 0.705 1.361(0.947-1.952) 0.096 . —_—
. ——
TyG index 2.804(1.547-5.083) 0.001 0.384(0.086-1.721) 0.211 —_——
0.5 1.0 3.0 5.0
HbA1c 1.113(0.881-1.405) 0.371 0.979(0.667-1.439) 0.916
Odds Ratio (95% Cl)
¢ BMI<30kg/m2¢ BMI=30kg/m?
FIGURE 5

Subgroup analysis based on BMI categories.

Univariate and multivariate linear
regression of AHI

Univariate analysis identified multiple factors associated with
the apnea-hypopnea index, including age, alcohol consumption
history, BMI, WBC, TC, TG, HDL, LDL, FBG, TyG index, D-D;j,

and HbAlc. Multivariate linear regression analysis revealed the
TyG index as the strongest independent correlate (f=8.265, 95%
CI:6.291-10.239; P < 0.001), demonstrating a linear dose-response
relationship with AHI elevation - each unit increase in TyG index
corresponded to an 8.265-unit rise in AHI. BMI emerged as the
secondary significant determinant (8=1.702, 95% CI:1.523-1.882;

TABLE 2 Demographic and clinical characteristics of participants by TyG index.

Variable Tertile 1(n=188) Tertile 2(n=192) Tertile 3(n=182) P value
Male,n(%) 142(75.5%) 131(68.2%) 142(73.8%) 0.080
Age(years) 54.73 + 14.32 53.76 + 14.79 50.71 + 12.08 0.009
BMI(kg/m2) 26.72(24.45-30.49) 28.40(25.96-31.51) 29.00(26.57-31.63) <0.001
Smoking,n(%) 91(48.4%) 105(54.7%) 81(44.5%) 0.138
Drinking,n(%) 119(63.3%) 133(69.3%) 89(48.9%) <0.001
WBC(10A9/L) 6.79(5.41-8.13) 6.87(5.55-8.00) 7.04(5.97-8.63) 0.041
Hb(g/L) 148(135-161) 149(137-165) 154(139-165) 0.031
PLT(10A9/L) 218.18 + 66.48 229.16 + 60.27 24355 + 65.25 0.001
ALT(U/L) 22.35(14.70-34.30) 25.25(17.05-38.18) 30.54(21.68-46.28) <0.001
AST(U/L) 21.40(17.90-26.05) 22.80(18.63-28.78) 23.75(18.75-32.35) 0.012
TBIL(umol/L) 14.20(10.50-18.48) 13.55(10.00-16.80) 14.05(10.45-18.80) 0353
DBIL(umol/L) 2.88(2.13-3.60) 2.65(1.83-3.20) 2.50(1.78-3.33) 0.001
UREA(mmol/L) 5.50(4.30-6.38) 5.40(4.50-6.19) 5.20(4.30-6.22) 0.595
Scr(umol/L) 73.00(61.00-85.00) 74.00(61.03-83.76) 72.98(61.00-83.76) 0.782
TC(mmol/L) 3.96(3.21-4.92) 4.58(4.19-5.13) 4.86(4.39-5.62) <0.001
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Variable Tertile 1(n=188) Tertile 2(n=192) Tertile 3(n=182) P value
TG(mmol/L) 1.18(0.94-1.45) 2.09(1.82-2.30) 3.04(2.46-3.82) <0.001
HDL(mmol/L) 1.13(0.95-1.28) 1.12(0.94-1.27) 1.00(0.84-1.28) 0.002
LDL(mmol/L) 1.96(1.45-2.54) 2.24(1.81-2.81) 2.24(1.77-2.83) <0.001
FBG(mmol/L) 5.02(4.51-5.52) 5.58(4.97-6.01) 6.25(5.30-7.70) <0.001

TyG index 8.51(8.24-8.69) 9.12(9.00-9.21) 9.66(9.45-9.88) <0.001
D-Di(ng/mL) 76.00(21.79-131.00) 64.50(8.25-116.25) 51.00(0.92-100.75) 0.006

HbA1c(%) 5.90(5.50-6.31) 6.10(5.70-6.50) 6.30(5.78-6.95) <0.001

P< 0.001), exhibiting 1.702-unit AHI elevation per BMI unit
increment. While TyG and BMI demonstrated the strongest
associations, additional contributors to AHI variation included
WBC, TG, LDL, D-Di, and HbAlc, with all coefficients reaching
statistical significance (P < 0.05) (Figure 7).

Discussion

The TyG index, a recognized biomarker of insulin resistance,
demonstrated independent association with OSA severity
progression in this pioneering cohort of 562 patients with
comorbid hypertension and OSA- a finding previously unreported
in clinical literature. Multivariate ordinal logistic regression analysis

TABLE 3 Sleep monitoring parameters of participants grouped by TyG index.

revealed that each 1-unit elevation in TyG index increased the
likelihood of advancing to higher OSA severity grades by 88.5%.
Notably, the TyG index exhibited stronger associative strength
compared to BMI, evidenced by both effect magnitude (OR ratio:
1.885 vs.1.110) and standardized 3 coefficients, suggesting insulin
resistance may serve as the central pathogenic nexus bridging
hypertension and OSA progression.

A growing body of clinical and epidemiological studies has
confirmed the TyG index as a clinically relevant biomarker for OSA.
A Meta-analysis that included 16,726 individuals showed a
significant trend of elevated TyG index in patients with OSA
compared to healthy controls, suggesting a potential correlation
between TyG index and OSA (18). Notably, the triglyceride-glucose
index demonstrates discriminative capacity in OSA diagnostic
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VEIE]] ] Tertile 1(n=188) Tertile 2(n=192) Tertile 3(n=182) P value
Total Sleep Time(h) 635+ 1.26 6.45 + 1.26 6.50 + 1.27 0.529
Sleep Efficiency(%) 77.50(64.08-86.00) 79.00(67.00-87.88) 78.65(71.95-87.35) 0.107
Sleep Latency(min) 7.00(3.00-14.5) 7.10(3.10-18.58) 7.05(3.00-15.03) 0.510
REM Latency(min) 96.25(62.25-143.25) 97.00(68.13-158.63) 100.00(70.5-146.75) 0.536
AvgSpO,(%) 93.00(91.40-94.38) 92.35(90.00-94.00) 92.25(90.00-94.00) 0.057
LSpO,(%) 80.50(73.25-86.00) 77.00(66.25-84.00) 77.00(65.50-83.00) <0.001
Average Heart Rate 66.0(60.25-73.0) 68.0(62.0-74.0) 68.0(64.0-74.0) 0.040
REM(%) 17.44 + 7.68 17.31 + 7.26 17.90 + 6.17 0.668
N1(%) 27.85(18.90-41.18) 24.90(18.93-40.23) 29.10(19.98-44.08) 0.332
N2(%) 41.80(34.50-50.16) 42.70(32.78-50.05) 40.15(31.00-50.35) 0.420
N3(%) 9.85(3.63-15.20) 8.25(2.00-14.50) 8.45(2.65-13.83) 0.449
Longest Apnea Duration(s) 38.00(24.00-59.25) 43.80(25.00-68.75) 47.50(26.00-72.00) 0.037
Hypopnea Index 15.41(10.11-24.65) 19.35(9.15-28.05) 17.63(10.75-28.93) 0.169
Total Apnea Index 8.70(1.93-27.83) 13.15(2.93-43.54) 23.00(4.30-55.81) <0.001
Obstructive Apnea Index 6.00(1.15-23.35) 12.00(2.45-34.55) 16.60(3.08-39.33) <0.001
Mixed Apnea Index 0.00(0.00-1.20) 0.00(0.00-1.70) 0.20(0.00-3.00) 0.007
Central Apnea Index 0.05(0.00-1.10) 0.00(0.00-1.00) 0.30(0.00-1.50) 0.083
AHI 30.58(15.14-51.65) 37.46(22.55-66.57) 46.45(29.02-71.79) <0.001
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FIGURE 6

Correlation between sleep monitoring indicators and biochemical parameters. (A, B) Association Between TyG Index and AHI/LSPO2; (C) The

correlation between AHI and laboratory indicators.

processes, achieving a peak receiver operating characteristic (ROC)
curve area of 0.681, suggesting clinical viability for population-level
risk stratification and case identification (18). Notably, prior
investigations exhibited limited discriminative capacity across
OSA severity strata, whereas a large-scale cohort analysis
(n=4,703) demonstrated a monotonic TyG index escalation
paralleling OSA progression gradients (19). Bikov et al (20) also
confirmed a significant correlation between AHI and TyG index.
The aforementioned studies have confirmed the association
between TyG index and OSA. Numerous studies have suggested a
close relationship between TyG index and hypertension. In a 9-year
follow-up study, Longitudinal analysis spanning a decade revealed
TyG index elevation independently predicted incident hypertension
risk in Zheng’s cohort study (21). Lee et al (22) demonstrated a
positive correlation between elevated TyG index and the risk of
blood pressure progression in a Korean cohort comprising 15,721
normotensive adults. Zhu et al (23) reached similar conclusions in
their investigation of 43,591 participants, further demonstrating
that this association remained significant even after achieving
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optimal control of LDL-C or HDL-C levels. In this study, we also
reached similar conclusions in hypertensive patients with OSA. In
the univariate analysis, traditional metabolic indices like FBG and
HbAlc showed correlations. Yet, after adjusting for confounding
factors, only the TyG index remained significant, which confirms its
unique superiority as a composite indicator in integrating
dysglycemia and dyslipidemia.

The TyG index, a well-established marker of insulin resistance,
highlights insulin resistance as a potential underlying mechanism
for the comorbidity of hypertension and OSA. Prior studies have
confirmed that OSA is independently associated with insulin
resistance (24), and animal models of CIH further support this
connection. CIH promotes oxidative stress and inflammation,
elevating cytokines such as TNF-q, interleukin-6, and interleukin-
18, which activate NF-xB and JNK pathways, impair insulin
signaling, and contribute to endothelial dysfunction (25-27).
Sympathetic overactivation in OSA also disrupts glucose
regulation by increasing catecholamines and suppressing insulin
secretion (28). Experimental evidence shows that CIH activates NF-
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Model 1 adjusted for age, alcohol history, BMI, WBC, TC, TG, HDL, LDL, FBG, TyG, D-Di, and HbA1c. Model 2 adjusted for

alcohol history, BMI, WBC, TG, LDL, TyG, D-Di, and HbA1c.

FIGURE 7
Univariate and multivariate linear regression of AHI.

kB and adhesion molecules, aggravating vascular injury (29, 30),
while antioxidant interventions can normalize insulin resistance
parameters (31). Together, insulin resistance, oxidative stress,
sympathetic activation, and endothelial dysfunction constitute
central mechanisms in OSA-related metabolic dysregulation.

Insulin resistance also plays a pivotal role in hypertension.
Meta-analyses have shown it significantly increases hypertension
risk (32, 33). Hyperglycemia and compensatory hyperinsulinemia
expand circulatory volume, enhance sodium retention, and activate
the renin-angiotensin system, while also sensitizing the carotid
body to augment sympathetic outflow (32, 34, 35). Moreover,
insulin normally promotes vasodilation through the PI3K/Akt-
NO pathway (36) but also induces vasoconstriction via MAPK
activation (37). In states of insulin resistance, this balance shifts
toward vasoconstriction, vascular remodeling, and further blood
pressure elevation through activation of the renin-angiotensin—
aldosterone axis and endothelin synthesis (38). The TyG index,
reflecting both glucose and lipid metabolism, thus serves as a
clinically relevant biomarker for patients with coexisting OSA
and hypertension.

Subgroup analysis revealed BMI-dependent variations in the
associative strength of TyG index for OSA severity: a significant
association was observed in non-obese individuals (BMI <30 kg/m?)
with an OR of 2.804 (95% CI 1.547-5.083), whereas no statistical
significance was detected in the obese group. This discrepancy
suggests potential heterogeneity in OSA pathogenesis—insulin
resistance may play a more prominent role in OSA development
among non-obese populations, while other mechanisms likely
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dominate in obese individuals. These findings underscore the
necessity of accounting for BMI when interpreting TyG index
values to optimize OSA risk stratification across diverse patient
subgroups. Interestingly, triglyceride levels showed a paradoxical
protective association in non-obese OSA, which may be
attributable to preserved adipose tissue functionality. Functional
adipose tissue not only buffers lipid spillover but also acts as an
endocrine organ; transplantation studies in rodents demonstrated
that healthy adipose tissue reverses insulin resistance and improves
glucose metabolism, whereas fat removal aggravates dysfunction (39,
40). Moreover, adipokines secreted by adipose tissue, particularly
adiponectin, exert insulin-sensitizing and anti-inflammatory effects,
with higher adiponectin levels being consistently associated with
better metabolic status and lower systemic inflammation (41).
Experimental models of chronic intermittent hypoxia further
revealed tissue-specific adaptations in adiponectin receptor
expression, suggesting compensatory lipid redistribution (42).
Beyond metabolic regulation, adipose tissue also supports host
defense through antimicrobial peptide secretion (43) and confers
broader evolutionary advantages, including energy storage during
starvation and reproductive success. Taken together, these findings
highlight that in non-obese OSA patients, the quality and
functionality of adipose tissue, together with preserved adiponectin
sensitivity, may facilitate triglyceride uptake and storage, thereby
explaining the inverse association with disease severity. Rather than
reflecting the so-called “obesity paradox,” our findings underscore the
possibility that an appropriate amount of functional adipose tissue
may serve as a physiological protector of the human body.
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In summary, the TyG index, a validated surrogate marker of
insulin resistance, demonstrates significant associations with both
OSA severity and hypertension development. This research
examined the prognostic utility of the TyG index in hypertensive
patients with coexisting OSA, aiding timely detection of at-risk
populations and permitting specific preventive measures.
Notwithstanding methodological robustness, certain constraints
require consideration. Primarily, the observational study design
limits causal interpretation of TyG-OSA severity associations, with
possible bidirectional relationships (e.g., advanced OSA worsening
metabolic dysregulation). Second, single-center recruitment may
introduce selection bias. Third, the absence of detailed metabolic
phenotyping data—including visceral adipose area and adiponectin
levels—limits mechanistic exploration. Fourth, medication use such
as antihypertensive, lipid-lowering, or antidiabetic agents was not
systematically adjusted for in the analysis. As these drugs may
influence glucose and lipid metabolism as well as the TyG index,
their potential confounding effects cannot be excluded and should
be considered in future studies. Future investigations should
prioritize: (1) longitudinal studies elucidating the temporal
relationship between TyG index and OSA incidence in
prehypertensive populations; (2) mechanistic studies dissecting
the interplay among insulin resistance, OSA, and hypertension;
(3) clinical trials evaluating synergistic efficacy of TyG-guided
therapies in ameliorating AHL

Conclusions

This study demonstrates the TyG index outperforms
conventional obesity indicators in associating with OSA severity
among patients with hypertension-OSA comorbidity, with
enhanced predictive accuracy in non-obese subgroups. These
findings clarify metabolic-inflammatory pathways in OSA
pathogenesis and enable risk stratification using standardized
biochemical parameters. Validation through comprehensive
subgroup analyses supports clinical implementation of TyG-based
monitoring for early intervention targeting cardiometabolic sequelae.
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