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Eel species are basal teleosts with a unique life cycle including an arrest of sexual
maturation before the reproductive oceanic migration. Our early studies showed
that this blockade results from a deficient production of pituitary gonadotropins,
due in part to a low responsiveness to gonadotropin-releasing hormone (GnRH).
Three GnRH receptors have been identified in the eel, among them gnrhr2 is the
main pituitary receptor whose expression increases during the sexual maturation
induced by gonadotropic treatments. We investigated the role of gonadal
hormones in the feedback regulation of gnrhr2 expression in the eel. The effects
of steroids and activins were tested in vitro on primary cultures of eel pituitary cells
and gnrhr2 transcripts measured by qPCR. In silico analysis of eel gnrhr2 promoter
was performed to predict transcription factor binding sites and comparisons were
made with gnrhr promoters from other teleosts and mammals. Estradiol and
testosterone strongly and dose-dependently increased gnrhr2 transcript levels as
measured by gPCR. This stimulatory regulation was not observed with a non-
aromatizable androgen, 11 keto-testosterone, and the effect of testosterone was
abolished in the presence of an aromatase inhibitor, fadrozole, indicating an
estrogen-specific positive control of eel gnrhr2 expression. Other steroids,
progesterone and cortisol, had no effect on gnrhr2 expression. Gonadal peptides,
activins A and B, were also tested, and showed an inhibitory effect on gnrhr2
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expression. Our results show that gonadal steroids exert a positive feedback,
mediated by estradiol, on pituitary sensitivity to GnRH in the eel, in line with the
regulatory mechanisms of the ovulatory luteinizing hormone (LH) surge in
mammals. While investigation on gnrhr promoters is significantly lacking outside
mammals, in silico analysis of the eel gnrhr2 promoter allowed us to infer
transcription factor binding sites potentially involved in the regulation of gnrhr2
expression. Comparison was made with gnrhr promoters from other teleosts and
mammals to discuss their evolutionary conservation. This study in the eel, a basal
teleost representative, contributes to our understanding of the regulatory
mechanisms of the complex eel life cycle and to raise basic knowledge on the
regulation and evolution of pituitary GnRH receptivity in vertebrates.

GnRH receptor, promoter, sex steroids, activins, pituitary cells, Anguilla,
teleosts, mammals

1 Introduction

In vertebrates, gonadotropin-releasing hormone (GnRH) is the
main brain actor controlling the reproductive gonadotropic axis
(hypothalamus-pituitary-gonad axis) [for review (1)]. This
neurohormone acts on the pituitary via specific G-protein coupled
receptors, gonadotropin-releasing hormone receptors (GnRHR), to
induce the synthesis and release of gonadotropins, luteinizing
hormone (LH) and follicle-stimulating hormone (FSH). In some
mammals, two receptor genes (gnrhrl and gnrhr2) have been
characterized. However, in most mammalian species, no functional
GnRHR?2 is produced due to disruption of gene coding sequence and
in the mouse Mus musculus, the gnrhr2 gene is completely absent [for
review (2)]. In mammals, GnRHR1 has been largely explored for its
involvement in the regulation of pituitary gonadotropins, while
GnRHR?2 is thought to exert other functions at the brain and
peripheral levels [for reviews (2, 3)]. For instance, recent studies
in pigs, comparing gnrhr2 knockdown line with control
littermates, reported a potent direct action of GnRH2 on gonadal

Abbreviations: 11-KT, 11-ketotestosterone; AP1, activating protein 1; CBP,
CREB-binding protein; CRE, cAMP response element; CREB, CRE-binding
protein; DA, dopamine; DARE, downstream activin regulatory element; DHP,
170, 20B-dihydroxy-4-pregnen-3-one; DHT, dihydrotestosterone; E2, estradiol;
ERE, estrogen responsive element; F, cortisol; FOXL2, forkhead box L2; FSH,
follicle-stimulating hormone; GnRH, gonadotropin-releasing hormone; GnRHR,
gonadotropin-releasing hormone receptor; GR, glucocorticoid receptor; GRAS,
GnRH receptor activating sequence; GRE, glucocorticoid response element; hCG,
human chorionic gonadotropin; LH, luteinizing hormone; LHX3, LIM/
homeobox protein LHX3 binding site; NFY, nuclear factor Y; OCT1, octamer
binding transcription factor 1; P, progesterone; PR, progesterone receptor; PRE,
progesterone responsive element; SF1, steroidogenic factor 1; SMAD, suppressor
of mothers against decapentaplegic; SURG, sequence underlying responsiveness

to GnRH; T, testosterone.

Frontiers in Endocrinology

steroidogenesis and gametogenesis in both males and females, without
affecting gonadotropins [for review (4)].

In 1997, de Roux and collaborators described the first mutations
in the human GnRHRI in a family with idiopathic hypogonadotropic
hypogonadism, characterized by delayed puberty, low gonadotropin
and sex steroid levels (5). During childhood, the gonadotropic axis is
quiescent, involving a low responsiveness of pituitary gonadotroph
cells to GnRH, which partly reflects a reduced expression of the
GnRHRI [for review (6)]. In mice, induced GnRHR1 mutations led to
a phenotype similar to the clinical syndrome of hypogonadotropic
hypogonadism (7, 8). Ontogeny of pituitary GnRHR1 in male and
female rats revealed that its number or expression was maximal in the
prepubertal period, when serum, pituitary content and expression
levels of both gonadotropins are elevated (9-11).

A number of investigations in mammals reported positive and
negative effects of sexual steroids on pituitary responsiveness to
GnRH. Orchidectomy and ovariectomy in rats induce drastic
increase in pituitary GnRHR number (12, 13) and mRNA levels
(14), suggesting a negative feedback of gonadal hormones.
Similarly, in castrated adult male Rhesus monkeys Macaca
mulatta, an increase of pituitary gnrhr mRNA levels was observed
(15). However, species-differences exist in mammals and in contrast
to rats and Rhesus monkeys, gonadectomy in mice induces a
decrease in GnRHR in both sexes indicating a positive feedback
of gonadal steroids (16, 17). No effect of gonadectomy was reported
on either the number (18) or the mRNA levels (19) of GhRHR
in ewe.

In the female of mammalian species, including mouse, rat, ewe,
cow and monkey, estradiol (E2) is considered a major positive
regulator of preovulatory LH surge by increasing both pituitary
sensitivity to GnRH and GnRH release [for review (20)]. During the
estrous cycle, in rat, a positive correlation exists between circulating
concentrations of E2 and GnRHR number (21, 22) and mRNA
levels (14, 23). Similarly, in the ewe, maximal concentrations or
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mRNA levels of GnRHR are observed prior to LH surge when
plasma E2 concentration are rising (24-26). Early studies
demonstrated that E2 stimulates the expression and number of
GnRHR by a direct pituitary effect as shown on primary cultures of
pituitary cells in rat (27, 28), mouse (29) and sheep (20, 30) [for
review (31)].

Activins are peptide hormones produced by the gonads,
pituitary and other organs, which were first identified in porcine
follicular fluid for their stimulatory role on FSH release by pituitary
gonadotrophs (32). Beside their direct stimulatory role on FSH
expression and release, activins were also shown to increase the
synthesis of GnRHR by cultured rat pituitary cells (33) and the
expression of gnrhr by the mouse gonadotroph cell line alphaT3
(34). This supports a role of activins in the pituitary sensitivity to
GnRH [for review (35)].

In teleosts, the pioneering studies by Breton and collaborators
(36) revealed the presence of a hypothalamic gonadotropin-
releasing factor in common carp Cyprinus carpio, and Sherwood
and colleagues (37) identified the GnRH sequence in chum salmon
Oncorhynchus keta. Since then, teleost GnRH and GnRHR have
been and still are the subject of extensive ongoing investigation [for
review (38)]. While only one or two GnRHR are present in
mammals, up to six gnrhr gene paralogs have been identified in
some teleosts such as the Atlantic salmon (39). A recent
phylogenetic analysis of vertebrate GnRHRs by Ciani and
collaborators divides them into two main types, GnRHR1 and
GnRHR?2, each divided into further subtypes (39). At sexual
maturation, an increase of the pituitary expression of gnrhr was
reported in various teleost species, such as in European seabass
Dicentrarchus labrax (40), Nile tilapia Oreochromis niloticus (41),
pejerrey Odontesthes bonariensis (42), Atlantic cod Gadus morhua
(43), Atlantic salmon (39, 44, 45), and chub mackerel Scomber
japonicus (46). Our previous studies in the black porgy
Acanthopagrus schlegeli showed a specific increase of a pituitary
GnRH receptor (gnrhrl, corresponding to gnrhr2bb in Ciani’s
nomenclature) during sexual maturation, as well as under in vivo
treatments with human chorionic gonadotropin (hCG) or sex
steroids (47). We also demonstrated a stimulatory effect of sex
steroids on gnrhrl (gnrhr2bb) expression by black porgy pituitary
cells in vitro (47).

Among teleosts, Anguilla species are of special phylogenetic and
biological interest. As members of the group of elopomorphs, they
are extant representatives of basal teleosts. The eels, Anguilla genus,
encompass about nineteen species and subspecies, distributed in the
Indian, Pacific and Atlantic Oceans, and all possessing a peculiar life
cycle with a reproduction in oceanic area and a juvenile growth in
continental watersheds [for review (48)]. Future genitors, named
silver eels, migrate downstream towards the ocean, but remain
blocked at prepuberty as long as the oceanic migration is prevented
[for review (49)]. Experimental sexual maturation of female and
male silver eels can be induced by gonadotropic treatments, as first
demonstrated by the work of Fontaine and coworkers in the
European eel, Anguilla anguilla (50, 51). Such gonadotropic
treatments, fish pituitary extract in the female and human
chorionic gonadotropin in the male, are currently used to induce
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experimental maturation in various eel species, and the biological
cycle has been successfully closed in the case of the Japanese eel, A.
japonica [for review (52)]. As shown by our previous studies in the
European eel, the prepubertal blockade is due to a deficiency in
pituitary gonadotropin production, itself resulting from a dual brain
control: firstly, a teleost species-specific strong inhibition by
dopamine (DA); and secondly, similar to the situation in
mammals before puberty, a lack of stimulation by GnRH,
including both a low production of GnRH and a low pituitary
sensitivity to GnRH [ (53); for review (54)]. A triple treatment with
sex steroids (E2 or testosterone, T), GnRH agonist and DA
antagonist is thus able to stimulate pituitary LH synthesis and
release, and subsequent ovarian vitellogenesis (53, 55).

Three GnRH-R genes have been identified by Pefiaranda and
colleagues in the European eel and named gnrhrla, gnrhrlb and
gnrhr2 (56). During experimental sexual maturation induced by
gonadotropic treatments, the expression of pituitary gnrhr2
(corresponding to gnrhr2b in Ciani’s nomenclature) largely
increases, suggesting a major role of this receptor in the
regulation of gonadotroph cells in male and female eels (56). The
increase in eel gnrhr2 expression may likely result from a positive
feedback by gonadal hormones, the production of which is
stimulated during experimental maturation [for review (49)].
Steroid hormones exert positive feedback on brain GnRH and
pituitary LH in the eel as shown by our early studies in A.
anguilla [ (57-62); for review (49)] as well as by investigations in
A. japonica (63, 64).

We recently investigated the regulation of gnrhr2 expression in
primary cultures of eel pituitary cells and showed inhibitory effects
of kisspeptins (65), neurokinin B (66) and gonadotropin-inhibitory
hormone (67). In the present study, we investigated the effects of sex
steroids, corticosteroid, as well as of activins, on the expression of
gnrhr2 by European eel pituitary cells in vitro. In order to get more
insights on the regulation of eel gnrhr2 expression, we performed in
silico analysis of the gnrhr2 proximal promoter in the European eel
to infer the presence of potential transcription factor binding sites.
Comparative analyses were made with the gnrhr2 promoters of the
Japanese eel (Anguilla japonica) and other teleost species (zebrafish
Danio rerio and medaka Oryzias latipes), as well as with the gnrhrl
promoters of two mammals (human Homo sapiens and mouse Mus
musculus). While investigations on gnrhr promoters are still lacking
outside mammals, the present study allowed us to raise the first data
on response elements potentially involved in the regulation of gnrhr
expression in teleosts. Comparison with gnrhr promoters in
mammals led us to infer some evolutionary conserved features
across vertebrates.

2 Materials and methods

2.1 Animals

Freshwater female European eels were at the prepubertal
“silver” stage, which corresponds to the last continental phase of
the eel life cycle, preceding the oceanic reproductive migration.
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Cloning, tissue distribution and primary cultures were performed
using female silver eels purchased from Gebr. Dil import-export BV
(Akersloot, The Netherlands) and transferred to MNHN, France.
Animals were anesthetized by cooling and then killed by
decapitation under the supervision of authorized person (KR, N°
R-75UPMC-F1-08) according to the protocol approved by French
Cuvier Ethic Committee (N°68-027). Pituitaries were collected in
cell serum-free culture medium (CM: Medium 199 with Earle’s salt
and sodium bicarbonate buffer, 100 U/ml penicillin, 100 pg/ml
streptomycin, 250 ng/ml fungizone; Gibco, Thermo Fisher
Scientific, Illkirch, France) just prior to dispersion (15 to 20 eel
pituitaries per cell culture).

2.2 Hormones and chemicals

Sex steroids (estradiol, E2; testosterone, T; 11-ketotestosterone,
11-KT; progesterone, P), cortisol (F), and aromatase inhibitor,
fadrozole, were all purchased from Sigma-Aldrich (Saint-Quentin
Fallavier, France). Recombinant human/mouse/rat activins A and B
were purchased from R and D Systems (Lille, France). The
recombinant human/mouse/rat activins used in our study have
high amino-acid identity with the eel ones, and we previously
showed that they were effective in stimulating fshf3 expression by
primary cultures of European eel pituitary cells (68). Sex steroids
and cortisol were dissolved in ultrapure ethanol (Sigma-Aldrich),
activins A and B in sterile calcium-free phosphate-buffered saline
(PBS) (Gibco), and fadrozole in dimethyl sulfoxide (DMSO, Sigma-
Aldrich) to prepare stock solutions that were stored at -20 °C.

2.3 Primary cultures of eel pituitary cells

Dispersion and primary cultures of pituitary cells were
performed using an enzymatic and mechanical method as
previously described (69). Briefly, pituitaries from 15 to 20 eels
per experiment were incubated at 25 °C in a solution of porcine type
II trypsin (Sigma-Aldrich) in PBS. After 1h, the trypsin solution was
replaced by a solution of DNase (Sigma-Aldrich) and soya bean
trypsin inhibitor (Sigma-Aldrich) for 30 min. Pituitaries were cut in
Imm slices using a Mcllwain Tissue Chopper (Thermo Fisher
Scientific), and then washed with PBS and mechanically dispersed
by repeated passages through a plastic transfer pipette (Falcon,
Thermo Fisher scientific, Illkirch, France). After estimating the
number of viable cells by Trypan Blue exclusion (Sigma-Aldrich),
cells were plated on 96-well plates (62,500 cells/well) pre-coated
with poly-L-lysine (Sigma-Aldrich). Cultures were performed in
culture medium (CM) at 18 °C under 3% CO, and
saturated humidity.

Treatments were started 24 h after the beginning of culture to
allow cell attachment (Day 0). Replicates of 5 wells for control and
each treated group were used. Stock solutions were diluted in CM
just before addition to the culture wells. The final concentration of
ethanol or DMSO in culture wells never exceeded 0.2%; control
wells were treated with the same concentration of ethanol and/or
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DMSO in CM. Culture medium was changed and treatment added
to the cells on Day 0, Day 3, and Day 7. Cultures were stopped on
Day 8. The effects of treatments were tested in three independent
experiments performed on different cell preparations from different
batches of eels. Similar responses were observed in the
independent experiments.

Total RNA was directly extracted in wells using the Cell-to-
c¢DNA II Kit (Ambion, Thermo Fisher scientific, Illkirch, France)
according to the manufacturer’s recommendations. Cells were
washed with PBS and lysed with Cell Lysis IT Buffer (80 pl/well).
The lysates were digested with RNAse-free DNase I (Roche,
Thermo Fisher scientific, Illkirch, France). Four pl of RNA
solution of each sample was then reverse transcribed with a
SuperScript IIT First Strand ¢cDNA Synthesis Kit (Invitrogen,
Thermo Fisher scientific, Illkirch, France). The samples obtained
were stored at —20 °C until qPCR.

2.4 Real-time quantitative PCR

Gene specific primers were previously designed based on the
nucleotide sequence of the European eel gnrhr2 (56)] and fB-actin
(70) cDNA, the latter being used as reference gene. Basal gnrhria
and gnrhr1b expressions were below the threshold of detection in
primary cultures of eel pituitary cells (65-67), and none of the
treatments tested in the present study could induce their expression
above this limit. For this reason, qPCR data were not reported for
these two genes.

qPCRs were prepared with 4 pl of diluted cDNA template, 2 pl
of PCR grade water, 2 pl of SYBR Green master mix and 1 pl of each
forward and reverse primer (500 nM each at final concentration).
The protocol was as previously described for B-actin (70) and for
gnrhr2 (65, 66). Serial dilutions of cDNA pools of pituitary cells
were used as a standard curve. One chosen dilution was also
included in each run as a calibrator. Each qPCR run contained a
non-template control (cDNA substituted by water) for each primer
pairs to confirm that reagents were not contaminated. The
specificity of each reaction was assessed by melting curve analysis
to ensure the presence of only one product. Each sample was
analyzed in duplicate by qPCR. Normalization of data was
performed using S-actin mRNA levels.

2.5 Statistics

Results of qPCR are given as mean + SEM. Means were
compared by one-way ANOVA Tukey’s multiple comparison test
using Instat (GraphPad Software Inc., San Diego, Calif., USA).

2.6 In silico retrieval of eel gnrhr2 gene
sequences for promoter analysis

To investigate the upstream regulatory regions of the gnrhr2
gene, genomic sequences were retrieved from both the European eel
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and the Japanese eel genomes. The genome assembly for the
European eel was obtained from GenBank (GCA_013347855.1),
and the gnrhr2 gene was identified on chromosome 16 (accession
number: NC_049216). For the Japanese eel, sequence data were
collected from genome assembly GCA_025169545.1, with the
gnrhr2 gene found to be similarly located on chromosome 16
(accession number: CM_045898). The 5’-flanking regions
upstream of the coding sequence (up to about 2 Kb) were
extracted for promoter analysis.

2.7 Prediction of transcription factor-
binding sites in eel gnrhr2 promoter

Promoter analyses were subsequently performed on the
retrieved 5’-flanking sequences to identify putative transcription
factor-binding sites that may contribute to the regulation of gnrhr2
gene expression. Predictions were made using the PROMO tool,
which is based on the TRANSFAC database, as well as the JASPAR
database (https://jaspar.elixir.no) (71). These tools were
supplemented by information from previously published studies
(72-77).

Several potential regulatory elements were identified based on
sequence similarity to motifs previously reported in mouse [for
review (77)]: Activating Protein 1 (AP1); cAMP Response Element
(CRE); Downstream Activin Regulatory Element (DARE); GnRH
Receptor Activating Sequence (GRAS); LIM/homeobox protein
LHX3 binding site (LHX3); Steroidogenic Factor 1 (SF1);
Sequence Underlying Responsiveness to GnRH (SURGI
and SURG2).

2.8 Comparison with transcription factor-
binding sites in the promoters of other
teleost gnrhr2 and mammalian gnrhrl

To assess the conservation and divergence of transcriptional
regulatory elements across species, we compared the European and
Japanese eel gnrhr2 promoter regions with gnrhr promoter
sequences from selected vertebrate species. The coding sequence
of European eel gnrhr2 was used as a query to perform a translated
BLAST (tBLASTn) search against the NCBI nucleotide and genome
databases for identification of orthologous genes in other teleosts.
The closest sequences retrieved by blasting were in zebrafish, the
gnrhr4 gene (GenelD: 100001586) located on chromosome 18
(NC_007129), and in medaka, the gnrhr4 gene (GenelD:
100125529) located on chromosome 6 (NC_019864). The close
relationship between eel gnrh2 and these genes in zebrafish and
medaka, shown in our study by blasting, is in agreement with
Ciani’s phylogeny which clusters them all in the gnrhr2b subtype
(39). We also compared to the promoter of the mammalian gnrhr
expressed in the pituitary, using human and mice gnrhrl promoters.
The human gnrhrl (Gene ID: 2798) and mouse gnrhrl (Gene ID:
14715) are located on chromosome 4 (NC_000004) and
chromosome 5 (NC_000071), respectively. For promoter analysis
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in teleosts and mammals, the gnrhr genomic regions were retrieved
to extract up to ~2.0 kb upstream sequences from the ATG start
codon, which were analyzed for putative transcription factor-
binding sites. Previously published mammalian gnrhl promoter
sequences and response elements [for review (77)] were also used.

3 Results

3.1 Effects of steroid hormones on gnrhr2
transcript levels in eel pituitary cells in vitro

Various concentrations (from 107! to 10”7 M) of sex steroids
E2, T, P, as well as glucocorticoid, F, were tested over 8 days of
culture according to previous experiments (70) (Figure 1). E2 had
no effect at 107" M but significantly increased gnrhr2 mRNA levels
at 107 and 107 M (x10 and x13, as compared to controls,
respectively; P < 0.0001). T had no effect at 107" M but
significantly increased gnrhr2 mRNA levels at 10 and 107 M
(x6.6, P < 0.01 and x13, P < 0.0001, respectively). No effect of P nor
F was observed at the three concentrations tested.

3.2 Effect of an anti-aromatase, fadrozole,
on sex steroid stimulation of gnrhr2
transcript levels in eel pituitary cells in vitro

Fadrozole (10’6 M), an inhibitor of aromatase, was tested alone
or in the presence of 1077 M sex steroids, E2, T or 11-KT (a non-
aromatizable androgen) (Figure 2). Fadrozole had no effect alone
and did not affect the stimulatory effect of 10”7 M E2 on gnrhr2
mRNA levels (x9.9 in the presence of fadrozole as compared to
controls, versus x9.5 in the absence of fadrozole). In contrast, 107 M
T stimulatory effect (x9.9) on gnrhr2 mRNA levels was completely
suppressed by fadrozole (P < 0.0001), reaching control levels. No

< 16_ LR L2
= | Y]
(4 14+
EE 124 *okokk [ 10.11 M
TS5 10 10°Mm
o E‘ *k
25 * = 107 M
a8 4
S 24
£
S )] 0=

E2 T P F

Treatments

FIGURE 1

Effects of steroid hormones on gonadotropin-releasing hormone
receptor 2 (gnrhr2) transcript levels in primary cultures of eel
pituitary cells. Eel pituitary cells were treated with various
concentrations of estradiol (E2), testosterone (T), progesterone (P)
or cortisol (F) for 8 days. The mRNA levels of gnrhr2 were quantified
by gPCR. Data were normalized against -actin. The Figure displays
the results from a representative experiment of three independent
cell culture experiments. Mean + SEM; n=5 well replicates. **, P <
0.01 and ****, P < 0.0001 versus controls, ANOVA.
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FIGURE 2

Effect of fadrozole, an aromatase inhibitor, on sex steroid effects on
gonadotropin-releasing hormone receptor 2 (gnrhr2) transcript
levels in primary cultures of eel pituitary cells. Eel pituitary cells were
treated with 10~/ M of estradiol (E2), testosterone (T) or 11-
ketotestosterone (11-KT) in the presence or not of 10~ M fadrozole
for 8 days. The mRNA levels of gnrhr2 were quantified by qPCR.
Data were normalized against S-actin. The Figure displays the results
from a representative experiment of three independent cell culture
experiments. Mean + SEM; n=5 well replicates. Different letters
indicate significant differences (P < 0.0001) between groups,
ANOVA.

significant effect of 11-KT on gnrhr2 mRNA levels at 107 M was
observed in the absence and in the presence of fadrozole.

3.3 Effect of activins A and B on gnrhr2
transcript levels in eel pituitary cells in vitro

Various concentrations of peptide hormones activin A and
activin B (from 1072 to 107® M) were tested over 8 days of
culture according to previous experiments (68) (Figure 3). Both
hormones had no effect at 107'* M, but gnrhr2 mRNA levels were
significantly decreased by activin A at 107'° and 10°® M (x0.4, P <

1.5

% a0

Eg = 10mMm
§ g 1.0 1010 M
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§ = *% "

E£ 057

E L

£

> 0.0

Activin A Activin B
Treatments

FIGURE 3

Effects of activins A and B on gonadotropin-releasing hormone
receptor 2 (gnrhr2) transcript levels in primary cultures of eel
pituitary cells. Eel pituitary cells were treated with various
concentrations of activin A or activin B for 8 days. The mRNA levels
of gnrhr2 were quantified by qPCR. Data were normalized against -
actin. The Figure displays the results from a representative
experiment of three independent cell culture experiments. Mean +
SEM; n=5 well replicates. *, P < 0.05 and **, P < 0.01 versus
controls, ANOVA.
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0.05 and x0.34, P < 0.01 as compared to controls, respectively), and
by activin B at 108 M (x0.36; P < 0.05, as compared to controls).

3.4 Genomic structure of eel gnrhr2 gene

The gnrhr2 gene sequence of the European eel was retrieved from
GenBank genome assembly GCA_013347855.1. The gnrhr2 gene was
identified on chromosome 16 (NC_049216), spanning the genomic
region from position 12,519,164 to 12,529,023 (Gene ID: 118215598).
It is composed of three exons separated by two introns (Figure 4), and
the entire gene covers 9,860 bp on the chromosome. The CDS of the
gene, registered under accession number XM_035396496, is 1,308 bp
in length and encodes a protein of 435 aa, with the corresponding
protein sequence recorded under accession number XP_035252387.
In the Japanese eel, gnrhr2 was not previously annotated. Gene
sequence information was retrieved from GenBank genome
assembly GCA_025169545.1, and gnrhr2 was found on
chromosome 16 (CM_045898), between positions 23,834,808 and
23,841,537. We predicted exon-intron boundaries following the GT-
AG rule. The Japanese eel gnrhr2 gene also comprises three exons and
two introns (Figure 4). Its CDS is 1,308 bp long and encodes a protein
of 435 aa, showing a high sequence conservation between these two eel
species (96.79% identity).

The gnrhr2 genes from the European eel and the Japanese eel
display a highly conserved exon structure in terms of coding
sequence organization and functional domain distribution
(Figure 4). In the European eel, exon 1 comprises 582
nucleotides, encoding the first three transmembrane (TM)
domains and a portion of the fourth TM domain. Exon 2
comprises 205 nucleotides, encompassing the remaining part of
the fourth TM domain and the entire fifth TM domain. Exon 3
consists of 521 nucleotides, encoding the sixth and seventh TM
domains along with the remainder of the coding sequence.
Similarly, in the Japanese eel, exon 1 contains 582 nucleotides
and encodes the same TM domains as in the European eel. Exon 2
includes 204 nucleotides, covering the rest of the fourth TM and the
fifth TM domain. Exon 3 spans 522 nucleotides, responsible for
encoding the sixth and seventh TM domains and the remaining
coding sequence. These findings highlight the strong conservation
in the structural organization of the gnrhr2 gene between the two
eel species.

3.5 Analysis of eel gnrhr2 promoter region

The predicted response elements are indicated in the promoter
sequences of the European eel and the Japanese eel gnrhr2 genes
(Figure 5). Sequence analysis up to ~2.0 kb upstream from the ATG
start codon in the European eel revealed multiple transcription
factor binding sites including a cAMP Response Element (CRE) at
position nt -114, that binds CRE-binding protein (CREB), along
with a putative binding site for Steroidogenic Factor 1 (SF1) at nt
-149. Two TAAT/ATTA motifs were located at nt -187 and nt
-1362, representing potential Downstream Activin Regulatory
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FIGURE 4

Schematic representation of the European eel gonadotropin-releasing hormone receptor 2 (gnrhr2) gene and its encoded protein structure. The
European eel gnrhr2 gene, retrieved from genome assembly GCA_013347855.1, spans 9,860 bp on chromosome 16 (NC_049216) and consists of
three exons and two introns. The main transcript (XM_035396496) encodes a 435-amino acid GnRHR2 protein (XP_035252387). The gene structure
is shown in the upper panel, with exon numbers indicated. The corresponding GnRHR2 protein structure is illustrated below, showing the seven
transmembrane domains (TM1-TM?7), the three extracellular loops (EL1-EL3), and the three intracellular loops (IL1-IL3). Exon-protein domain
correspondence is indicated by dotted lines. Similar genomic structure was found in the Japanese eel, with retrieved gnrhr2 gene sequence on

chromosome 16 (CM_045898) from genome assembly GCA_025169545.1

Element (DARE) homeodomain protein binding sites. The binding
sites for LHX3, a LIM-homeodomain transcription factor, were
found at nt -293 and -572. Two GnRH Receptor Activating
Sequence (GRAS) elements known to mediate Suppressor of
Mothers Against Decapentaplegic (SMAD) and Forkhead box L2
(FOXL2) binding in mammals, were identified at nt -454 and -1428,
and two binding sites for Activating Protein 1 (AP1) were observed
at nt -507 and -735. In addition, three Sequence Underlying
Responsiveness to GnRH (SURG) - 2 elements (SURG2) were
detected at nt -720, -1355, and -1926, which are also AP1 binding
sites. A SURGI, an element that was previously reported as
interacting with transcription factors such as OCTamer binding
transcription factor 1 (OCTI1 formally named POU2FI) and
Nuclear Factor Y (NFY), was present at nt -1655. These elements
were also identified in the promoter sequence of the Japanese eel
gnrhr2: a CRE next to the first exon (at nt -114) as in the European
eel, but also an additional CRE at -659; two DARE at nt -165 and
-1257, two GRAS at nt-350 and -1317, two AP1 at nt -403 and -634,
as in the European eel; a single LHX3 at nt -472 corresponding to
the second one of the European eel; a SF1 but located further away
from the first exon, at nt -604, as compared to the European eel;
three SURG2 at nt -619, -1250 and -1815, and a SURGI at nt -1544,
as in the European eel.

3.6 Comparison of transcription binding
sites in promoter region of eel gnrhr2 and
other species gnrhr

The promoter regions of gnrhr2 from the European eel and the
Japanese eel were compared to those of gnrhr2 from other teleosts
(zebrafish and medaka) and of gnrhrl from human and mouse. The
distribution of consensus transcription factor binding elements
identified in these promoter regions are schematically illustrated
in Figure 6, including CRE, SF1, DARE, LHX3, GRAS, AP1, as well
as SURGI and SURG2. The sequence alignments of predicted
response elements within the gnrhr promoter regions among
selected species, with their relative positions, are presented
in Figure 7.
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Among these predicted response elements, a CRE site was
found in each species examined, with an additional one in the
Japanese eel. The CRE was located just upstream of exon 1 in the
two eel species, as in mammals, while it was positioned more
distantly in zebrafish and medaka, at a location corresponding to
that of the second CRE of the Japanese eel. A SF1 was retrieved in
the promoter of each species investigated.

In the mouse promoter, several binding elements overlap
(SURGI, DARE and LHX3), while we found them separated in
other species. SURG1 and SURG2, which were originally identified
in gnrhr promoter in mammals, were also detected in teleost
species. A single SURGI1 element was located in all analyzed
teleost promoters, whereas multiple SURG2 elements were found.
We retrieved DARE in the proximal region of the promoter in
human as well as in the European and Japanese eels; an additional
DARE was also found in a more distant region of the promoter in
both eel species; in zebrafish, a DARE was at a position possibly
corresponding to the second DARE of the eels, while no DARE was
retrieved in medaka. Concerning LHX3, it was present in all species,
with an additional one in teleosts (European eel, zebrafish
and medaka).

As previously shown in the mouse gnrhrl promoter, the GRAS
motif was consistently detected in all examined species, with two
GRAS found in both eels. The single GRAS motif found in the
proximal region of the promoter in medaka may correspond to the
first one of the eels, while the one found more distantly in the
zebrafish may correspond to the second one of the eels. Repeated
AP1 motifs appeared frequently across species, with two sites
observed in all analyzed teleosts, and three sites in human.

4 Discussion
4.1 High conservation of gnrhr promoter
response elements between teleosts and
mammals

The response elements characterized in the eel gnrhr2

promoters are similar to the major ones involved in the tissue-
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Japanesc eel -1775 TTCAGAAATATTGCACGTATTGTAGGCTATATGTAGTCCAGATGCACAGCCGTAGGTARA Japanese eel -768 TACAGTAATGCAGTGGGAAA-GACAACCCCAATGTGCAGGACCATACTCACTTGGTTTAT
European eel -1826 TTGTACAATACATCAAGAGTAAAGCTATCCTTTGGATTTGACTACCTGTTCATCTGTACT European eel -810 GAATGGTAGCAATTTTACAACAGAACACTGATTGGACATAAGCCGAGGTGGAGAGATGGG
Japanesc eel -1715 TTGTACAATACATCAAGAGTAAAGCTATCCTTTGGATTTGACTACCTGTTCATTTGTACT Japanese cel  ~709 GAATGGTAGCAATTTTACAACAGAACACTGATTGGACATAAGCTGAGGTGGRGAGATGGG
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Japanese eel -470 AATAAAAAAAATTTTAAAAGTTGCATTTGCGGGATCAAAAATTTTGGTTTCCCACAACAC

European eel -514 TGTTCTGcTTGGTccAATAGGAAGACTGCCATCTACTGG TCAGTAACAAC
Japanese cel =410 TGTTCTGCTTGGTCCAATAGGAAGACTGCCATCTACTGG
AP1 GRAS
European eel -454 [ASTTCCAACAGCAGCCTATTTTTCACCAGGACTGTCCTATAAAAGTGCAGGATCAGTCTT
Japanese cel =350 L@ETTCCAACAGCAGccTATTTTTCACCAGGACTGTcCTATAAAAGTGCAGGATCAGTCTT
European eel -394 GAATATTTATTTGTACTCCCCAATATGTACATACATCTAAATCGCAGTATATGAAATTGA
Japanese cel  -290 GAATATTTATTTGTACTCCCCAATATGTACATACATCTAAATCGCAGTATATGAAATTGA
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European eel -154 CGTGGGTGCGAGCGTTAACATGCAG GTGTGCARACGGCCCGAC
Japanese eel  ~151 == —TCATCGTGGGTGCGAGCGTTAACAT GCAGGACGTACEGTGTGCARATGGCCCGAC
CRE

European eel -94 TTTCCCCCGTCTCCGTGGCGACCGGCTCGGCGTCCCACTGACAGCGGAGGGGCTGGACTC

-94 TTTCCCCCGTCTCCGTGGCGACCGGCTCGGCGCCCCACTGACGGT
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Start Codon

Japanese eel TGGACTC
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Predicted transcription factor binding sites in the 5’-flanking region of the European and Japanese eel gonadotropin-releasing hormone receptor 2
(gnrhr2) genes. Promoter analysis of the gnrhr2 gene revealed multiple putative transcription factor-binding sites within ~2.0 kb upstream of the
ATG start codon. A schematic representation of the gnrhr2 promoter response elements, with some potential binding factors, in both eel species, is
provided in the upper panel. The exon 1 coding region is depicted as a dark grey box on the right. The alignment of gnrhr2 promoter sequences
between European eel and Japanese eel is shown in the lower panel, with identified response elements boxed in red, and the start codon of exon 1
boxed in black. AP1, activating protein 1; CRE, cAMP response element; CREB, CRE binding protein; DARE, downstream activin regulatory element;
FOXL2, Forkhead box L2; GRAS, GnRH receptor activating sequence; LHX3, LIM/homeobox protein LHX3 binding site; NFY, Nuclear Factor Y; OCT1,
Octamer binding transcription factor 1; SF1, steroidogenic factor 1; SMAD, Suppressor of mothers against decapentaplegic; SURG, sequence

underlying responsiveness to GnRH.

specific activity, and in the response to regulatory factors, for
mammalian gnrhrl promoters in the pituitary gonadotroph cells [
(78-80); for review (77)]. We also identified them in the gnrhr2
promoter of two other teleost model species, zebrafish and medaka.
This suggests a high evolutionary conservation of the molecular
mechanisms underlying gnrhr gene expression in gonadotroph
cells, even between distant species like teleosts and mammals.
These shared transcription factor binding motifs include CRE,
SF1, DARE, LHX3, GRAS, API, SURGI and SURG2, which have
been shown to mediate either basal or regulated expression of gnrhl
in mammal species. Notably, in rodents, mouse and rat, SF1 in the
proximal promoter region is essential for gnrhrl gonadotroph-
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specific expression and basal transcriptional activity (78, 80). This
same factor was also identified in the eel and other teleost gnrhr2
promoters, suggesting conserved pituitary-specific regulation.
Various homeobox factor binding sites, which participate in the
gonadotroph-specific expression of the mammalian gnrhrl
promoter, are also found in the eel and other teleost gnrhr2, such
as SURG1, which binds OCT1 and NFY, both involved in directing
basal expression and GnRH-stimulated expression on the gnrhr
gene (75). In vivo chromatin immunoprecipitation (ChIP) assays
confirmed that OCT1 and NFY bind to the SURGI element in the
mouse, and this binding increases in response to GnRH stimulation
(75). In the mouse, SURG2 overlaps with a conserved AP1
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FIGURE 6

Comparison of predicted transcription factor binding sites in gonadotropin-releasing hormone receptor (gnrhr) promoters between European and
Japanese eels and other teleost and mammals. The figure displays a schematic representation of promoter response elements of gnrhrl from
mouse and human and of gnrhr2 from European eel, Japanese eel, zebrafish and medaka. For gene references, see Materials and Methods. The
exon 1 coding region is depicted as a dark grey box on the right. The dotted line in the mouse promoter indicates a region with several binding
elements overlapping. AP1, activating protein 1; CRE, cAMP response element; DARE, downstream activin regulatory element; GRAS, GnRH receptor
activating sequence; LHX3, LIM/homeobox protein LHX3 binding site; SF1, steroidogenic factor 1; SURG, sequence underlying responsiveness to
GnRH.
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FIGURE 7
Comparison of predicted transcription factor binding motif sequences in gonadotropin-releasing hormone receptor (gnrhr) promoters between
European and Japanese eels and other teleost and mammals. Multiple sequence alignments of predicted response elements were performed using
promoter sequences of gnrhrl from mouse, and human, and gnrhr2 from European eel, Japanese eel, zebrafish, and medaka. Each panel displays a
typical response element. When a response element is present in multiple locations in a promoter, the numbers following species names (e.g.,
European eel.1, Japanese eel.2) correspond to the relative positions, upstream of the ATG start codon. AP1, activating protein 1; CRE, cCAMP response
element; DARE, downstream activin regulatory element; GRAS, GnRH receptor activating sequence; LHX3, LIM/homeobox protein LHX3 binding site;
SF1, steroidogenic factor 1; SURG, sequence underlying responsiveness to GnRH.
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consensus binding site and the AP1 binding site is essential for
gnrhr gene expression under GnRH stimulation, while GRAS is a
composite regulatory element whose functional activity depends on
the binding of Smad proteins, AP1, and FOXL2 and mediates both
activin and GnRH responsiveness (75). We identified a GRAS motif
in the gnrhr promoters of all analyzed species, suggesting a
potentially conserved regulatory mechanism across vertebrates.
LHX3 binding sites, which directly activate the mouse gnrhrl
promoter through an ATTA core motif (76, 81), were also found
in the eel and other teleost gnrhr2 promoters. The DARE motif
contains TAAT/ATTA motifs, which were shown to bind
homeodomain transcription factors such as LHX3 in the mouse
gnrhrl promoter (82). DARE was also identified in the present
study in the promoters of gnrhrl in human, and gnrhr2 in European
eel, Japanese eel, and zebrafish, indicating a conserved regulatory
site across vertebrates.

In the present study, the identification of response elements in
gnrhrl promoter of mammalian species (human and mouse) and in
gnrhr2 promoter of teleost species (eels, zebrafish and medaka) show
a conservation of key regulatory elements in the gnrhr promoter in
the osteichthyan lineage, which encompass actinopterygians (such as
teleosts) and sarcopterygians (such as mammals). This reveals an
ancient origin and evolutionary conservation of transcriptional
control mechanisms governing gnrhr expression by pituitary
gonadotroph cells. Furthermore, the identification of these
conserved elements in eel supports this basal teleost as a valuable
comparative model for understanding the evolution of vertebrate
reproductive endocrinology. Further comparative analyses in other
lineages such as chondrichthyans (cartilaginous fishes) and
cyclostomes (jawless vertebrates) would allow the elucidation to
whether this regulatory system is already present in early vertebrates,
before the emergence of jawed vertebrates.

4.2 In vitro and in silico insights for
estrogen-specific stimulation of eel
pituitary gnrhr2 expression

In our present study, we showed a stimulatory effect of E2, as
well as of T, on gnrhr2 mRNA levels in primary culture of eel
pituitary cells. This effect was estrogen-specific, as no such a
stimulatory effect was induced by a non-aromatizable androgen
11-KT and the stimulatory effect of T was abolished in the presence
of an aromatase inhibitor, fadrozole.

In various teleost species, sex steroids also modulate pituitary
responsiveness to GnRH and regulate gnrhr mRNA levels. A study
in primary cultured pituitary cells also reported an increase in
pituitary gnrhr3 but not gnrhrl mRNA levels in tilapia after E2
exposure while T was not tested (41). In the black porgy, after both
E2 and T treatments, gnrhrl (gnrhr2bb) mRNA levels were
increased in dispersed pituitary cells, while 11-KT did not change
them, suggesting that in this species like in the eel, the stimulatory
effect of T on gnrhr expression may be mediated by aromatization,
thus being estrogen-specific (47). Another in vitro study in Atlantic
cod compared the effects of E2, T and dihydrotestosterone DHT [a
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non-aromatisable androgen but whose metabolite 3[3-diol, also
named 5o-androstane-3f3, 17f3-diol, binds to estrogen receptor 3
(83, 84)] and demonstrated that all increased pituitary gnrhr2a
mRNA levels, without affecting gnrhr1b (85). A recent study, using
ex vivo whole pituitaries of Atlantic salmon, reported that pituitary
gnrhr2bba expression is stimulated by both E2 and 11-KT,
indicating both estrogenic and androgenic effects (86).

In vivo studies in teleosts also reported that E2 treatment
induces an increase in pituitary gnrhr mRNA levels. In tilapia,
both gnrhrl and gnrhr3 mRNA levels increase after E2 treatment
(41), while in black porgy, only gnrhrl (gnrhr2bb) increases (47, 87).
The effect of T was tested in Atlantic salmon, showing a stimulatory
effect on the pituitary transcripts of gnrhr4 (45). In contrast, in their
study on endocrine disrupting chemicals in the hermaphroditic fish
Kryptolebias marmoratus, Rhee and colleagues noted that exposure
to E2 in water induces a decrease in gnrhr mRNA levels (88).

In rat, E2 treatment of adult female pituitary cells induces an
increase in GnRHR number as well as on GnRH-induced LH
release (89-91). In ewe, E2 is also able to increase GnRHR
number (92) and gnrhrl mRNA levels by primary cultures of
pituitary cells (93, 94). In contrast, E2 has no effect on gnrhrl
mRNA levels expressed in mouse gonadotrope cell line, LBT2 (95).

The positive in vitro effect of E2 or of T after aromatization on
gnrhr2 transcripts in the European eel supports our previous in vivo
data showing the need to use sex steroids to sensitize the eel
pituitary LH response to GnRH (53). This pathway is likely
involved in the increase of gnrhr2 expression observed during eel
sexual maturation (56) via the positive feedback of sex steroids.

Despite the strong estradiol-specific regulation of eel gnrhr2, we
did not evidence a typical estrogen response element (ERE) within the
eel gnrhr2 proximal promoter region that we have investigated. This
aligns with findings in mammals, in which canonical ERE could not be
identified in the gnrhrl promoter, and thus would not mediate E2
regulatory effect on gnrhrl expression. Instead, non-classical pathways
appear to mediate E2 action on gnrhrl transcription across
mammalian species and cell types [ (20); for reviews (77, 96)]. In
human ovarian (OVCAR3) and breast (MCF7) cell lines, it was shown
that E2-activated ERou represses gnrhrl gene transcription via an
indirect mechanism involving CBP (CREB binding protein) and AP1
(73). A similar mediation by CREB was also demonstrated to underlie
the stimulatory effect of E2 on gnrhr expression by ovine pituitary cells
(20). We identified CRE and AP1 in the eel gnrhr2 promoter, as well as
in other teleost gnrhr2 promoters, both response elements implicated
in E2 signaling in mammalian gnrhr1 promoters. We suggest that the
stimulatory effect of E2 on gnrhr2 expression, observed in our study,
may be mediated via these two response elements. These findings on
estrogen-specific stimulation of gnrhr2 expression levels in eel
pituitary cells contribute significantly to the understanding of the
conservation of the regulation of gnrhr by estrogens across vertebrates.

The increase in gnrhr expression further highlights the multiple
targets of the steroid positive feedback on brain-pituitary
gonadotropic axis in the eel, together with the previous
demonstration of the stimulatory effects of gonadal steroids on
the synthesis of brain GnRH and pituitary LH. We suggest that the
positive regulation by E2 of gnrhr2 expression is exerted on LH cells.
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Differently from the situation in mammals and other tetrapods,
where both gonadotropins are produced by the same pituitary cells,
LH and FSH are expressed by distinct pituitary cells in teleosts,
including in the eel as shown by in situ hybridization (ISH) (97).
Furthermore, a recent study proposed a dual neuroendocrine
control of gonadotropins in teleosts, with GnRH acting as LH
releasing hormone while cholecystokinin as FSH releasing hormone
(98). Future experiments, such as double ISH or ISH coupled to
immunohistochemistry on dispersed pituitary cells, an approach
already set up for DA receptors in the European eel (99), could
investigate which pituitary gonadotroph cell(s) express gnrhr2.

4.3 Lack of evidence for progesterone and
cortisol regulation of eel pituitary gnrhr2
expression

In the European eel, we observed no direct effect of
progesterone on gnrhr2 expression in vitro. To our knowledge,
the unique other study regarding the effect of progestogens on gnrhr
expression in teleosts was performed in tilapia (41). The authors
demonstrated that a progestin, 170, 203-dihydroxy-4-pregnen-3-
one (DHP), could positively regulate gnrhrl and gnrhr3 mRNA
levels by primary cultures of pituitary cells, while only those of
gnrhrl are elevated in vivo. In contrast, in ewe, an inhibitory effect
of progesterone on basal or E2-induced gnrhrl expression by
primary culture of pituitary cells was reported in vitro (92, 94,
100). In vivo, progesterone had no effect on the basal number and/
or mRNA levels of pituitary GnRHR of ovariectomized ewes (18,
101) and cows (102), but reduced their E2-induced number [ewes
(101); cows (102)]. In contrast, combined treatment of hypogonadic
(hpg) female mice with GnRH, E2 and progesterone elevated the
pituitary GnRHR number to the same levels as normal mice (103)
supporting a positive synergistic effect of progesterone. Further
studies may investigate hormone interactions in the regulation of
eel gnrhr2 transcript levels.

A functional progesterone response element (PRE) has been
characterized in human gnrhrl promoter, which mediates the
inhibitory effect of progesterone in human gonadotroph cells via
progesterone receptor isoforms PR-A and PR-B (104). Such a PRE
binding site has not been found in the eel gnrhr2 promoter, possibly
explaining the absence of progesterone effect on gnrhr2 transcript
levels. It should be noted, however, that other signaling mechanisms
may mediate the regulatory effects of progesterone, as no PRE were
identified in gnrhrl promoter of some mammalian species such as
rodents [for review (77)]. Overall, these findings reveal some
species-specific patterns in the hormonal regulation of gnrhr
genes, and indicate the importance of promoter structure in
hormone responsiveness.

In our study, cortisol did not induce any change in mRNA levels
of pituitary gnrhr2 in eel pituitary cells. In contrast, one other recent
in vitro study in a teleost, the Atlantic cod, reports an induction of
gnrhr2a, but not gnrhrlb, by cortisol (85). In mammals, cortisol has
no effect on the basal number of GnRHR and/or gnrhrl mRNA
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levels in vitro in ewe (105) and in vivo in castrated sheep (106, 107).
However, in vivo it can reduce the stimulatory effect of E2 on the
number and mRNA levels of GnRHR in castrated sheep (106, 107),
while it increases the stimulatory effect of GnRH on GnRHR
number in intact male rats (108). Treatment of mouse
gonadotrope cell line, LBT2, with dexamethasone can increase
gnrhrl mRNA levels only in combination with E2 (95). As stress
may largely affect fish reproduction, future studies may further
address the interaction between corticosteroids, sex steroid and
GnRH in the regulation of GnRHR expression in teleosts.

Cortisol response elements, typically referred to as glucocorticoid
response elements (GREs), are essential DNA sequences that mediate
the transcriptional effects of glucocorticoids via the direct binding of
the glucocorticoid receptor (GR). We did not identify a classical GRE
in the promoter of eels nor other teleost gnrhr2 genes, in line with the
current data in mammals. The lack of GREs in the gnrhrl promoter
across mammalian species suggested more complex mechanisms for
glucocorticoid actions. Thus, in the mouse, whose gnrhrl promoter
does not contain a GRE, the transcriptional regulation of the gnrhrl
gene by glucocorticoid is ensured by the recruitment of GR to the AP1
region of this promoter (109, 110).

4.4 In vitro and in silico insights for activin
inhibition of eel pituitary gnrhr2 expression

In the European eel, we previously showed that activins
oppositely regulate in vitro fshf3 and Ihf3 expression by pituitary
cells, with a stimulatory effect on fsh3 and an inhibitory effect on h3
mRNA levels (68). Besides their production by the gonads,
localization of activins has been demonstrated within the
pituitary, in various cell types [gonadotrophs in mammals (111);
somatotrophs in teleosts (112)], suggesting paracrine/autocrine
actions at the pituitary level. Activins are known to stimulate FSH
production and release from gonadotrope cells in teleosts as in other
vertebrates including mammals (113, 114).

In the present study, we show that both activins A and B are
able to downregulate gnrhr2 mRNA levels by primary cultures of eel
pituitary cells. Few data are available in other teleosts. A recent
study using ex vivo whole pituitaries of Atlantic salmon post-smolts,
exposed to stimulatory environmental conditions that promote
sexual maturation (continuous light and 16 °C), showed that in
immature but not maturing males, activin A stimulates the
expression of gnrhr2bba (86), the only paralog out of six being
stimulated during precocious male parr maturation (39). No effect
of activin A on gnrhr2bba expression is observed in immature males
exposed to non-stimulatory conditions (86).

Early studies showed that activin A stimulates the synthesis rate
(as assayed by density shift technique) of GnRHR by rat pituitary
cell cultures (33). This stimulatory effect of activin A on GnRHR is
exerted at the transcriptional level as demonstrated in the mouse
gonadotrope cell line, oT3-1, using gnrhirl mRNA assay, run-off
experiments, and transfection experiments of gnrhrl promoter/
luciferase reporter gene (34). In contrast, in the ovariectomized
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ewes, activin A decreases the number of GnRH-R (as assayed by the
binding of a GnRH agonist) by primary cultures of pituitary cells
but has no effect on their increase induced by E2 (115). This
suggests species-specific variations in the positive or negative
effects of activin on GnRHR in mammals, as in teleosts.

Extensive promoter studies in mice have identified GRAS as a
critical regulatory element mediating activin-induced transcriptional
activation of gnrhrl in gonadotrope-derived cell lines such as oT3-1
and LPT2 cells (79, 81). GRAS functions as a composite enhancer,
which recruits SMAD2/3/4 and cooperates with factors like API,
FOXL2, SF-1 to modulate gene expression via overlapping or adjacent
binding motifs [ (74, 79, 116); for review (77)]. We identified GRAS
elements in gnrhr promoters of each mammalian and teleost species
analyzed in this study. In the gnrhr2 promoters of the European and
Japanese eels, we found two putative GRAS muotifs, including one in
the proximal region near to AP1 binding sites, suggesting a conserved
activin-responsive promoter structure.

DARE further enhances responsiveness to activin, coupled with
GRAS forming a functionally cooperative “activin-responsive unit
(ARU)” within the mouse gnrhr promoter to drive transcriptional
activation (81). DARE contains TAAT/ATTA motifs, which serve
as binding sites for homeodomain transcription factors. For
example, LHX3 has been shown to bind directly to DARE and
activate transcription of mouse gnrhrl when overexpressed (81).
Additionally, homeodomain proteins such as Msx1 and DIx3 also
interact with TAAT-rich regions to regulate gnrhrl transcription
during gonadotroph development, with DIx3 acting as an activator
and Msx1 as a repressor, in the mouse (117). We found a DARE in
the eel gnrhr2 promoter, but with “TAAT/ATTA” separated by only
2 bp rather than 4 bp spacing of murine DARE. As for the eel, we
observed a 2bp spacer for the DARE motif of the human gnrhrl
promoter. In Cherrington et al’s study (81), increasing the spacer
length between the tandem TAAT/ATTA motifs from 4 to 5 or 10
bp reduced gnrhrl promoter activity, but no data are available
concerning a shorter space. Whether this shorter spacing affects
transcription factor binding or promoter activity remains to
be elucidated.

Activin, which we previously showed to stimulate fshf3, while
inhibiting /13, in the European eel (68), exerts an inhibitory effect
on gnrhr2 expression by eel pituitary cells. As discussed above for
the effect of steroids, the parallel regulation of /h and gnrhr2
expression by activin supports the hypothesis that the expression
and regulation of gnrhr2 concerns mainly LH cells.

5 Conclusion and perspectives

This study gives new information on the regulation of eel
pituitary gnrhr2 expression and provides the first insight into the
sequence and response elements of gnrhr2 promoter in teleosts. Our
results show that while activins inhibit gnrhr2 expression, gonadal
steroids exert a positive feedback, mediated by estradiol, on pituitary
sensitivity to GnRH in the eel. This may account for the increase in
pituitary gnrhr2 mRNA levels reported in female and male eels
experimentally matured under gonadotropic treatments (56). This
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increase in gnrhr expression further highlights the multiple targets of
the steroid positive feedback on brain-pituitary gonadotropic axis in
the eel, in line with the regulatory mechanisms of the ovulatory LH
surge in mammals. Furthermore, the analysis of the eel gnrh2
promoter sequence suggests the absence of a classical ERE and the
involvement of non-classical response elements such as CRE and
AP1, similarly to the situation in mammals. This regulation by
estradiol of GnRH receptivity would be an ancient and conserved
mechanism across vertebrates. Currently, final oocyte maturation and
ovulation in female eels, matured after chronic gonadotropic
treatments, are induced by the administration of a progestogen,
acting directly at the ovarian level (118, 119). The present finding
of the increase in eel pituitary sensitivity to GnRH as a result of the
estradiol positive feedback, further supports the use of alternative
treatments to induce an endogenous ovulatory LH peak, by the
administration of GnRH- agonist together with dopamine-
antagonist. Future studies should also aim at deciphering upstream
regulation of endogenous GnRH release in the eel, such as
pheromones and environmental factors. This study in the eel, a
basal teleost representative, contributes to raise basic and applied
knowledge on the regulation and evolution of pituitary GnRH
receptivity in vertebrates.
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