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Eel species are basal teleosts with a unique life cycle including an arrest of sexual

maturation before the reproductive oceanic migration. Our early studies showed

that this blockade results from a deficient production of pituitary gonadotropins,

due in part to a low responsiveness to gonadotropin-releasing hormone (GnRH).

Three GnRH receptors have been identified in the eel, among them gnrhr2 is the

main pituitary receptor whose expression increases during the sexual maturation

induced by gonadotropic treatments. We investigated the role of gonadal

hormones in the feedback regulation of gnrhr2 expression in the eel. The effects

of steroids and activins were tested in vitro on primary cultures of eel pituitary cells

and gnrhr2 transcripts measured by qPCR. In silico analysis of eel gnrhr2 promoter

was performed to predict transcription factor binding sites and comparisons were

made with gnrhr promoters from other teleosts and mammals. Estradiol and

testosterone strongly and dose-dependently increased gnrhr2 transcript levels as

measured by qPCR. This stimulatory regulation was not observed with a non-

aromatizable androgen, 11 keto-testosterone, and the effect of testosterone was

abolished in the presence of an aromatase inhibitor, fadrozole, indicating an

estrogen-specific positive control of eel gnrhr2 expression. Other steroids,

progesterone and cortisol, had no effect on gnrhr2 expression. Gonadal peptides,

activins A and B, were also tested, and showed an inhibitory effect on gnrhr2
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2025.1673260/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1673260/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1673260/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1673260/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1673260/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1673260&domain=pdf&date_stamp=2025-09-29
mailto:sylvie.dufour@mnhn.fr
https://doi.org/10.3389/fendo.2025.1673260
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1673260
https://www.frontiersin.org/journals/endocrinology


Abbreviations: 11-KT, 11-ketotestosterone; AP1, activ

CREB-binding protein; CRE, cAMP response elemen

protein; DA, dopamine; DARE, downstream activin reg

17a, 20b-dihydroxy-4-pregnen-3-one; DHT, dihydrotes

ERE, estrogen responsive element; F, cortisol; FOXL2,

follicle-stimulating hormone; GnRH, gonadotropin-relea

gonadotropin-releasing hormone receptor; GR, glucocor

GnRH receptor activating sequence; GRE, glucocorticoid

human chorionic gonadotropin; LH, luteinizing ho

homeobox protein LHX3 binding site; NFY, nuclear fa

binding transcription factor 1; P, progesterone; PR, prog

progesterone responsive element; SF1, steroidogenic facto

of mothers against decapentaplegic; SURG, sequence un

to GnRH; T, testosterone.

Lin et al. 10.3389/fendo.2025.1673260

Frontiers in Endocrinology
expression. Our results show that gonadal steroids exert a positive feedback,

mediated by estradiol, on pituitary sensitivity to GnRH in the eel, in line with the

regulatory mechanisms of the ovulatory luteinizing hormone (LH) surge in

mammals. While investigation on gnrhr promoters is significantly lacking outside

mammals, in silico analysis of the eel gnrhr2 promoter allowed us to infer

transcription factor binding sites potentially involved in the regulation of gnrhr2

expression. Comparison was made with gnrhr promoters from other teleosts and

mammals to discuss their evolutionary conservation. This study in the eel, a basal

teleost representative, contributes to our understanding of the regulatory

mechanisms of the complex eel life cycle and to raise basic knowledge on the

regulation and evolution of pituitary GnRH receptivity in vertebrates.
KEYWORDS

GnRH receptor, promoter, sex steroids, activins, pituitary cells, Anguilla,
teleosts, mammals
1 Introduction

In vertebrates, gonadotropin-releasing hormone (GnRH) is the

main brain actor controlling the reproductive gonadotropic axis

(hypothalamus-pituitary-gonad axis) [for review (1)]. This

neurohormone acts on the pituitary via specific G-protein coupled

receptors, gonadotropin-releasing hormone receptors (GnRHR), to

induce the synthesis and release of gonadotropins, luteinizing

hormone (LH) and follicle-stimulating hormone (FSH). In some

mammals, two receptor genes (gnrhr1 and gnrhr2) have been

characterized. However, in most mammalian species, no functional

GnRHR2 is produced due to disruption of gene coding sequence and

in the mouseMus musculus, the gnrhr2 gene is completely absent [for

review (2)]. In mammals, GnRHR1 has been largely explored for its

involvement in the regulation of pituitary gonadotropins, while

GnRHR2 is thought to exert other functions at the brain and

peripheral levels [for reviews (2, 3)]. For instance, recent studies

in pigs, comparing gnrhr2 knockdown line with control

littermates, reported a potent direct action of GnRH2 on gonadal
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steroidogenesis and gametogenesis in both males and females, without

affecting gonadotropins [for review (4)].

In 1997, de Roux and collaborators described the first mutations

in the human GnRHR1 in a family with idiopathic hypogonadotropic

hypogonadism, characterized by delayed puberty, low gonadotropin

and sex steroid levels (5). During childhood, the gonadotropic axis is

quiescent, involving a low responsiveness of pituitary gonadotroph

cells to GnRH, which partly reflects a reduced expression of the

GnRHR1 [for review (6)]. In mice, induced GnRHR1mutations led to

a phenotype similar to the clinical syndrome of hypogonadotropic

hypogonadism (7, 8). Ontogeny of pituitary GnRHR1 in male and

female rats revealed that its number or expression was maximal in the

prepubertal period, when serum, pituitary content and expression

levels of both gonadotropins are elevated (9–11).

A number of investigations in mammals reported positive and

negative effects of sexual steroids on pituitary responsiveness to

GnRH. Orchidectomy and ovariectomy in rats induce drastic

increase in pituitary GnRHR number (12, 13) and mRNA levels

(14), suggesting a negative feedback of gonadal hormones.

Similarly, in castrated adult male Rhesus monkeys Macaca

mulatta, an increase of pituitary gnrhr mRNA levels was observed

(15). However, species-differences exist in mammals and in contrast

to rats and Rhesus monkeys, gonadectomy in mice induces a

decrease in GnRHR in both sexes indicating a positive feedback

of gonadal steroids (16, 17). No effect of gonadectomy was reported

on either the number (18) or the mRNA levels (19) of GnRHR

in ewe.

In the female of mammalian species, including mouse, rat, ewe,

cow and monkey, estradiol (E2) is considered a major positive

regulator of preovulatory LH surge by increasing both pituitary

sensitivity to GnRH and GnRH release [for review (20)]. During the

estrous cycle, in rat, a positive correlation exists between circulating

concentrations of E2 and GnRHR number (21, 22) and mRNA

levels (14, 23). Similarly, in the ewe, maximal concentrations or
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mRNA levels of GnRHR are observed prior to LH surge when

plasma E2 concentration are rising (24–26). Early studies

demonstrated that E2 stimulates the expression and number of

GnRHR by a direct pituitary effect as shown on primary cultures of

pituitary cells in rat (27, 28), mouse (29) and sheep (20, 30) [for

review (31)].

Activins are peptide hormones produced by the gonads,

pituitary and other organs, which were first identified in porcine

follicular fluid for their stimulatory role on FSH release by pituitary

gonadotrophs (32). Beside their direct stimulatory role on FSH

expression and release, activins were also shown to increase the

synthesis of GnRHR by cultured rat pituitary cells (33) and the

expression of gnrhr by the mouse gonadotroph cell line alphaT3

(34). This supports a role of activins in the pituitary sensitivity to

GnRH [for review (35)].

In teleosts, the pioneering studies by Breton and collaborators

(36) revealed the presence of a hypothalamic gonadotropin-

releasing factor in common carp Cyprinus carpio, and Sherwood

and colleagues (37) identified the GnRH sequence in chum salmon

Oncorhynchus keta. Since then, teleost GnRH and GnRHR have

been and still are the subject of extensive ongoing investigation [for

review (38)]. While only one or two GnRHR are present in

mammals, up to six gnrhr gene paralogs have been identified in

some teleosts such as the Atlantic salmon (39). A recent

phylogenetic analysis of vertebrate GnRHRs by Ciani and

collaborators divides them into two main types, GnRHR1 and

GnRHR2, each divided into further subtypes (39). At sexual

maturation, an increase of the pituitary expression of gnrhr was

reported in various teleost species, such as in European seabass

Dicentrarchus labrax (40), Nile tilapia Oreochromis niloticus (41),

pejerrey Odontesthes bonariensis (42), Atlantic cod Gadus morhua

(43), Atlantic salmon (39, 44, 45), and chub mackerel Scomber

japonicus (46). Our previous studies in the black porgy

Acanthopagrus schlegeli showed a specific increase of a pituitary

GnRH receptor (gnrhr1, corresponding to gnrhr2bb in Ciani’s

nomenclature) during sexual maturation, as well as under in vivo

treatments with human chorionic gonadotropin (hCG) or sex

steroids (47). We also demonstrated a stimulatory effect of sex

steroids on gnrhr1 (gnrhr2bb) expression by black porgy pituitary

cells in vitro (47).

Among teleosts, Anguilla species are of special phylogenetic and

biological interest. As members of the group of elopomorphs, they

are extant representatives of basal teleosts. The eels, Anguilla genus,

encompass about nineteen species and subspecies, distributed in the

Indian, Pacific and Atlantic Oceans, and all possessing a peculiar life

cycle with a reproduction in oceanic area and a juvenile growth in

continental watersheds [for review (48)]. Future genitors, named

silver eels, migrate downstream towards the ocean, but remain

blocked at prepuberty as long as the oceanic migration is prevented

[for review (49)]. Experimental sexual maturation of female and

male silver eels can be induced by gonadotropic treatments, as first

demonstrated by the work of Fontaine and coworkers in the

European eel, Anguilla anguilla (50, 51). Such gonadotropic

treatments, fish pituitary extract in the female and human

chorionic gonadotropin in the male, are currently used to induce
Frontiers in Endocrinology 03
experimental maturation in various eel species, and the biological

cycle has been successfully closed in the case of the Japanese eel, A.

japonica [for review (52)]. As shown by our previous studies in the

European eel, the prepubertal blockade is due to a deficiency in

pituitary gonadotropin production, itself resulting from a dual brain

control: firstly, a teleost species-specific strong inhibition by

dopamine (DA); and secondly, similar to the situation in

mammals before puberty, a lack of stimulation by GnRH,

including both a low production of GnRH and a low pituitary

sensitivity to GnRH [ (53); for review (54)]. A triple treatment with

sex steroids (E2 or testosterone, T), GnRH agonist and DA

antagonist is thus able to stimulate pituitary LH synthesis and

release, and subsequent ovarian vitellogenesis (53, 55).

Three GnRH-R genes have been identified by Peñaranda and

colleagues in the European eel and named gnrhr1a, gnrhr1b and

gnrhr2 (56). During experimental sexual maturation induced by

gonadotropic treatments, the expression of pituitary gnrhr2

(corresponding to gnrhr2b in Ciani’s nomenclature) largely

increases, suggesting a major role of this receptor in the

regulation of gonadotroph cells in male and female eels (56). The

increase in eel gnrhr2 expression may likely result from a positive

feedback by gonadal hormones, the production of which is

stimulated during experimental maturation [for review (49)].

Steroid hormones exert positive feedback on brain GnRH and

pituitary LH in the eel as shown by our early studies in A.

anguilla [ (57–62); for review (49)] as well as by investigations in

A. japonica (63, 64).

We recently investigated the regulation of gnrhr2 expression in

primary cultures of eel pituitary cells and showed inhibitory effects

of kisspeptins (65), neurokinin B (66) and gonadotropin-inhibitory

hormone (67). In the present study, we investigated the effects of sex

steroids, corticosteroid, as well as of activins, on the expression of

gnrhr2 by European eel pituitary cells in vitro. In order to get more

insights on the regulation of eel gnrhr2 expression, we performed in

silico analysis of the gnrhr2 proximal promoter in the European eel

to infer the presence of potential transcription factor binding sites.

Comparative analyses were made with the gnrhr2 promoters of the

Japanese eel (Anguilla japonica) and other teleost species (zebrafish

Danio rerio and medaka Oryzias latipes), as well as with the gnrhr1

promoters of two mammals (human Homo sapiens and mouseMus

musculus). While investigations on gnrhr promoters are still lacking

outside mammals, the present study allowed us to raise the first data

on response elements potentially involved in the regulation of gnrhr

expression in teleosts. Comparison with gnrhr promoters in

mammals led us to infer some evolutionary conserved features

across vertebrates.
2 Materials and methods

2.1 Animals

Freshwater female European eels were at the prepubertal

“silver” stage, which corresponds to the last continental phase of

the eel life cycle, preceding the oceanic reproductive migration.
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Cloning, tissue distribution and primary cultures were performed

using female silver eels purchased from Gebr. Dil import-export BV

(Akersloot, The Netherlands) and transferred to MNHN, France.

Animals were anesthetized by cooling and then killed by

decapitation under the supervision of authorized person (KR, N°

R-75UPMC-F1-08) according to the protocol approved by French

Cuvier Ethic Committee (N°68-027). Pituitaries were collected in

cell serum-free culture medium (CM: Medium 199 with Earle’s salt

and sodium bicarbonate buffer, 100 U/ml penicillin, 100 µg/ml

streptomycin, 250 ng/ml fungizone; Gibco, Thermo Fisher

Scientific, Illkirch, France) just prior to dispersion (15 to 20 eel

pituitaries per cell culture).
2.2 Hormones and chemicals

Sex steroids (estradiol, E2; testosterone, T; 11-ketotestosterone,

11-KT; progesterone, P), cortisol (F), and aromatase inhibitor,

fadrozole, were all purchased from Sigma-Aldrich (Saint-Quentin

Fallavier, France). Recombinant human/mouse/rat activins A and B

were purchased from R and D Systems (Lille, France). The

recombinant human/mouse/rat activins used in our study have

high amino-acid identity with the eel ones, and we previously

showed that they were effective in stimulating fshb expression by

primary cultures of European eel pituitary cells (68). Sex steroids

and cortisol were dissolved in ultrapure ethanol (Sigma-Aldrich),

activins A and B in sterile calcium-free phosphate-buffered saline

(PBS) (Gibco), and fadrozole in dimethyl sulfoxide (DMSO, Sigma-

Aldrich) to prepare stock solutions that were stored at -20 °C.
2.3 Primary cultures of eel pituitary cells

Dispersion and primary cultures of pituitary cells were

performed using an enzymatic and mechanical method as

previously described (69). Briefly, pituitaries from 15 to 20 eels

per experiment were incubated at 25 °C in a solution of porcine type

II trypsin (Sigma-Aldrich) in PBS. After 1h, the trypsin solution was

replaced by a solution of DNase (Sigma-Aldrich) and soya bean

trypsin inhibitor (Sigma-Aldrich) for 30 min. Pituitaries were cut in

1mm slices using a McIlwain Tissue Chopper (Thermo Fisher

Scientific), and then washed with PBS and mechanically dispersed

by repeated passages through a plastic transfer pipette (Falcon,

Thermo Fisher scientific, Illkirch, France). After estimating the

number of viable cells by Trypan Blue exclusion (Sigma-Aldrich),

cells were plated on 96-well plates (62,500 cells/well) pre-coated

with poly-L-lysine (Sigma-Aldrich). Cultures were performed in

cul ture medium (CM) at 18 °C under 3% CO2 and

saturated humidity.

Treatments were started 24 h after the beginning of culture to

allow cell attachment (Day 0). Replicates of 5 wells for control and

each treated group were used. Stock solutions were diluted in CM

just before addition to the culture wells. The final concentration of

ethanol or DMSO in culture wells never exceeded 0.2%; control

wells were treated with the same concentration of ethanol and/or
Frontiers in Endocrinology 04
DMSO in CM. Culture medium was changed and treatment added

to the cells on Day 0, Day 3, and Day 7. Cultures were stopped on

Day 8. The effects of treatments were tested in three independent

experiments performed on different cell preparations from different

batches of eels. Similar responses were observed in the

independent experiments.

Total RNA was directly extracted in wells using the Cell-to-

cDNA II Kit (Ambion, Thermo Fisher scientific, Illkirch, France)

according to the manufacturer’s recommendations. Cells were

washed with PBS and lysed with Cell Lysis II Buffer (80 µl/well).

The lysates were digested with RNAse-free DNase I (Roche,

Thermo Fisher scientific, Illkirch, France). Four µl of RNA

solution of each sample was then reverse transcribed with a

SuperScript III First Strand cDNA Synthesis Kit (Invitrogen,

Thermo Fisher scientific, Illkirch, France). The samples obtained

were stored at –20 °C until qPCR.
2.4 Real-time quantitative PCR

Gene specific primers were previously designed based on the

nucleotide sequence of the European eel gnrhr2 (56)] and b-actin
(70) cDNA, the latter being used as reference gene. Basal gnrhr1a

and gnrhr1b expressions were below the threshold of detection in

primary cultures of eel pituitary cells (65–67), and none of the

treatments tested in the present study could induce their expression

above this limit. For this reason, qPCR data were not reported for

these two genes.

qPCRs were prepared with 4 µl of diluted cDNA template, 2 µl

of PCR grade water, 2 µl of SYBR Green master mix and 1 µl of each

forward and reverse primer (500 nM each at final concentration).

The protocol was as previously described for b-actin (70) and for

gnrhr2 (65, 66). Serial dilutions of cDNA pools of pituitary cells

were used as a standard curve. One chosen dilution was also

included in each run as a calibrator. Each qPCR run contained a

non-template control (cDNA substituted by water) for each primer

pairs to confirm that reagents were not contaminated. The

specificity of each reaction was assessed by melting curve analysis

to ensure the presence of only one product. Each sample was

analyzed in duplicate by qPCR. Normalization of data was

performed using b-actin mRNA levels.
2.5 Statistics

Results of qPCR are given as mean ± SEM. Means were

compared by one-way ANOVA Tukey’s multiple comparison test

using Instat (GraphPad Software Inc., San Diego, Calif., USA).
2.6 In silico retrieval of eel gnrhr2 gene
sequences for promoter analysis

To investigate the upstream regulatory regions of the gnrhr2

gene, genomic sequences were retrieved from both the European eel
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and the Japanese eel genomes. The genome assembly for the

European eel was obtained from GenBank (GCA_013347855.1),

and the gnrhr2 gene was identified on chromosome 16 (accession

number: NC_049216). For the Japanese eel, sequence data were

collected from genome assembly GCA_025169545.1, with the

gnrhr2 gene found to be similarly located on chromosome 16

(accession number: CM_045898). The 5’-flanking regions

upstream of the coding sequence (up to about 2 Kb) were

extracted for promoter analysis.
2.7 Prediction of transcription factor-
binding sites in eel gnrhr2 promoter

Promoter analyses were subsequently performed on the

retrieved 5’-flanking sequences to identify putative transcription

factor-binding sites that may contribute to the regulation of gnrhr2

gene expression. Predictions were made using the PROMO tool,

which is based on the TRANSFAC database, as well as the JASPAR

database (https://jaspar.elixir.no) (71). These tools were

supplemented by information from previously published studies

(72–77).

Several potential regulatory elements were identified based on

sequence similarity to motifs previously reported in mouse [for

review (77)]: Activating Protein 1 (AP1); cAMP Response Element

(CRE); Downstream Activin Regulatory Element (DARE); GnRH

Receptor Activating Sequence (GRAS); LIM/homeobox protein

LHX3 binding site (LHX3); Steroidogenic Factor 1 (SF1);

Sequence Underlying Responsiveness to GnRH (SURG1

and SURG2).
2.8 Comparison with transcription factor-
binding sites in the promoters of other
teleost gnrhr2 and mammalian gnrhr1

To assess the conservation and divergence of transcriptional

regulatory elements across species, we compared the European and

Japanese eel gnrhr2 promoter regions with gnrhr promoter

sequences from selected vertebrate species. The coding sequence

of European eel gnrhr2 was used as a query to perform a translated

BLAST (tBLASTn) search against the NCBI nucleotide and genome

databases for identification of orthologous genes in other teleosts.

The closest sequences retrieved by blasting were in zebrafish, the

gnrhr4 gene (GeneID: 100001586) located on chromosome 18

(NC_007129), and in medaka, the gnrhr4 gene (GeneID:

100125529) located on chromosome 6 (NC_019864). The close

relationship between eel gnrh2 and these genes in zebrafish and

medaka, shown in our study by blasting, is in agreement with

Ciani’s phylogeny which clusters them all in the gnrhr2b subtype

(39). We also compared to the promoter of the mammalian gnrhr

expressed in the pituitary, using human and mice gnrhr1 promoters.

The human gnrhr1 (Gene ID: 2798) and mouse gnrhr1 (Gene ID:

14715) are located on chromosome 4 (NC_000004) and

chromosome 5 (NC_000071), respectively. For promoter analysis
Frontiers in Endocrinology 05
in teleosts and mammals, the gnrhr genomic regions were retrieved

to extract up to ~2.0 kb upstream sequences from the ATG start

codon, which were analyzed for putative transcription factor-

binding sites. Previously published mammalian gnrh1 promoter

sequences and response elements [for review (77)] were also used.
3 Results

3.1 Effects of steroid hormones on gnrhr2
transcript levels in eel pituitary cells in vitro

Various concentrations (from 10–11 to 10–7 M) of sex steroids

E2, T, P, as well as glucocorticoid, F, were tested over 8 days of

culture according to previous experiments (70) (Figure 1). E2 had

no effect at 10–11 M but significantly increased gnrhr2 mRNA levels

at 10–9 and 10–7 M (x10 and x13, as compared to controls,

respectively; P < 0.0001). T had no effect at 10–11 M but

significantly increased gnrhr2 mRNA levels at 10–9 and 10–7 M

(x6.6, P < 0.01 and x13, P < 0.0001, respectively). No effect of P nor

F was observed at the three concentrations tested.
3.2 Effect of an anti-aromatase, fadrozole,
on sex steroid stimulation of gnrhr2
transcript levels in eel pituitary cells in vitro

Fadrozole (10–6 M), an inhibitor of aromatase, was tested alone

or in the presence of 10–7 M sex steroids, E2, T or 11-KT (a non-

aromatizable androgen) (Figure 2). Fadrozole had no effect alone

and did not affect the stimulatory effect of 10–7 M E2 on gnrhr2

mRNA levels (x9.9 in the presence of fadrozole as compared to

controls, versus x9.5 in the absence of fadrozole). In contrast, 10–7 M

T stimulatory effect (x9.9) on gnrhr2 mRNA levels was completely

suppressed by fadrozole (P < 0.0001), reaching control levels. No
FIGURE 1

Effects of steroid hormones on gonadotropin-releasing hormone
receptor 2 (gnrhr2) transcript levels in primary cultures of eel
pituitary cells. Eel pituitary cells were treated with various
concentrations of estradiol (E2), testosterone (T), progesterone (P)
or cortisol (F) for 8 days. The mRNA levels of gnrhr2 were quantified
by qPCR. Data were normalized against b-actin. The Figure displays
the results from a representative experiment of three independent
cell culture experiments. Mean ± SEM; n=5 well replicates. **, P <
0.01 and ****, P < 0.0001 versus controls, ANOVA.
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significant effect of 11-KT on gnrhr2 mRNA levels at 10–7 M was

observed in the absence and in the presence of fadrozole.
3.3 Effect of activins A and B on gnrhr2
transcript levels in eel pituitary cells in vitro

Various concentrations of peptide hormones activin A and

activin B (from 10–12 to 10–8 M) were tested over 8 days of

culture according to previous experiments (68) (Figure 3). Both

hormones had no effect at 10–12 M, but gnrhr2 mRNA levels were

significantly decreased by activin A at 10–10 and 10–8 M (x0.4, P <
Frontiers in Endocrinology 06
0.05 and x0.34, P < 0.01 as compared to controls, respectively), and

by activin B at 10–8 M (x0.36; P < 0.05, as compared to controls).
3.4 Genomic structure of eel gnrhr2 gene

The gnrhr2 gene sequence of the European eel was retrieved from

GenBank genome assembly GCA_013347855.1. The gnrhr2 gene was

identified on chromosome 16 (NC_049216), spanning the genomic

region from position 12,519,164 to 12,529,023 (Gene ID: 118215598).

It is composed of three exons separated by two introns (Figure 4), and

the entire gene covers 9,860 bp on the chromosome. The CDS of the

gene, registered under accession number XM_035396496, is 1,308 bp

in length and encodes a protein of 435 aa, with the corresponding

protein sequence recorded under accession number XP_035252387.

In the Japanese eel, gnrhr2 was not previously annotated. Gene

sequence information was retrieved from GenBank genome

assembly GCA_025169545.1, and gnrhr2 was found on

chromosome 16 (CM_045898), between positions 23,834,808 and

23,841,537. We predicted exon-intron boundaries following the GT-

AG rule. The Japanese eel gnrhr2 gene also comprises three exons and

two introns (Figure 4). Its CDS is 1,308 bp long and encodes a protein

of 435 aa, showing a high sequence conservation between these two eel

species (96.79% identity).

The gnrhr2 genes from the European eel and the Japanese eel

display a highly conserved exon structure in terms of coding

sequence organization and functional domain distribution

(Figure 4). In the European eel, exon 1 comprises 582

nucleotides, encoding the first three transmembrane (TM)

domains and a portion of the fourth TM domain. Exon 2

comprises 205 nucleotides, encompassing the remaining part of

the fourth TM domain and the entire fifth TM domain. Exon 3

consists of 521 nucleotides, encoding the sixth and seventh TM

domains along with the remainder of the coding sequence.

Similarly, in the Japanese eel, exon 1 contains 582 nucleotides

and encodes the same TM domains as in the European eel. Exon 2

includes 204 nucleotides, covering the rest of the fourth TM and the

fifth TM domain. Exon 3 spans 522 nucleotides, responsible for

encoding the sixth and seventh TM domains and the remaining

coding sequence. These findings highlight the strong conservation

in the structural organization of the gnrhr2 gene between the two

eel species.
3.5 Analysis of eel gnrhr2 promoter region

The predicted response elements are indicated in the promoter

sequences of the European eel and the Japanese eel gnrhr2 genes

(Figure 5). Sequence analysis up to ~2.0 kb upstream from the ATG

start codon in the European eel revealed multiple transcription

factor binding sites including a cAMP Response Element (CRE) at

position nt -114, that binds CRE-binding protein (CREB), along

with a putative binding site for Steroidogenic Factor 1 (SF1) at nt

-149. Two TAAT/ATTA motifs were located at nt -187 and nt

-1362, representing potential Downstream Activin Regulatory
FIGURE 2

Effect of fadrozole, an aromatase inhibitor, on sex steroid effects on
gonadotropin-releasing hormone receptor 2 (gnrhr2) transcript
levels in primary cultures of eel pituitary cells. Eel pituitary cells were
treated with 10–7 M of estradiol (E2), testosterone (T) or 11-
ketotestosterone (11-KT) in the presence or not of 10–6 M fadrozole
for 8 days. The mRNA levels of gnrhr2 were quantified by qPCR.
Data were normalized against b-actin. The Figure displays the results
from a representative experiment of three independent cell culture
experiments. Mean ± SEM; n=5 well replicates. Different letters
indicate significant differences (P < 0.0001) between groups,
ANOVA.
FIGURE 3

Effects of activins A and B on gonadotropin-releasing hormone
receptor 2 (gnrhr2) transcript levels in primary cultures of eel
pituitary cells. Eel pituitary cells were treated with various
concentrations of activin A or activin B for 8 days. The mRNA levels
of gnrhr2 were quantified by qPCR. Data were normalized against b-
actin. The Figure displays the results from a representative
experiment of three independent cell culture experiments. Mean ±
SEM; n=5 well replicates. *, P < 0.05 and **, P < 0.01 versus
controls, ANOVA.
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Element (DARE) homeodomain protein binding sites. The binding

sites for LHX3, a LIM-homeodomain transcription factor, were

found at nt -293 and -572. Two GnRH Receptor Activating

Sequence (GRAS) elements known to mediate Suppressor of

Mothers Against Decapentaplegic (SMAD) and Forkhead box L2

(FOXL2) binding in mammals, were identified at nt -454 and -1428,

and two binding sites for Activating Protein 1 (AP1) were observed

at nt -507 and -735. In addition, three Sequence Underlying

Responsiveness to GnRH (SURG) – 2 elements (SURG2) were

detected at nt -720, -1355, and -1926, which are also AP1 binding

sites. A SURG1, an element that was previously reported as

interacting with transcription factors such as OCTamer binding

transcription factor 1 (OCT1 formally named POU2F1) and

Nuclear Factor Y (NFY), was present at nt -1655. These elements

were also identified in the promoter sequence of the Japanese eel

gnrhr2: a CRE next to the first exon (at nt -114) as in the European

eel, but also an additional CRE at -659; two DARE at nt -165 and

-1257, two GRAS at nt-350 and -1317, two AP1 at nt -403 and -634,

as in the European eel; a single LHX3 at nt -472 corresponding to

the second one of the European eel; a SF1 but located further away

from the first exon, at nt -604, as compared to the European eel;

three SURG2 at nt -619, -1250 and -1815, and a SURG1 at nt -1544,

as in the European eel.
3.6 Comparison of transcription binding
sites in promoter region of eel gnrhr2 and
other species gnrhr

The promoter regions of gnrhr2 from the European eel and the

Japanese eel were compared to those of gnrhr2 from other teleosts

(zebrafish and medaka) and of gnrhr1 from human and mouse. The

distribution of consensus transcription factor binding elements

identified in these promoter regions are schematically illustrated

in Figure 6, including CRE, SF1, DARE, LHX3, GRAS, AP1, as well

as SURG1 and SURG2. The sequence alignments of predicted

response elements within the gnrhr promoter regions among

selected species, with their relative positions, are presented

in Figure 7.
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Among these predicted response elements, a CRE site was

found in each species examined, with an additional one in the

Japanese eel. The CRE was located just upstream of exon 1 in the

two eel species, as in mammals, while it was positioned more

distantly in zebrafish and medaka, at a location corresponding to

that of the second CRE of the Japanese eel. A SF1 was retrieved in

the promoter of each species investigated.

In the mouse promoter, several binding elements overlap

(SURG1, DARE and LHX3), while we found them separated in

other species. SURG1 and SURG2, which were originally identified

in gnrhr promoter in mammals, were also detected in teleost

species. A single SURG1 element was located in all analyzed

teleost promoters, whereas multiple SURG2 elements were found.

We retrieved DARE in the proximal region of the promoter in

human as well as in the European and Japanese eels; an additional

DARE was also found in a more distant region of the promoter in

both eel species; in zebrafish, a DARE was at a position possibly

corresponding to the second DARE of the eels, while no DARE was

retrieved in medaka. Concerning LHX3, it was present in all species,

with an additional one in teleosts (European eel, zebrafish

and medaka).

As previously shown in the mouse gnrhr1 promoter, the GRAS

motif was consistently detected in all examined species, with two

GRAS found in both eels. The single GRAS motif found in the

proximal region of the promoter in medaka may correspond to the

first one of the eels, while the one found more distantly in the

zebrafish may correspond to the second one of the eels. Repeated

AP1 motifs appeared frequently across species, with two sites

observed in all analyzed teleosts, and three sites in human.
4 Discussion

4.1 High conservation of gnrhr promoter
response elements between teleosts and
mammals

The response elements characterized in the eel gnrhr2

promoters are similar to the major ones involved in the tissue-
FIGURE 4

Schematic representation of the European eel gonadotropin-releasing hormone receptor 2 (gnrhr2) gene and its encoded protein structure. The
European eel gnrhr2 gene, retrieved from genome assembly GCA_013347855.1, spans 9,860 bp on chromosome 16 (NC_049216) and consists of
three exons and two introns. The main transcript (XM_035396496) encodes a 435-amino acid GnRHR2 protein (XP_035252387). The gene structure
is shown in the upper panel, with exon numbers indicated. The corresponding GnRHR2 protein structure is illustrated below, showing the seven
transmembrane domains (TM1–TM7), the three extracellular loops (EL1–EL3), and the three intracellular loops (IL1–IL3). Exon-protein domain
correspondence is indicated by dotted lines. Similar genomic structure was found in the Japanese eel, with retrieved gnrhr2 gene sequence on
chromosome 16 (CM_045898) from genome assembly GCA_025169545.1.
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specific activity, and in the response to regulatory factors, for

mammalian gnrhr1 promoters in the pituitary gonadotroph cells [

(78–80); for review (77)]. We also identified them in the gnrhr2

promoter of two other teleost model species, zebrafish and medaka.

This suggests a high evolutionary conservation of the molecular

mechanisms underlying gnrhr gene expression in gonadotroph

cells, even between distant species like teleosts and mammals.

These shared transcription factor binding motifs include CRE,

SF1, DARE, LHX3, GRAS, AP1, SURG1 and SURG2, which have

been shown to mediate either basal or regulated expression of gnrh1

in mammal species. Notably, in rodents, mouse and rat, SF1 in the

proximal promoter region is essential for gnrhr1 gonadotroph-
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specific expression and basal transcriptional activity (78, 80). This

same factor was also identified in the eel and other teleost gnrhr2

promoters, suggesting conserved pituitary-specific regulation.

Various homeobox factor binding sites, which participate in the

gonadotroph-specific expression of the mammalian gnrhr1

promoter, are also found in the eel and other teleost gnrhr2, such

as SURG1, which binds OCT1 and NFY, both involved in directing

basal expression and GnRH-stimulated expression on the gnrhr

gene (75). In vivo chromatin immunoprecipitation (ChIP) assays

confirmed that OCT1 and NFY bind to the SURG1 element in the

mouse, and this binding increases in response to GnRH stimulation

(75). In the mouse, SURG2 overlaps with a conserved AP1
FIGURE 5

Predicted transcription factor binding sites in the 5′-flanking region of the European and Japanese eel gonadotropin-releasing hormone receptor 2
(gnrhr2) genes. Promoter analysis of the gnrhr2 gene revealed multiple putative transcription factor-binding sites within ~2.0 kb upstream of the
ATG start codon. A schematic representation of the gnrhr2 promoter response elements, with some potential binding factors, in both eel species, is
provided in the upper panel. The exon 1 coding region is depicted as a dark grey box on the right. The alignment of gnrhr2 promoter sequences
between European eel and Japanese eel is shown in the lower panel, with identified response elements boxed in red, and the start codon of exon 1
boxed in black. AP1, activating protein 1; CRE, cAMP response element; CREB, CRE binding protein; DARE, downstream activin regulatory element;
FOXL2, Forkhead box L2; GRAS, GnRH receptor activating sequence; LHX3, LIM/homeobox protein LHX3 binding site; NFY, Nuclear Factor Y; OCT1,
Octamer binding transcription factor 1; SF1, steroidogenic factor 1; SMAD, Suppressor of mothers against decapentaplegic; SURG, sequence
underlying responsiveness to GnRH.
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FIGURE 6

Comparison of predicted transcription factor binding sites in gonadotropin-releasing hormone receptor (gnrhr) promoters between European and
Japanese eels and other teleost and mammals. The figure displays a schematic representation of promoter response elements of gnrhr1 from
mouse and human and of gnrhr2 from European eel, Japanese eel, zebrafish and medaka. For gene references, see Materials and Methods. The
exon 1 coding region is depicted as a dark grey box on the right. The dotted line in the mouse promoter indicates a region with several binding
elements overlapping. AP1, activating protein 1; CRE, cAMP response element; DARE, downstream activin regulatory element; GRAS, GnRH receptor
activating sequence; LHX3, LIM/homeobox protein LHX3 binding site; SF1, steroidogenic factor 1; SURG, sequence underlying responsiveness to
GnRH.
FIGURE 7

Comparison of predicted transcription factor binding motif sequences in gonadotropin-releasing hormone receptor (gnrhr) promoters between
European and Japanese eels and other teleost and mammals. Multiple sequence alignments of predicted response elements were performed using
promoter sequences of gnrhr1 from mouse, and human, and gnrhr2 from European eel, Japanese eel, zebrafish, and medaka. Each panel displays a
typical response element. When a response element is present in multiple locations in a promoter, the numbers following species names (e.g.,
European eel.1, Japanese eel.2) correspond to the relative positions, upstream of the ATG start codon. AP1, activating protein 1; CRE, cAMP response
element; DARE, downstream activin regulatory element; GRAS, GnRH receptor activating sequence; LHX3, LIM/homeobox protein LHX3 binding site;
SF1, steroidogenic factor 1; SURG, sequence underlying responsiveness to GnRH.
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consensus binding site and the AP1 binding site is essential for

gnrhr gene expression under GnRH stimulation, while GRAS is a

composite regulatory element whose functional activity depends on

the binding of Smad proteins, AP1, and FOXL2 and mediates both

activin and GnRH responsiveness (75). We identified a GRAS motif

in the gnrhr promoters of all analyzed species, suggesting a

potentially conserved regulatory mechanism across vertebrates.

LHX3 binding sites, which directly activate the mouse gnrhr1

promoter through an ATTA core motif (76, 81), were also found

in the eel and other teleost gnrhr2 promoters. The DARE motif

contains TAAT/ATTA motifs, which were shown to bind

homeodomain transcription factors such as LHX3 in the mouse

gnrhr1 promoter (82). DARE was also identified in the present

study in the promoters of gnrhr1 in human, and gnrhr2 in European

eel, Japanese eel, and zebrafish, indicating a conserved regulatory

site across vertebrates.

In the present study, the identification of response elements in

gnrhr1 promoter of mammalian species (human and mouse) and in

gnrhr2 promoter of teleost species (eels, zebrafish and medaka) show

a conservation of key regulatory elements in the gnrhr promoter in

the osteichthyan lineage, which encompass actinopterygians (such as

teleosts) and sarcopterygians (such as mammals). This reveals an

ancient origin and evolutionary conservation of transcriptional

control mechanisms governing gnrhr expression by pituitary

gonadotroph cells. Furthermore, the identification of these

conserved elements in eel supports this basal teleost as a valuable

comparative model for understanding the evolution of vertebrate

reproductive endocrinology. Further comparative analyses in other

lineages such as chondrichthyans (cartilaginous fishes) and

cyclostomes (jawless vertebrates) would allow the elucidation to

whether this regulatory system is already present in early vertebrates,

before the emergence of jawed vertebrates.
4.2 In vitro and in silico insights for
estrogen-specific stimulation of eel
pituitary gnrhr2 expression

In our present study, we showed a stimulatory effect of E2, as

well as of T, on gnrhr2 mRNA levels in primary culture of eel

pituitary cells. This effect was estrogen-specific, as no such a

stimulatory effect was induced by a non-aromatizable androgen

11-KT and the stimulatory effect of T was abolished in the presence

of an aromatase inhibitor, fadrozole.

In various teleost species, sex steroids also modulate pituitary

responsiveness to GnRH and regulate gnrhr mRNA levels. A study

in primary cultured pituitary cells also reported an increase in

pituitary gnrhr3 but not gnrhr1 mRNA levels in tilapia after E2

exposure while T was not tested (41). In the black porgy, after both

E2 and T treatments, gnrhr1 (gnrhr2bb) mRNA levels were

increased in dispersed pituitary cells, while 11-KT did not change

them, suggesting that in this species like in the eel, the stimulatory

effect of T on gnrhr expression may be mediated by aromatization,

thus being estrogen-specific (47). Another in vitro study in Atlantic

cod compared the effects of E2, T and dihydrotestosterone DHT [a
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non-aromatisable androgen but whose metabolite 3b-diol, also
named 5a-androstane-3b, 17b-diol, binds to estrogen receptor b
(83, 84)] and demonstrated that all increased pituitary gnrhr2a

mRNA levels, without affecting gnrhr1b (85). A recent study, using

ex vivo whole pituitaries of Atlantic salmon, reported that pituitary

gnrhr2bba expression is stimulated by both E2 and 11-KT,

indicating both estrogenic and androgenic effects (86).

In vivo studies in teleosts also reported that E2 treatment

induces an increase in pituitary gnrhr mRNA levels. In tilapia,

both gnrhr1 and gnrhr3 mRNA levels increase after E2 treatment

(41), while in black porgy, only gnrhr1 (gnrhr2bb) increases (47, 87).

The effect of T was tested in Atlantic salmon, showing a stimulatory

effect on the pituitary transcripts of gnrhr4 (45). In contrast, in their

study on endocrine disrupting chemicals in the hermaphroditic fish

Kryptolebias marmoratus, Rhee and colleagues noted that exposure

to E2 in water induces a decrease in gnrhr mRNA levels (88).

In rat, E2 treatment of adult female pituitary cells induces an

increase in GnRHR number as well as on GnRH-induced LH

release (89–91). In ewe, E2 is also able to increase GnRHR

number (92) and gnrhr1 mRNA levels by primary cultures of

pituitary cells (93, 94). In contrast, E2 has no effect on gnrhr1

mRNA levels expressed in mouse gonadotrope cell line, LbT2 (95).
The positive in vitro effect of E2 or of T after aromatization on

gnrhr2 transcripts in the European eel supports our previous in vivo

data showing the need to use sex steroids to sensitize the eel

pituitary LH response to GnRH (53). This pathway is likely

involved in the increase of gnrhr2 expression observed during eel

sexual maturation (56) via the positive feedback of sex steroids.

Despite the strong estradiol-specific regulation of eel gnrhr2, we

did not evidence a typical estrogen response element (ERE) within the

eel gnrhr2 proximal promoter region that we have investigated. This

aligns with findings inmammals, in which canonical ERE could not be

identified in the gnrhr1 promoter, and thus would not mediate E2

regulatory effect on gnrhr1 expression. Instead, non-classical pathways

appear to mediate E2 action on gnrhr1 transcription across

mammalian species and cell types [ (20); for reviews (77, 96)]. In

human ovarian (OVCAR3) and breast (MCF7) cell lines, it was shown

that E2-activated ERa represses gnrhr1 gene transcription via an

indirect mechanism involving CBP (CREB binding protein) and AP1

(73). A similar mediation by CREB was also demonstrated to underlie

the stimulatory effect of E2 on gnrhr expression by ovine pituitary cells

(20).We identified CRE andAP1 in the eel gnrhr2 promoter, as well as

in other teleost gnrhr2 promoters, both response elements implicated

in E2 signaling in mammalian gnrhr1 promoters. We suggest that the

stimulatory effect of E2 on gnrhr2 expression, observed in our study,

may be mediated via these two response elements. These findings on

estrogen-specific stimulation of gnrhr2 expression levels in eel

pituitary cells contribute significantly to the understanding of the

conservation of the regulation of gnrhr by estrogens across vertebrates.

The increase in gnrhr expression further highlights the multiple

targets of the steroid positive feedback on brain-pituitary

gonadotropic axis in the eel, together with the previous

demonstration of the stimulatory effects of gonadal steroids on

the synthesis of brain GnRH and pituitary LH. We suggest that the

positive regulation by E2 of gnrhr2 expression is exerted on LH cells.
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Differently from the situation in mammals and other tetrapods,

where both gonadotropins are produced by the same pituitary cells,

LH and FSH are expressed by distinct pituitary cells in teleosts,

including in the eel as shown by in situ hybridization (ISH) (97).

Furthermore, a recent study proposed a dual neuroendocrine

control of gonadotropins in teleosts, with GnRH acting as LH

releasing hormone while cholecystokinin as FSH releasing hormone

(98). Future experiments, such as double ISH or ISH coupled to

immunohistochemistry on dispersed pituitary cells, an approach

already set up for DA receptors in the European eel (99), could

investigate which pituitary gonadotroph cell(s) express gnrhr2.
4.3 Lack of evidence for progesterone and
cortisol regulation of eel pituitary gnrhr2
expression

In the European eel, we observed no direct effect of

progesterone on gnrhr2 expression in vitro. To our knowledge,

the unique other study regarding the effect of progestogens on gnrhr

expression in teleosts was performed in tilapia (41). The authors

demonstrated that a progestin, 17a, 20b-dihydroxy-4-pregnen-3-
one (DHP), could positively regulate gnrhr1 and gnrhr3 mRNA

levels by primary cultures of pituitary cells, while only those of

gnrhr1 are elevated in vivo. In contrast, in ewe, an inhibitory effect

of progesterone on basal or E2-induced gnrhr1 expression by

primary culture of pituitary cells was reported in vitro (92, 94,

100). In vivo, progesterone had no effect on the basal number and/

or mRNA levels of pituitary GnRHR of ovariectomized ewes (18,

101) and cows (102), but reduced their E2-induced number [ewes

(101); cows (102)]. In contrast, combined treatment of hypogonadic

(hpg) female mice with GnRH, E2 and progesterone elevated the

pituitary GnRHR number to the same levels as normal mice (103)

supporting a positive synergistic effect of progesterone. Further

studies may investigate hormone interactions in the regulation of

eel gnrhr2 transcript levels.

A functional progesterone response element (PRE) has been

characterized in human gnrhr1 promoter, which mediates the

inhibitory effect of progesterone in human gonadotroph cells via

progesterone receptor isoforms PR-A and PR-B (104). Such a PRE

binding site has not been found in the eel gnrhr2 promoter, possibly

explaining the absence of progesterone effect on gnrhr2 transcript

levels. It should be noted, however, that other signaling mechanisms

may mediate the regulatory effects of progesterone, as no PRE were

identified in gnrhr1 promoter of some mammalian species such as

rodents [for review (77)]. Overall, these findings reveal some

species-specific patterns in the hormonal regulation of gnrhr

genes, and indicate the importance of promoter structure in

hormone responsiveness.

In our study, cortisol did not induce any change in mRNA levels

of pituitary gnrhr2 in eel pituitary cells. In contrast, one other recent

in vitro study in a teleost, the Atlantic cod, reports an induction of

gnrhr2a, but not gnrhr1b, by cortisol (85). In mammals, cortisol has

no effect on the basal number of GnRHR and/or gnrhr1 mRNA
Frontiers in Endocrinology 11
levels in vitro in ewe (105) and in vivo in castrated sheep (106, 107).

However, in vivo it can reduce the stimulatory effect of E2 on the

number and mRNA levels of GnRHR in castrated sheep (106, 107),

while it increases the stimulatory effect of GnRH on GnRHR

number in intact male rats (108). Treatment of mouse

gonadotrope cell line, LbT2, with dexamethasone can increase

gnrhr1 mRNA levels only in combination with E2 (95). As stress

may largely affect fish reproduction, future studies may further

address the interaction between corticosteroids, sex steroid and

GnRH in the regulation of GnRHR expression in teleosts.

Cortisol response elements, typically referred to as glucocorticoid

response elements (GREs), are essential DNA sequences that mediate

the transcriptional effects of glucocorticoids via the direct binding of

the glucocorticoid receptor (GR). We did not identify a classical GRE

in the promoter of eels nor other teleost gnrhr2 genes, in line with the

current data in mammals. The lack of GREs in the gnrhr1 promoter

across mammalian species suggested more complex mechanisms for

glucocorticoid actions. Thus, in the mouse, whose gnrhr1 promoter

does not contain a GRE, the transcriptional regulation of the gnrhr1

gene by glucocorticoid is ensured by the recruitment of GR to the AP1

region of this promoter (109, 110).
4.4 In vitro and in silico insights for activin
inhibition of eel pituitary gnrhr2 expression

In the European eel, we previously showed that activins

oppositely regulate in vitro fshb and lhb expression by pituitary

cells, with a stimulatory effect on fshb and an inhibitory effect on lhb
mRNA levels (68). Besides their production by the gonads,

localization of activins has been demonstrated within the

pituitary, in various cell types [gonadotrophs in mammals (111);

somatotrophs in teleosts (112)], suggesting paracrine/autocrine

actions at the pituitary level. Activins are known to stimulate FSH

production and release from gonadotrope cells in teleosts as in other

vertebrates including mammals (113, 114).

In the present study, we show that both activins A and B are

able to downregulate gnrhr2mRNA levels by primary cultures of eel

pituitary cells. Few data are available in other teleosts. A recent

study using ex vivo whole pituitaries of Atlantic salmon post-smolts,

exposed to stimulatory environmental conditions that promote

sexual maturation (continuous light and 16 °C), showed that in

immature but not maturing males, activin A stimulates the

expression of gnrhr2bba (86), the only paralog out of six being

stimulated during precocious male parr maturation (39). No effect

of activin A on gnrhr2bba expression is observed in immature males

exposed to non-stimulatory conditions (86).

Early studies showed that activin A stimulates the synthesis rate

(as assayed by density shift technique) of GnRHR by rat pituitary

cell cultures (33). This stimulatory effect of activin A on GnRHR is

exerted at the transcriptional level as demonstrated in the mouse

gonadotrope cell line, aT3-1, using gnrhr1 mRNA assay, run-off

experiments, and transfection experiments of gnrhr1 promoter/

luciferase reporter gene (34). In contrast, in the ovariectomized
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ewes, activin A decreases the number of GnRH-R (as assayed by the

binding of a GnRH agonist) by primary cultures of pituitary cells

but has no effect on their increase induced by E2 (115). This

suggests species-specific variations in the positive or negative

effects of activin on GnRHR in mammals, as in teleosts.

Extensive promoter studies in mice have identified GRAS as a

critical regulatory element mediating activin-induced transcriptional

activation of gnrhr1 in gonadotrope-derived cell lines such as aT3–1
and LbT2 cells (79, 81). GRAS functions as a composite enhancer,

which recruits SMAD2/3/4 and cooperates with factors like AP1,

FOXL2, SF-1 to modulate gene expression via overlapping or adjacent

binding motifs [ (74, 79, 116); for review (77)]. We identified GRAS

elements in gnrhr promoters of each mammalian and teleost species

analyzed in this study. In the gnrhr2 promoters of the European and

Japanese eels, we found two putative GRAS motifs, including one in

the proximal region near to AP1 binding sites, suggesting a conserved

activin-responsive promoter structure.

DARE further enhances responsiveness to activin, coupled with

GRAS forming a functionally cooperative “activin-responsive unit

(ARU)” within the mouse gnrhr promoter to drive transcriptional

activation (81). DARE contains TAAT/ATTA motifs, which serve

as binding sites for homeodomain transcription factors. For

example, LHX3 has been shown to bind directly to DARE and

activate transcription of mouse gnrhr1 when overexpressed (81).

Additionally, homeodomain proteins such as Msx1 and Dlx3 also

interact with TAAT-rich regions to regulate gnrhr1 transcription

during gonadotroph development, with Dlx3 acting as an activator

and Msx1 as a repressor, in the mouse (117). We found a DARE in

the eel gnrhr2 promoter, but with “TAAT/ATTA” separated by only

2 bp rather than 4 bp spacing of murine DARE. As for the eel, we

observed a 2bp spacer for the DARE motif of the human gnrhr1

promoter. In Cherrington et al’s study (81), increasing the spacer

length between the tandem TAAT/ATTA motifs from 4 to 5 or 10

bp reduced gnrhr1 promoter activity, but no data are available

concerning a shorter space. Whether this shorter spacing affects

transcription factor binding or promoter activity remains to

be elucidated.

Activin, which we previously showed to stimulate fshb, while
inhibiting lhb, in the European eel (68), exerts an inhibitory effect

on gnrhr2 expression by eel pituitary cells. As discussed above for

the effect of steroids, the parallel regulation of lh and gnrhr2

expression by activin supports the hypothesis that the expression

and regulation of gnrhr2 concerns mainly LH cells.
5 Conclusion and perspectives

This study gives new information on the regulation of eel

pituitary gnrhr2 expression and provides the first insight into the

sequence and response elements of gnrhr2 promoter in teleosts. Our

results show that while activins inhibit gnrhr2 expression, gonadal

steroids exert a positive feedback, mediated by estradiol, on pituitary

sensitivity to GnRH in the eel. This may account for the increase in

pituitary gnrhr2 mRNA levels reported in female and male eels

experimentally matured under gonadotropic treatments (56). This
Frontiers in Endocrinology 12
increase in gnrhr expression further highlights the multiple targets of

the steroid positive feedback on brain-pituitary gonadotropic axis in

the eel, in line with the regulatory mechanisms of the ovulatory LH

surge in mammals. Furthermore, the analysis of the eel gnrh2

promoter sequence suggests the absence of a classical ERE and the

involvement of non-classical response elements such as CRE and

AP1, similarly to the situation in mammals. This regulation by

estradiol of GnRH receptivity would be an ancient and conserved

mechanism across vertebrates. Currently, final oocyte maturation and

ovulation in female eels, matured after chronic gonadotropic

treatments, are induced by the administration of a progestogen,

acting directly at the ovarian level (118, 119). The present finding

of the increase in eel pituitary sensitivity to GnRH as a result of the

estradiol positive feedback, further supports the use of alternative

treatments to induce an endogenous ovulatory LH peak, by the

administration of GnRH- agonist together with dopamine-

antagonist. Future studies should also aim at deciphering upstream

regulation of endogenous GnRH release in the eel, such as

pheromones and environmental factors. This study in the eel, a

basal teleost representative, contributes to raise basic and applied

knowledge on the regulation and evolution of pituitary GnRH

receptivity in vertebrates.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The animal study was approved by French Cuvier Ethic

Committee, Museum National d’Histoire Naturelle, France. The

study was conducted in accordance with the local legislation and

institutional requirements.
Author contributions

C-JL: Data curation, Formal analysis, Investigation,

Methodology, Writing – original draft, Writing – review &

editing. KR: Data curation, Formal analysis, Investigation,

Methodology, Writing – original draft, Writing – review &

editing. C-FC: Funding acquisition, Supervision, Writing – review

& editing. SD: Conceptualization, Formal analysis, Funding

acquisition, Supervision, Validation, Writing – original draft,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported

by grants from the French National Research Agency, France
frontiersin.org

https://doi.org/10.3389/fendo.2025.1673260
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Lin et al. 10.3389/fendo.2025.1673260
Taiwan ANR NEMO N° ANR-14-CE02-0020, the Yushan Scholar

Program MOE, Taiwan, and European Community COST Action

EELSUPPORT n°CA22163.
Acknowledgments

We thank E Ryckelynck and his team from Nodaiwa (Paris,

France) for their kind cooperation. We are grateful to Dr MA

Virmani (London, UK) for English correction.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Frontiers in Endocrinology 13
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
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