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Asthenozoospermia, a leading cause of male infertility, is closely associated with

oxidative stress (OS), which reflects an imbalance between reactive oxygen

species (ROS) production and antioxidant capacity. ROS originate from both

endogenous sources (e.g., inflammation and infection) and exogenous

exposures (e.g., lifestyle and environmental pollutants). At physiological levels,

ROS participate in key processes such as sperm proliferation, maturation,

capacitation, acrosome reaction, and fertilization. However, excessive ROS

become detrimental, damaging sperm membrane lipids, DNA integrity, and

mitochondrial function, ultimately leading to reduced sperm motility and

impaired fertility. A systematic understanding of the sources and mechanisms

of ROS in asthenozoospermia is essential for developing targeted interventions.

This review highlights the comprehensive integration of multiple ROS sources

and their multi-level damaging effects, with a particular focus on mitochondrial

dysfunction as a central mechanism in OS-induced sperm damage. Furthermore,

we discuss the potential of antioxidant-based strategies and propose future

directions for targeted therapies. This work aims to provide new insights into the

treatment of asthenozoospermia and facilitate a shift from empirical

management to mechanism-targeted therapies in clinical practice.
KEYWORDS
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1 Introduction

Infertility is a common reproductive health issue, with male factors accounting for

approximately half of all cases of infertility (1). Asthenozoospermia is one of the primary

manifestations, accounting for approximately 18% in clinical settings (2–4). The disease is

primarily characterized by a forward progression rate of less than 32%, with its core issue

being impaired sperm motility. This defect hinders the sperm’s ability to reach and

penetrate the egg, resulting in fertilization failure. Sperm motility is highly dependent on
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energy supplied by mitochondria (5). At the same time,

mitochondria play a crucial role in reactive oxygen species (ROS)

signaling, calcium homeostasis, steroid hormone biosynthesis, and

apoptosis (6, 7). Under physiological conditions, mitochondria

generate certain levels of reactive oxygen species (ROS), including

superoxide anion (O2
·-), hydrogen peroxide (H2O2), and hydroxyl

radical (·OH) (8). These ROS play essential physiological roles in

mediating sperm capacitation, hyperactivation, acrosome reaction,

and fusion with the oocyte (9). However, when ROS production

exceeds the body’s antioxidant capacity, oxidative stress (OS) is

induced, which damages both nuclear and mitochondrial DNA in

sperm, ultimately leading to male infertility (10).

OS refers to a pathological state characterized by an imbalance

between oxidative and antioxidant systems (11). Under

physiological conditions, both enzymatic and non-enzymatic

antioxidant substances present in seminal plasma effectively

scavenge ROS and maintain redox homeostasis (6, 12, 13).

However, this balance is disrupted when ROS production

becomes excessive or when antioxidant defense mechanisms are

compromised (e.g., decreased antioxidant enzyme activity), leading

to the onset of OS (14, 15). Studies have shown that OS is closely

associated with various male reproductive disorders and represents

a key mechanism underlying sperm dysfunction (16–19). Elevated

ROS levels can damage sperm membrane lipids, proteins, and

nucleic acids, causing DNA fragmentation and errors in

transcription and translation, ultimately impairing sperm motility

and fertilizing capacity (20, 21).

Existing research has recognized the important role of OS in

asthenozoospermia. However, a comprehensive integration of the

diverse sources of ROS is still lacking. Furthermore, there is no

systematic elucidation of the multi-level damaging mechanisms.

This is especially true for understanding the central role of

mitochondrial dysfunction within the entire regulatory network.

Moreover, the translation of molecular mechanisms into clinical

intervention strategies remains insufficient. Based on a systematic

review of existing literature, this article comprehensively

summarizes how ROS is generated from both endogenous and

exogenous sources. The article also provides an in-depth analysis of

the pathophysiologica l re lat ionship between OS and

asthenozoospermia. Finally, it explores the underlying molecular

mechanisms and potential therapeutic targets. It aims to offer a

theoretical basis and novel perspectives for the precise diagnosis

and targeted treatment of asthenozoospermia.
2 Sources of ROS

2.1 Endogenous sources

Sperm generate ROS through two primary pathways: one

involves the reduced nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase located on the plasma membrane,

and the other occurs via nicotinamide adenine dinucleotide (NAD)-

dependent redox reactions (22). During spermatogenesis, defective

cytoplasmic extrusion leads to the retention of excess residual
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cytoplasm (ERCs), resulting in morphologically abnormal sperm.

These residual cytoplasmic droplets are rich in metabolic enzymes

such as glucose-6-phosphate dehydrogenase (G6PD) and NADPH

oxidase, which can persistently activate ROS-producing pathways

and significantly elevate ROS levels (Figure 1a) (23).

Inflammation and infection represent another major

endogenous source of ROS. Activated leukocytes generate large

quantities of ROS through the “respiratory burst” (24), an immune

defense mechanism that can increase ROS production by orders of

magnitude above basal levels. This process is further amplified via

the pentose phosphate pathway, which enhances NADPH

generation and exacerbates OS (Figure 1b) (25). Both bacterial

prostatitis (26, 27) and other pathogenic infections—such as those

caused by herpes simplex virus (HSV) (28) , human

immunodeficiency virus (HIV) (29), hepatitis viruses (30, 31),

and Mycobacterium tuberculosis (32) —can trigger leukocyte-

dependent ROS elevation. Chronic non-bacterial (non-infectious)

prostatitis is also strongly associated with increased OS levels in

semen (33). Furthermore, under stimulation by inflammatory

cytokines (e.g., IL-6, IL-8, TNF-a), both somatic and

spermatogenic cells within the testes can contribute to ROS

overproduction and reduced antioxidant capacity, leading to

oxidative damage (34).

Certain male reproductive disorders are also closely associated

with elevated ROS levels. Varicocele, characterized by increased

testicular temperature and local hypoxia, can induce oxidative stress

and impair testicular function (Figure 1c) (35, 36). Studies have

shown significantly elevated ROS and lipid peroxidation levels in

the semen of affected patients (35, 37), which correlate positively

with sperm DNA fragmentation rates (38). Even after surgical

correction via orchiopexy, patients with cryptorchidism continue

to exhibit increased ROS production and aggravated DNA damage

(39). Testicular torsion, on the other hand, triggers testicular

damage through ischemia-reperfusion injury, leading to leukocyte

infiltration and a burst of free radicals that ultimately impair

spermatogenesis (1, 37, 40).

Endocrine and metabolic disorders also contribute to ROS-

mediated spermatogenic damage. Diabetes mellitus is associated

with increased oxidative DNA damage in sperm (39). Systemic

conditions such as chronic kidney disease and hemoglobinopathies

(e.g., b-thalassemia) can similarly induce oxidative sperm damage

due to reduced antioxidant capacity (41–43). These mechanisms

collectively lead to impaired sperm membrane integrity, DNA

fragmentation, and functional abnormalities, and may even affect

the recovery of reproductive function following vasectomy reversal

(44–46).
2.2 Exogenous sources

Exogenous sources of ROS primarily include physical, chemical,

and lifestyle factors. Unhealthy lifestyles can trigger excessive ROS

production through immune cell activation, depletion of

antioxidant reserves, and promotion of pro-oxidative reactions.

Smoking increases leukocyte counts in semen by 48% and
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elevates ROS levels by 107%, while reducing total antioxidant

capacity, ultimately leading to germ cell apoptosis and DNA

damage (22, 47). Heavy metals in tobacco (e.g., cadmium and

lead) further augment ROS levels and impair sperm motility (22).

Alcohol consumption, through its metabolite acetaldehyde, also

promotes ROS generation and compromises sperm function

(Figures 1d, f) (48).

The testes, which rely on superficial thermoregulation, are

particularly sensitive to non-ionizing radiation. Studies indicate that

exposure to non-ionizing radiation such as mobile phone emissions

can elevate scrotal temperature, reduce antioxidant enzyme activity,

disrupt mitochondrial function, and promote ROS generation in

seminal plasma, ultimately leading to DNA damage and impaired

sperm parameters (40, 49). Radiofrequency electromagnetic fields

(RF-EMF), through both thermal and non-thermal effects, interfere

with the electron transport chain and cellular membranes, induce

oxidative stress and DNA fragmentation, and impair steroidogenic

function (Figure 1e) (22, 50, 51).

Chemical agents represent another significant exogenous source

of ROS. Endocrine-disrupting chemicals (e.g., phthalates) from

industrial products and plastics, as well as heavy metals (e.g., lead,

cadmium, and mercury), can enter the human body through

various routes. These compounds induce excessive ROS

production by depleting antioxidants, activating enzymatic ROS-

generating systems (e.g., NADPH oxidase), and triggering

mitochondrial dysfunction, ultimately impairing spermatogenesis

and sperm quality (Figure 1g) (32, 47, 52).
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Despite their diverse origins, both endogenous and exogenous

factors converge on a common pathogenic pathway: by inducing

mitochondrial dysfunction, activating enzymatic ROS-producing

systems, or impairing antioxidant defenses, they lead to excessive

ROS accumulation. This subsequently damages sperm membrane

integrity, DNA stability, and motility, ultimately resulting in

male infertility.
3 OS: The dual role of ROS and multi-
targeted damage mechanisms in
asthenozoospermia

The concept of OS was first introduced by Helmut Sies in 1985

(53). Subsequent research has progressively elucidated its central

role in impairing male reproductive function (54). As

mitochondria-rich cells, sperm require physiological levels of ROS

for successful fertilization (55). However, excessive ROS induces

multi-target damage, including: triggering lipid peroxidation, which

disrupts membrane fluidity and structural integrity; causing nuclear

and mitochondrial DNA fragmentation; impairing plasma

membrane function; and leading to mitochondrial dysfunction

with compromised ATP synthesis (Figure 2) (56). These

alterations are particularly prominent in patients with

asthenozoospermia (57). Together, these mechanisms contribute

to reduced sperm motility, functional defects, and loss of fertilizing
FIGURE 1

Generation of excess ROS by endogenous and exogenous sources. Diagram illustrating sources and effects of ROS on sperm quality. Endogenous
sources include (a) abnormal sperm, (b) infection and inflammation, and (c) varicocele and cryptorchidism. Exogenous sources comprise
(d) smoking, (e) radiation, (f) alcohol consumption, and (g) environmental toxins and endocrine disruptors. All pathways lead to ROS overproduction,
resulting in lipid peroxidation, DNA damage, enzyme inactivation, and impaired sperm quality.
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potential, forming a critical molecular basis of male infertility.

Notably, excessively high antioxidant concentrations can also be

detrimental by inducing reductive stress, which is equally damaging

as OS (58). Therefore, the key to managing OS lies in the precise

regulation of both ROS and antioxidant levels.
3.1 Oxidative damage to the sperm
membrane

The sperm membrane is rich in polyunsaturated fatty acids

(PUFAs), whose double bonds weaken adjacent C–H bonds and

increase susceptibility to OS. Membrane-embedded proteins

involved in signal transduction, ion channels, and cell adhesion

further enhance its vulnerability to oxidative attack (59). ROS

originate from multiple sources, including mitochondrial electron

leakage in sperm, dysfunction of endogenous antioxidant enzymes,

and exogenous factors such as smoking or radiation (60). These

reactive species induce lipid peroxidation, disrupting membrane

architecture, fluidity, integrity, and protein function. This leads to

ion dysregulation, interrupted signaling, and activation of

apoptosis, ultimately resulting in loss of motility and reduced

fertilizing capacity (61, 62). Moreover, OS-induced lipid

peroxidation compromises mitochondrial membrane integrity,

reduces membrane potential, inhibits ATP synthesis, and alters

cellular energy metabolism, thereby creating a vicious cycle of

further ROS accumulation (63). Consequently, maintaining an

effective antioxidant defense is essential for sperm health in the

context of environmental and lifestyle challenges. Interventions

such as a balanced diet, regular exercise, and avoidance of

harmful exposures may help mitigate the negative impact of OS

on sperm function (64).
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3.2 Oxidative damage to DNA

The integrity of sperm DNA is essential for successful

fertilization and healthy embryonic development. Alterations in

DNA structure can directly affect gene expression and protein

function, thereby compromising fertilization potential (10). At

physiological concentrations, ROS act as crucial signaling

molecules in fertilization-related processes. Their small molecular

size, rapid generation, and short half-life make them well-suited as

intracellular messengers (65). ROS modulate sperm capacitation,

motility, and egg-binding ability through activation of the cAMP/

PKA pathway and facilitate sperm-egg fusion (22, 66). However,

excessive ROS disrupt redox homeostasis and induce DNA base

modifications and strand breaks, representing a key mechanism of

sperm DNA fragmentation (67). OS can disturb the antioxidant

enzyme balance in both seminal plasma and sperm, damaging DNA

structure and function (68), undermining genetic stability, and

reducing fertilization success (69, 70). OS may also interfere with

histone-to-protamine exchange, leading to abnormal chromatin

condensation and impaired sperm function (61, 71–73).

Furthermore, lipid peroxidation (LPO) products, such as reactive

aldehydes, can exacerbate nuclear DNA damage and membrane

dysfunction, ultimately hindering the fertilization process (62, 74).

Sperm motility is highly dependent on mitochondrial ATP

supply, and the integrity of mitochondrial DNA (mtDNA) is

critical for energy metabolism. Located within the mitochondrial

matrix, each mitochondrion contains one or multiple copies of

mtDNA (75–77), which is maternally inherited (78). Compared to

nuclear DNA, mtDNA lacks histone protection, has limited repair

capacity, and is more prone to mutation, with a mutation rate

approximately 10–20 times higher than that of nuclear DNA (76,

79). Elevated ROS levels can directly damage mtDNA, causing
FIGURE 2

Physiological effects of ROS and the hazards of excesses.
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strand breaks and mutations that impair its transcription and

replication, ultimately disrupting the synthesis of oxidative

phosphorylation proteins and compromising energy homeostasis

(80). When the proportion of mutated mtDNA exceeds a critical

threshold, cellular energy output declines, leading to sperm

dysfunction and related clinical manifestations. Multiple studies

have identified mtDNA mutations in infertile men affecting genes

involved in the oxidative phosphorylation pathway (81). These

mutations result in insufficient ATP synthesis, markedly reduced

sperm motility, and diminished fertility (82).

OS-induced DNA damage plays a central role in the

pathogenesis of asthenozoospermia, extending beyond mere

genetic disruption to multidimensional mechanisms that

collectively contribute to sperm motility failure. These

interconnected processes lead to deficiencies in structural proteins

essential for flagellar movement, disruption of energy supply, and

dysregulation of signaling pathways, thereby elucidating the

molecular basis of impaired motility in asthenozoospermia.

Strategies aimed at protecting and repairing oxidative DNA

damage may offer critical therapeutic targets for improving

sperm motility.
3.3 Oxidative damage to sperm
mitochondrial function

Sperm motility is highly dependent on ATP generated via

mitochondrial oxidative phosphorylation, and impairment of this

process directly leads to reduced sperm vitality and male infertility.

Factors such as mitochondrial Ca2+ overload (83) or deficiency of

cytochrome c (84) can cause electron leakage from the electron

transport chain, resulting in excessive ROS production and

sustained OS (18, 85). Additionally, compromised mitochondrial

membrane integrity and abnormalities in the fibrous sheath can

adversely affect sperm function and fertilization (86, 87). Elevated

ROS levels can oxidatively modify key respiratory enzymes, such as

succinate dehydrogenase and cytochrome c oxidase, impairing their

catalytic activity and electron transfer function (88). Furthermore,

OS promotes the release of pro-apoptotic factors like cytochrome c

from mitochondria, activating caspase-dependent apoptotic

pathways and triggering programmed sperm death (89). Studies

indicate that alterations in mitochondrial respiratory enzyme

act iv i ty are s ignificant ly assoc ia ted wi th id iopath ic

asthenozoospermia, offering new insights into its molecular

mechanisms and identifying potential therapeutic targets (90).

Mitophagy is a critical mechanism for clearing damaged

mitochondria and maintaining cellular homeostasis. This process

is initiated by specific receptor pathways in response to signals such

as mitochondrial depolarization, ROS, and hypoxia. While OS can

activate autophagy, it may also disrupt mitochondrial protein

homeostasis and impair the cell’s ability to clear abnormal

proteins (91), leading to the accumulation of damaged

mitochondria and persistent ROS production, which further

deteriorates the intracellular environment (92). Moreover, OS can

exacerbate mitochondrial dysfunction and cellular stress responses
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by activating transcription factor pathways such as NF-kB and p53

(93). A comprehensive evaluation of sperm mitochondrial function

typically includes indicators such as mitochondrial membrane

potential, respiratory chain activity, and calcium ion homeostasis.

These parameters collectively reflect mitochondrial physiological

status and possess predictive value for sperm motility (94, 95). In-

depth research on the regulatory mechanisms of mitochondria in

sperm will not only help elucidate the etiology of male infertility but

also provide new insights for optimizing assisted reproductive

technologies (ART).

In summary, OS contributes significantly to the pathogenesis of

asthenozoospermia by impairing mitochondrial function and

disrupting mitophagic homeostasis. On the one hand, ROS

induce loss of mitochondrial membrane potential, inhibit ATP

synthesis, and cause energy failure, further amplifying ROS

accumulation. Concurrently, OS dysregulates mitophagy—either

by excessive activation leading to degradation of healthy

mitochondria, or by impairing clearance mechanisms resulting in

accumulation of damaged organelles—thereby exacerbating

oxidative damage and apoptotic signaling. These processes form a

self-amplifying vicious cycle that ultimately leads to reduced sperm

motility, functional defects, and loss of fertilizing capacity.

Restoring mitochondrial function and mitophagic balance may

therefore represent a promising therapeutic strategy

for asthenozoospermia.
4 Antioxidant strategies and clinical
applications

Antioxidants are categorized into two major groups based on

their activity and chemical structure: enzymatic and non-enzymatic

antioxidants (96). Enzymatic antioxidants rely on trace elements

such as zinc, iron, magnesium, and copper as cofactors to catalyze

the conversion of ROS into hydrogen peroxide and subsequently

reduce it to water (97). This process protects sperm from lipid

peroxidation and OS, thereby helping maintain sperm motility and

vitality (98). Zinc is not only involved in germ cell development and

the synthesis of luteinizing hormone, follicle-stimulating hormone,

and testosterone (99), but also serves as an essential component of

various antioxidant enzymes, playing a key role in mitigating

oxidative damage and improving sperm quality (100, 101).

Selenium is another crucial trace nutrient that influences

spermatogenesis and testosterone synthesis. Twenty-five

selenoproteins have been identified in humans and animals, many

of which are vital for maintaining sperm structural and functional

integrity (102).

Non-enzymatic antioxidants, such as vitamin C, vitamin E, and

melatonin, mitigate oxidative damage by directly neutralizing free

radicals and interrupting chain reactions (103). Studies have shown

that sperm with elevated ROS levels often exhibit reduced vitamin C

content (102). As the primary water-soluble antioxidant in

extracellular fluids, vitamin C not only suppresses ROS

generation but also protects sperm DNA integrity by regenerating

oxidized tocopherol and scavenging hydroxyl radicals (104).
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TABLE 1 Antioxidants commonly used in clinical trials for the treatment of asthenozoospermia.
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Vitamin E, primarily composed of tocopherols and tocotrienols, is

abundant in wheat germ, avocados, and vegetable oils (102). Its

phenolic hydroxyl group reacts directly with lipid peroxyl radicals,

thereby blocking the progression of membrane lipid degradation

(105). Furthermore, the combination of vitamins C and E

demonstrates a synergistic protective effect, more effectively

defending against peroxidative damage and DNA strand

breaks (102).

Numerous clinical trials have demonstrated the beneficial

effects of antioxidant supplementation in alleviating OS in

patients with asthenozoospermia. Compounds such as L-

carnitine, folic acid, and coenzyme Q10 (CoQ10) have been

shown to significantly reduce sperm DNA fragmentation while

improving sperm concentration and total motility (106–109). An

Italian study reported an average increase of approximately 20% in

sperm motility following antioxidant intervention (110). Other

studies have also indicated that antioxidant supplementation

improves sperm count, morphology, and OS levels, accompanied

by higher fertilization rates and increased proportions of high-

quality embryos (111). Plant-derived antioxidants, such as green tea

catechins, have also shown potential in enhancing sperm quality

(100, 112). Additionally, astaxanthin, N-acetylcysteine, vitamin E,

b-carotene, and unsaturated fatty acids—whether used individually

or in combination—have been proven effective in reducing ROS

levels (113–115). The majority of published studies support the role

of antioxidant therapy in improving sperm parameters and

pregnancy outcomes (116–118).

However, notable inconsistencies and even contradictory

conclusions exist among different clinical trials. For instance,

studies by Alahmar, Cheng, and Sadaghiani et al. reported

varying degrees of improvement in sperm function following

antioxidant intervention (119–123), which may be attributed to

heterogeneity in patient baseline OS status, extent of mitochondrial

dysfunction, intervention dosage, and study design. Particularly

noteworthy is a randomized controlled trial indicating that

combined vitamin C and E supplementation did not significantly

improve sperm function (105), underscoring the current lack of

consensus. Table 1 summarizes commonly used antioxidants and

their recommended dosages in recent c l inica l tr ia ls

targeting asthenozoospermia.

Despite existing controversies, antioxidant intervention

remains one of the primary treatments for OS-related male

infertility (124). However, it should be noted that excessive

supplementation may induce “reductive stress”, which can

adversely affect cellular function (58). Therefore, clinically it is

recommended to use moderate-dose, combined antioxidant

regimens—such as vitamins C and E along with other small-

molecule antioxidants—to balance efficacy and safety.

Beyond simple antioxidant supplementation, comprehensive

management strategies show significant potential. Measures such

as reducing exposure to environmental toxins (e.g., heavy metals

and pesticides), improving lifestyle habits (e.g., smoking cessation

and alcohol moderation), and increasing the intake of natural

antioxidants (e.g., fruits, vegetables, and nuts) all contribute to

alleviating OS and improving mitochondrial function (125–127).
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Novel regulatory approaches, including resveratrol, flavonoids, and

mitochondria-targeted agents, may further enhance sperm quality

by improving mitochondrial membrane potential and energy

metabolism (128–132).

In summary, antioxidant therapy holds promise in the

management of as thenozoospermia , though current

understanding of its dose-response relationships and mechanisms

remains incomplete. Future research should focus on clarifying the

efficacy and mechanisms of specific antioxidants and dosages, as

well as exploring integrated treatment strategies that combine

antioxidants with other approaches—such as lifestyle

modifications, pharmacological agents, and assisted reproductive

technologies— to provide new avenues for improving

male infertility.
5 Conclusions

Male infertility is a significant global health issue affecting

couples of reproductive age, with asthenozoospermia being one of

its major clinical manifestations. This review systematically

examines the central role of OS in the pathogenesis of

asthenozoospermia. OS arises from an imbalance between

oxidative and antioxidant systems. Excessive ROS attack

polyunsaturated fatty acids in the sperm membrane, triggering

lipid peroxidation and compromising membrane integrity.

Meanwhile, ROS induce nuclear DNA fragmentation, impairing

genetic stability. Crucially, as the primary site of ROS generation

and cellular energy production, mitochondria suffer structural and

functional impairments under OS, directly leading to reduced

sperm motility and activation of autophagic pathways. Based on

these mechanisms, current research focuses on lifestyle

modifications, nutritional interventions, and antioxidant therapies

to alleviate OS, improve mitochondrial function, and ultimately

improve sperm quality.

Nevertheless, this field still faces critical challenges. Antioxidant

therapy acts as a “double-edged sword” due to the dual role of ROS

as signaling molecules and damaging agents, resulting in

heterogeneous treatment outcomes. A transition toward

personalized medicine is therefore essential, requiring precise

patient stratification, optimized dosing regimens, and reliable

biomarkers of OS. At the same time, a deeper understanding of

mitochondrial multifunctionality—spanning energy metabolism,

signaling, and apoptosis—is imperative. Therapeutic strategies

must evolve beyond energy support to target mitochondrial

dynamics, mtDNA integrity, and mitophagy. Rigorous evaluation

of the safety and specificity of mitochondrial-targeted compounds

remains necessary. In summary, OS and mitochondrial dysfunction

are central to asthenozoospermia pathogenesis. Future research

should prioritize defining physiological-pathological ROS

thresholds, establishing standardized diagnostic frameworks,

validating personalized interventions, and prospectively assessing

novel therapeutics. Mechanism-driven interdisciplinary
Frontiers in Endocrinology 08
collaboration will be key to advancing precision medicine in

this field.
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