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Triglyceride-glucose index and
mortality in congestive heart
failure with diabetes: a machine
learning predictive model
Lin Yu, Haizhu Chen, Jiwen Zhang and Wei Han*

Department of Cardiovascular Medicine, Foshan Clinical Medical School of Guangzhou University of
Chinese Medicine, Foshan, China
Background: The triglyceride-glucose (TyG) index serves as a marker for insulin

resistance. Research exploring the link between the TyG index and adverse

outcomes among patients suffering from congestive heart failure (CHF) and

diabetes mellitus (DM) is limited. This investigation endeavors to uncover the

connection between the TyG index and mortality risk in subjects suffering from

CHF and DM.

Methods: We obtained clinical data for patients with CHF and DM from the

MIMIC-IV (3.1) database. The optimal cutoff value for the TyG index was

determined using X-tile software, and patients were classified into three

groups. The primary outcome was 28-day hospital mortality, and the

secondary outcome was 28-day ICU mortality. We used restricted cubic

splines (RCS), COX regression analysis, and Kaplan-Meier survival curves to

examine the association between the TyG index and adverse outcomes.

Subgroup analyses were conducted based on age, gender, chronic pulmonary

disease, atrial fibrillation, hypertension, and mechanical ventilation to assess the

robustness of our findings. Feature selection was performed using LASSO

regression, and predictive modeling was carried out using machine

learning algorithms.

Results: This study included 1046 patients with CHF and DM. Using a fully

adjusted COX regression model, we identified a significant association

between the TyG index and both 28-day hospital mortality (HR=1.31, 95% CI:

1.09–1.57, P=0.004) and 28-day ICU mortality (HR=1.29, 95% CI: 1.07–1.54,

P=0.006). Using restricted cubic spline analysis, a linear link between the TyG

index and mortality rates was found, indicating that a rise in TyG correlates with a

heightened risk of unfavorable outcomes. The predictive performance was

evaluated using seven machine learning algorithms, with the Random Survival

Forest (RSF) algorithm achieving the best performance (AUC=0.817).

Conclusions: In patients with CHF and DM, TyG exhibited a linear correlation

with both 28-day hospital mortality and 28-day ICU mortality. Elevated TyG

values were significantly linked to a heightened risk of adverse events.
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Introduction

Congestive heart failure (CHF) is a pathological state. In this

state, the heart can’t sustain adequate cardiac output to fulfill the

body’s metabolic demands. It ranks as a significant factor in the

global rise of illness and death rates (1–4). With demographic

changes, advances in medical therapy, and increased incidence of

concomitant diseases such as diabetes, the epidemiologic profile of

CHF has been affected accordingly (2, 3). Research in epidemiology

has established a notable link connecting diabetes mellitus(DM)

and heart failure(HF) (5, 6). Type 2 diabetes mellitus (T2DM)

significantly contributes to the risk of cardiovascular events. CHF is

a prime example. This condition heightens the risk of sickness and

fatality for those affected (7). Numerous studies have consistently

demonstrated that HF patients with DM experience a more adverse

prognosis. For instance, a health insurance study revealed that the

mortality rate for patients with both T2DM and HF is as high as

32.7 per 1000 person-years. In contrast, it is significantly lower at

3.7 per 1000 person-years for those with HF but normal blood

glucose levels (8). Furthermore, among patients with HF and

reduced ejection fraction (HFrEF), those with diabetes experience

a significantly higher mortality risk than their non-diabetic

counterparts (9).

The triglyceride-glucose (TyG) index merges indicators of

triglycerides(TG) and fasting blood glucose(FBG). It helps assess

insulin sensitivity in the body. It acts as an alternative measure of

insulin resistance(IR) (10). The pathophysiological state termed IR

is defined by a decreased capacity of the body to respond to and

metabolize insulin, culminating in hyperglycemia (11). In HF

patients with DM, IR and metabolic disturbances are exacerbated,

leading to myocardial insulin resistance and mitochondrial

dysfunction, which profoundly impact myocardial energy

metabolism and cardiac function (12). Hence, a deeper

exploration into the role of IR in these patients is highly

warranted. Adverse cardiovascular and metabolic events have

been found to be linked to the TyG index (13–16). Despite

ongoing research, the specific link connecting the TyG index and

death among people with CHF and DM remains elusive. IR, a

pivotal driver in the progression of CHF and DM, has been

extensively studied. However, further exploration is necessary to

delineate the forecasting power of the TyG index concerning fatality

rates among this patient population.

The relation connecting the TyG index and fatality in CHF and

DM was the focus of this study. It is anticipated that this

investigation will furnish vital information concerning the

relevance of the TyG index in prognosis for these people and may

provide a novel approach to risk stratification and management.
Methods

Data source

This research leveraged information from MIMIC-IV 3.1, an

open-access intensive care repository encompassing detailed
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medical notes for over 300,000 patients treated at Beth Israel

Deaconess Medical Center (BIDMC) from 2008 to 2022. The

BIDMC’s Institutional Review Committee sanctioned the

utilization of these research materials and dispensed with the

need for informed consent. The researchers then accessed the

database using certificate number 13874481.
Study population

Patients admitted to the ICU with congestive heart failure were

recognized via ICD-9 and ICD-10 codes and included within the

research. If a patient had repeated ICU admissions, only the initial

admission was chosen for analysis. The exclusion criteria for

patients, as illustrated in Figure 1, are detailed henceforth: (1)

ICU stays lasting fewer than 24 hours (n=2563); (2) patients

without diabetes (n=7641); (3) absence of data on fasting blood

glucose and triglyceride levels (n=4389).
Outcome

The main outcome was 28-day hospital mortality, evaluated

from the day of admission and monitored for 28 days to assess

survival status. This indicator comprehensively reflects the

mortality risk of patients throughout their hospital stay, including

treatment outcomes in both the ICU and other wards. The

secondary outcome was 28-day ICU mortality, ascertained from

the day of ICU admission and tracked for survival over the

following 28 days. This indicator more specifically reflects the

treatment outcomes within the ICU and the severity of the

patients’ conditions.
Data collection

Data collection was done utilizing PostgresSQL (version 17.1)

and Navicate Premium (version 17.0.8) software. During the initial

24 hours of ICU admission, we collected extensive data. The patient

data retrieved included information on age, gender, ethnicity, and

weight. We also gathered vital signs, which included heart rate,

respiratory rate(RR), systolic and diastolic blood pressure(SBP,

DBP), temperature, and arterial oxygen saturation(Spo2). The

disease severity metrics that were collected consisted of sepsis-

organ failure assessment score (SOFA), Oxford Acute Severity of

Illness Score (OASIS), Glasgow Coma Scale (GCS), and Charlson

Comorbidity Index (CCI). Information on comorbid conditions

such as hypertension, coronary artery disease(CAD), atrial

fibrillation(AF), chronic pulmonary disease, acute kidney injury

(AKI) and sepsis was gathered using ICD codes. The laboratory

values that were retrieved included red blood cell count (RBC),

white blood cell count (WBC), platelet count (PLT), triglycerides

(TG), fasting blood glucose (FBG), serum sodium, serum

potassium, serum calcium, blood urea nitrogen(BUN), serum

creatinine(Cr), prothrombin time International Normalized Ratio
frontiersin.org
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(INR), Prothrombin Time (PT), Partial Thromboplastin Time

(PTT), and urine output. The medications that were included for

extraction were angiotensin-converting enzyme inhibitors (ACEI)/

angiotensin receptor blockers (ARB), beta-blockers, insulin, and

statins. The therapeutic interventions that were extracted included

renal replacement therapy (CRRT) and mechanical ventilation

(MV). The triglyceride glucose index (TyG) is calculated using

the following formula: TyG=ln [triglyceride (TG in mg/dl) × fasting

blood glucose (FBG in mg/dl)/2] (17). In this study, we obtained the

levels of TG and FBG from patients on the first day of ICU

admission to calculate the ICU admission TyG index.
Statistical analysis

The analysis excluded variables that had a rate of missing data

exceeding 20%, while those with a rate under 20% underwent

multiple imputations. Using X-tile software, the optimal cutoff

value for TyG was identified (18). X-tile software was employed

to determine the optimal cutoff value using an enumeration

method. This method systematically evaluates all potential cutoff

values through statistical testing and selects the one with the

smallest P value as optimal (19). Based on the identified cutoff

values, the study population was stratified into low, medium, and

high TyG groups. Continuous variables conforming to a normal

distribution were represented by means (standard deviations

[SDs]). Variance analysis (ANOVA) was applied to evaluate these

variables. We analyzed variables that did not adhere to a normal

distribution using the Mann–Whitney U test or Kruskal–Wallis

test. We displayed categorical variables as counts and percentages.

We assessed them using the c² test or Fisher’s exact test. The log-
rank test was used alongside Kaplan-Meier survival curves to

compare 28-day survival rates among the three groups. Cox

proportional hazard regression models were employed to
Frontiers in Endocrinology 03
calculate the hazard ratio(HR) and 95% Confidence Interval(CI)

for event occurrence. Drawing on the outcomes of univariate Cox

regression analysis and our clinical expertise, we refined the

covariates in Model I and Model II. Model I accounted for

gender, race, age, and weight. Model II further incorporated

adjustments for SBP, HR, temperature, AF, AKI, ACEI/ARB,

beta-blockers, insulin, statin, MV, SOFA, WBC, BUN, and INR.

A two-tailed P value less than 0.05 served to ascertain statistical

significance. R software (version 4.4.2) was employed to conduct all

statistical analyses.
Restricted cubic spline

For this investigation, we assembled a comprehensive dataset

including survival data as the outcome variable. The TyG index was

employed as an uninterrupted predictor. We also collected a range

of covariates, such as gender, race, age, weight, SBP, HR,

temperature, AF, AKI, ACEI/ARB, beta-blockers, insulin, statin,

MV, SOFA, WBC, BUN, and INR. We wanted to explore the

possible nonlinear connection linking changes in the TyG index and

death. So, we utilized a Cox regression model with restricted cubic

splines (RCS).
Subgroup analysis

We executed subgroup and multivariate analyses in accordance

with predetermined criteria, such as age, gender, chronic

pulmonary disease, AF, hypertension, and MV. During the

multivariate analyses, we accounted for the following covariates:

gender, race, age, weight, SBP, HR, temperature, AF, AKI, ACEI/

ARB, beta-blockers, insulin, statin, MV, SOFA, WBC, BUN, and

INR. For the multivariate analysis, conducted separately for male
FIGURE 1

Patient selection flowchart.
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and female subgroups, gender was not included as an adjustment

factor. Patients were categorized into two age categories: under 65

years and 65 years or older. We conducted Cox proportional hazard

regression analysis within each category. The findings were

visualized via forest plots that highlighted the HR and its 95% CI.
Establishment and validation of the
prediction models

The dataset undergoes five-fold cross-validation sampling,

splitting it into a training set and an internal validation set. When

there are numerous features, feature selection is conducted using

the Lasso method. Lasso incorporates L1 regularization to select

features, reduce dimensionality, and eliminate redundant features

by compressing coefficients.

Suitable variables were integrated into the machine learning

framework. The dataset was partitioned into training and validation

subsets in a 7:3 distribution. To predict the 28-day in-hospital

mortality risk in patients with CHF complicated by DM, we

individually analyzed the screened variables using the following

methods: Cox Proportional Hazards Model (CoxPH), Classification
Frontiers in Endocrinology 04
and Regression Trees (CART), Gradient Boosting Machine (GBM),

Elastic Network (ENet), Neural Network (NN), Random Survival

Forest (RSF), and Extreme Gradient Boosting (XGBoost). Hyper-

parameter tuning was conducted during the model-building

process. The training subset was employed to construct the

model, while the validation subset was employed to assess its

effectiveness. Model performance was assessed using the receiver

operating characteristic curve (ROC) and its area under the curve

(AUC). We used decision curve analysis (DCA) to assess clinical

validity. And we employed calibration curves to evaluate the

model’s accuracy in predicting absolute risk.
Results

Baseline characteristics

The baseline features of 1046 individuals diagnosed with CHF

and DM were derived from the MIMIC-IV database (Table 1). It

should be emphasized that every patient involved in this study was

admitted to the ICU. The distribution of missing data for each

variable is illustrated in Supplementary Figure S1. The essential
TABLE 1 Baseline characteristics.

Characteristic
Overall
N=1,046

Low TyG group
N=400

medium TyG group
N=330

High TyG group
N=316

P
value

Age (year) 70 (62,79) 73 (64, 80) 72 (63,80) 66 (58,75) <0.001

Gender (%) 0.875

female 420 (40%) 160 (40%) 136 (41%) 124 (39%)

male 626 (60%) 240 (60%) 194 (59%) 192 (61%)

Race (%) 0.070

white 670 (64%) 247 (62%) 228 (69%) 195 (62%)

Other 376 (36%) 153 (38%) 102 (31%) 121 (38%)

Weight (Kg) 87 (73, 103) 83 (67,99) 88 (73, 103) 92 (78,112) <0.001

Heart rate(bmp) 87 (75,101) 86 (74,98) 85 (74,101) 90 (78, 104) 0.003

RR(bmp) 20(16,24) 18(16,22) 20(16,24) 21(17,25) <0.001

SBP(mmHg) 123 (107, 143) 120 (106, 141) 125 (108, 145) 126 (108, 146) 0.152

DBP(mmHg) 66 (55,79) 65 (53,79) 65 (54,79) 68 (57,80) 0.055

Temperature(°C) 36.7 (36.4, 37.1) 36.6 (36.3, 36.9) 36.7 (36.4, 37.0) 36.9 (36.5, 37.33) <0.001

Spo2(%) 98 (95,100) 98 (95,100) 98 (95,100) 97 (94,99) <0.001

SOFA 1(0,3) 1(0,3) 1(0,4) 2(0,4) 0.733

GCS 15(15,15) 15(15,15) 15(15,15) 15(15,15) 0.068

OASIS 34(28,39) 33 (26,38) 34(28,38) 35(30,42) <0.001

CCI 8(6,10) 8(6,10) 8(6,10) 7(5,9) <0.001

Chronic pulmonary disease,
n (%)

344 (33%) 129 (32%) 112 (34%) 103 (33%) 0.882

(Continued)
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TABLE 1 Continued

Characteristic
Overall
N=1,046

Low TyG group
N=400

medium TyG group
N=330

High TyG group
N=316

P
value

Coronary heart disease,
n (%)

736 (70%) 285 (71%) 243 (74%) 208 (66%) 0.083

Atrial fibrillation, n (%) 446 (43%) 183 (46%) 158 (48%) 105 (33%) <0.001

Hypertension, n (%) 904 (86%) 338 (85%) 293 (89%) 273 (86%) 0.242

AKI, n (%) 932 (89%) 345 (86%) 298 (90%) 289 (91%) 0.060

Sepsis, n (%) 626 (60%) 190 (48%) 208 (63%) 228 (72%) <0.001

RBC(109/L) 3.41 (2.87,4.05) 3.35 (2.85,4.01) 3.37 (2.88, 3.93) 3.51 (2.93, 4.16) 0.153

WBC(109/L) 10.0 (7.5, 13.1) 9.4 (6.9, 12.2) 10.2 (7.6, 13.1) 10.6 (8.0, 14.5) <0.001

Platelet (109/L) 186 (137, 246) 184 (130, 240) 186 (141, 249) 194 (140, 249) 0.396

TG(mg/dL) 126 (86, 191) 80 (66,99) 129 (110, 156) 257 (194,367) <0.001

FBG(mg/dL) 166 (136, 201) 141 (120, 166) 170 (147, 199) 201(168,234) <0.001

Sodium (mmol/L) 137 (134, 140) 137 (134, 140) 137 (134, 140) 137 (134, 139) 0.860

Potassium (mmol/L) 4.00 (3.60,4.40) 4.00 (3.70,4.40) 4.00 (3.70,4.40) 3.90 (3.60, 4.30) 0.224

Calcium (mg/dL) 8.30 (7.90, 8.80) 8.40 (7.90, 8.95) 8.30 (7.80, 8.80) 8.20 (7.70, 8.75) 0.003

BUN(mg/dL) 27(17,44) 24(16,40) 28(18,45) 28(17,45) 0.007

creatinine (mg/dL) 1.30 (0.90,2.10) 1.20 (0.80,1.80) 1.40 (0.90,2.20) 1.35 (1.00,2.30) 0.002

INR 1.20 (1.10, 1.40) 1.20 (1.10, 1.40) 1.20 (1.10,1.50) 1.20 (1.10, 1.40) 0.016

PT(S) 13.6 (12.4, 15.8) 13.6 (12.6, 15.9) 13.9 (12.6, 16.3) 13.3 (12.0, 15.0) <0.001

PTT(S) 30(27,37) 31(27,38) 30(27,37) 30(27,34) 0.004

Urine output(mL)
1,460

(780,2,425)
1,350

(750,2,351)
1,466

(805,2,495)
1,554

(833,2,570)
0.340

ACEI/ARB, n (%) 384 (37%) 156 (39%) 109 (33%) 119 (38%) 0.229

Beta blockers, n (%) 772 (74%) 305 (76%) 237 (72%) 230 (73%) 0.353

Insulin, n (%) 940 (90%) 338 (85%) 302 (92%) 300 (95%) <0.001

Statins, n (%) 666 (64%) 250 (63%) 208 (63%) 208 (66%) 0.629

CRRT, n (%) 151 (14%) 36 (9.0%) 49 (15%) 66 (21%) <0.001

Mechanical ventilation,
n (%)

928 (89%) 342 (86%) 293 (89%) 293 (93%) 0.010

Los hospital (days) 12(7,20) 12(7,17) 11(7,20) 14(8,23) 0.006

Los ICU (days) 4(2,9) 4(2,7) 4(2,8) 6(3,12) <0.001

Hospital Mortality,
n (%)

205 (20%) 58 (15%) 67 (20%) 80 (25%) 0.001

ICU Mortality, n (%) 150 (14%) 42 (11%) 48 (15%) 60 (19%) 0.006

28-day hospital Mortality,
n (%)

216 (21%) 67 (17%) 70 (21%) 79 (25%) 0.024

28-day ICU Mortality,
n (%)

228 (22%) 72 (18%) 74 (22%) 82 (26%) 0.036
F
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RR, Respiratory Rate; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; SpO2, Oxygen saturation; SOFA, Sequential organ failure assessment; GCS, Glasgow Coma Scale; OASIS,
Oxford Acute Severity of Illness Score; CCI, Charlson Comorbidity Index; AKI, Acute kidney injury; WBC, White blood cell count; RBC, Red blood cell count; Platelet, Platelet count; TG,
triglycerides; FBG, fasting blood glucose; BUN, Blood urea nitrogen; INR, International normalized ratio; PT, Prothrombin Time; PTT, Partial Thromboplastin Time; ACEI/ARB, Angiotensin-
converting enzyme inhibitors/Angiotensin receptor blockers; CRRT, Continuous renal replacement therapy. Bolded values indicate statistical significance.
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features of the participants are described in Table 1. The study

cohort was predominantly male (60%) and featured a high rate of

comorbid conditions, including CAD(70%), hypertension (86%),

AKI(89%), and sepsis (60%). By employing X-tile software, the

optimal threshold for the TyG index was established, leading to the

categorization of participants into three distinct groups: low TyG

(7.01≤TyG<9.06, n=400), medium TyG (9.06≤TyG<9.60, n=330),

and high TyG (9.60≤TyG<13.03, n=316). Individuals in the high

TyG group tended to be younger, with higher weight, heart rate, RR,

and temperature, but lower Spo2. Compared with other groups,

they had lower OASIS and CCI scores, a decreased occurrence of

AF, and a higher prevalence of sepsis. In terms of laboratory

findings, they exhibited elevated WBC, TG, FBG, BUN, and

serum creatinine levels, but lower blood calcium and PT, along

with shorter PTT. Regarding therapeutic procedures, a higher

propor t ion underwent CRRT, whi l e f ewer requ i red

Mechanical ventilation.
Survival analysis

To assess the frequency of the primary outcome across diverse

groups, Kaplan-Meier survival curves were utilized (Figure 2). The

high TyG group demonstrated a markedly higher 28-day hospital

mortality rate than other groups (P=0.022) (Figure 2A). Likewise,

The 28-day ICU mortality rate was significantly elevated in the high

TyG group compared with other groups (P=0.033) (Figure 2B).

These results imply that a high TyG index is tied to negative survival

outcomes in individuals with diabetes and congestive heart failure.
Association between mortality and TyG

This investigation revealed a robust link linking the TyG index

and the likelihood for 28-day hospital mortality, which remained

consistent across various models. when considered as a continuous

measure, the TyG index demonstrated significant associations in

the unadjusted model [HR=1.26, 95% CI: 1.06-1.50, P=0.008],

Model I [HR=1.49, 95% CI: 1.25-1.78, P < 0.001], and Model II
Frontiers in Endocrinology 06
[HR=1.31, 95% CI: 1.09-1.57, P=0.004]. Similarly, the connection

linking the TyG index and the likelihood of 28-day ICU mortality

was consistent across different models. The adjusted model

[HR=1.24, 95% CI: 1.05-1.47, P=0.012], Model I [HR=1.48, 95%

CI: 1.24-1.76, P < 0.001], and Model II [HR=1.29, 95% CI: 1.07-

1.54, P=0.006] (Table 2) also showed significant results (Table 2).

When the TyG index was analyzed categorically, a strong

connection linking the high TyG category and 28-day hospital

mortality was observed. They also had a strong relationship with the

28-day ICU fatality rate across the three models.
Restricted cubic spline

The RCS analysis was adjusted for potential confounding

factors including gender, age, weight, SBP, HR, temperature, AF,

AKI, ACEI/ARB, beta-blockers, insulin, statin, MV, SOFA, WBC,

BUN, and INR. The RCS analysis for 28-day all-cause in-hospital

mortality (Figure 3A) and 28-day all-cause ICU mortality

(Figure 3B) both demonstrated a linear association between TyG

and mortality risk.
Subgroup analysis

We performed subgroup analyses categorized by age (less than

65 years, 65 years and older), gender, chronic lung disease, atrial

fibrillation, hypertension, and mechanical ventilation. The findings

(Figure 4) showed no significant correlation linking TyG and any of

the subgroups (interaction p-value > 0.05 across all subgroups).

These deductions dedicate that the association of TyG with 28-day

hospital fatality is uniform. It is also uniform for 28-day ICU

mortality across different demographic groups.
Feature selection

Lasso regression was applied to the training set to identify

correlated features, with the variable coefficients shown in Figure 5A.
FIGURE 2

Kaplan-Meier survival analysis curve for all-cause mortality: (A) showing comparison of 28-Day Hospitalized Mortality between groups, (B) showing
comparison of 28-Day ICU Mortality between groups.
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TABLE 2 Cox regression model.

TyG
Non-adjusted Adjust I Adjust II

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

28-day hospital mortality

TyG continuous
variable

1.26(1.06,1.50) 0.008 1.49(1.25,1.78) <0.001 1.31(1.09,1.57) 0.004

TyG categorical variables

Low TyG
(7.01≤TyG<9.06)

ref ref ref

Medium TyG
(9.06 ≤ TyG < 9.60)

1.31(0.94,1.83) 0.113 1.41(1.01,1.98) 0.044 1.17(0.83,1.65) 0.365

High TyG
(9.60≤TyG<13.03)

1.58(1.14,2.18) 0.006 2.10(1.50,2.93) <0.001 1.77(1.25,2.51) 0.001

TyG group trend 0.006 <0.001 0.002

28-day ICU mortality

TyG continuous
variable

1.24(1.05,1.47) 0.012 1.48(1.24,1.76) <0.001 1.29(1.07,1.54) 0.006

TyG categorical variables

Low TyG
(7.01≤TyG<9.06)

ref ref ref

Medium TyG
(9.06 ≤ TyG < 9.60)

1.29(0.93,1.78) 0.128 1.38(1.00,1.92) 0.051 1.12(0.80,1.56) 0.509

High TyG
(9.60≤TyG<13.03)

1.52(1.11,2.09) 0.010 2.03(1.46,2.81) <0.001 1.69(1.21,2.38) 0.002

TyG group trend 0.009 <0.001 0.003
F
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HR, Hazard Ratio; CI, Confidence Interval.
Adjust I: Adjust: Gender, Race, Age, Weight.
Adjust II: Adjust: Gender, Race, AF, AKI, ACEI/ARB, beta-blockers, insulin, Statins, MV, Age, Weight, SBP, RR, Temperature, SOFA, WBC, BUN, INR.
AF, Atrial Fibrillation; AKI, Acute kidney injury; ACEI/ARB, Angiotensin-converting enzyme inhibitors/Angiotensin receptor blockers; MV, Mechanical Ventilation; SBP, Systolic blood
pressure; DBP, Diastolic blood pressure; RR, Respiratory Rate; SOFA, Sequential organ failure assessment; WBC, White blood cell count; BUN, Blood urea nitrogen; INR, International
normalized ratio. Bolded values indicate statistical significance.
FIGURE 3

Restricted cubic spline curve for TyG hazard ratio. Red lines indicate fully adjusted risk ratios, shaded areas indicate 95% confidence intervals, and
horizontal dashed hazard ratio. (A) Restricted cubic spline curve for 28-Day Hospitalized Mortality, (B) Restricted cubic spline curve for 28-Day ICU
Mortality.
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A tenfold cross-validation method was employed to conduct iterative

analyses (Figure 5B). Age, RR, temperature, SOFA, GCS, OASIS, CCI,

AKI, sepsis, WBC, RBC, TyG, blood calcium, BUN, PTT, ACEI/ARB,

beta-blockers, and CRRT were among the 18 variables that showed a

strong link with 28-day hospital mortality.
Predictive modeling and validation

In Figure 6, the ROC curves for different models are displayed,

with model performance indicated by AUC values. Coxph has an
Frontiers in Endocrinology 08
AUC of 0.819, cart has an AUC of 0.722, gbm has an AUC of 0.799,

enet has an AUC of 0.792, nn has an AUC of 0.605, rsf has an AUC

of 0.817, and xgboost has an AUC of 0.795. Calibration curves for

each model are presented in Supplementary Figure S1.

The calibration curves of the coxph, dt, deepsurv, rsf, and

xgboost models closely aligned with the reference line,

demonstrating their strong predictive capabilities. The DCA

curves (Supplementary Figure S2) additionally showed a

significant net benefit for each model, emphasizing their robust

clinical validity. Based on the decision curve and the AUC value

reaching 0.817, the model established by the RSF algorithm

demonstrated the best performance.
FIGURE 4

Forest plots showing subgroup analyses for (A) 28-day hospital mortality, (B) 28-day ICU mortality.
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Discussion

The simultaneous occurrence of CHF and DM poses a

substantial societal health burden. Nonetheless, pinpointing

straightforward and potent biomarkers to forecast these

conditions is challenging. Our research included 1046 individuals

with both conditions. We determined the 28-day hospital fatality

rate to be 21%. The 28-day ICU fatality rate was 22%. Upon

accounting for possible confounding elements, a notable positive

affiliation emerged linking the TyG index and the 28-day hospital

mortality (HR=1.31, 95% CI: 1.09–1.57, P=0.004) and 28-day ICU

mortality (HR=1.29, 95% CI: 1.07–1.54, P=0.006). The RCS analysis

indicated a linear correlation linking the TyG index and both

fatality types. Consequently, TyG is a separate risk factor. It

affects patients suffering from CHF and DM.
Frontiers in Endocrinology 09
The TyG index is a blend of TG and FBG. It has become a

possible predictor for metabolic disorders, atherosclerosis, and

cardiovascular diseases (20–22). In hypertension patients, a

higher TyG index is tied to higher fatality risk (23). A study by

Yang et al. (24) bolstered the TyG index. It is a marker for

unfavorable cardiovascular outcomes in chronic coronary

syndrome patients. Research involving 1226 participants showed

that an elevated TyG index implicated in an greater likelihood of

stroke recurrence and death (25). More importantly, a study found

a connection linking an elevated TyG index and worse outcomes in

acute decompensated heart failure (ADHF) patients (26). Yang et al.

also determined that the TyG index can predict both hospitalization

and ICU mortality following a cardiac arrest (27). For those with

CAD, the TyG index might assist in forecasting adverse

cardiovascular events (28, 29). In critically ill patients, a one-unit
FIGURE 6

ROC curves for predicting all-cause mortality.
FIGURE 5

Lasso regression-based variable screening, (A) Characteristics of variable coefficient variations, (B) The process of selecting the optimal value of the
parameter l in the lasso regression model is carried out by the cross-validation method.
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rise in the TyG index implicated in a nearly 30% or greater rise in

the risk of hospital mortality (30, 31). These results corroborate the

material role of the TyG index in assessing patient prognosis.

An interesting finding in our study is that younger patients in

the high TyG group faced a greater risk of death. This result may be

explained by the presence of more severe metabolic disturbances,

such as IR, in younger patients (32), which could accelerate the

progression of heart failure (33). Younger patients might also have

undiagnosed or poorly controlled diabetes, exacerbating heart

failure (34). Moreover, lifestyle elements, like diet and exercise,

might have an impact (35). These findings suggest that high TyG

levels in younger patients may indicate more severe IR, which can

lead to worse outcomes despite their younger age. Further studies

are needed to explore these relationships in more detail.

Earlier disquisition has authenticated that the TyG index is

more sensitive in detecting IR. It is also more specific than the high

insulin-positive glucose clamp technique (36). IR leads to reduced

insulin sensitivity, causing persistent hyperglycemia and higher

glycosylation levels. This promotes collagen buildup and chronic

fibrosis in heart tissue, eventually harming cardiac function (37). IR

also causes chronic hyperglycemia and dyslipidemia, leading to

more oxidative stress. This stress triggers inflammation, leading to

foam cell formation, blood vessel damage, and accelerated smooth

muscle cell proliferation (38). IR is linked to metabolic issues and

inflammation, with higher levels of proinflammatory cytokines,

adipokines, and catecholamines. These factors cause mild

inflammation and chronic hypercatecholinemia, affecting quality

of life and harming cardiac function (39). IR promotes

cardiovascular disease development through mechanisms that

include increasing vascular stiffness and reducing nitric oxide

(NO) bioavailability (40). Furthermore, IR can trigger a harmful

neurovascular cycle through humoral activation. This occurs by

increasing sympathetic excitability and adrenaline release, which

subsequently lead to vasoconstriction and platelet aggregation. In

extreme cases, it may even result in vascular stenosis (41, 42). IR

interacts with multiple pathways in CHF patients with DM,

significantly increasing mortality risk.

We probed the tie connecting the TyG index and fatality in

CHF and DM, developing a machine learning-based prediction

model. Our findings indicated the TyG index links to CHF and DM

prognosis. Higher TyG values are significantly implicated in a

greater risk of death. Given the high prevalence of diabetes in

CHF patients, early identification of high-risk groups is essential. As

a straightforward indicator, the TyG index can effectively represent

IR. It can effectively aid in evaluating patients’ long-term outcomes.

Additionally, machine learning models integrating the TyG index

with other clinical variables significantly enhance prognostic

predictions, offering a foundation for early intervention and

personalized treatment strategies. This study provides valuable

support for managing CHF patients with diabetes in clinical

practice and offers insights into the future use of machine

learning-based prediction tools in cardiovascular medicine.

Several limitations should be conceded regarding this study.

Firstly, as a single-center retrospective study, it cannot establish

causality and needs further validation through a multicenter
Frontiers in Endocrinology 10
prospective study. Secondly, while medication use can influence

patient outcomes, we were unable to gather comprehensive data on

medication use due to database limitations. Thirdly, The study

concentrated exclusively on the predictive power of the initial TyG

index. However, due to the inherent constraints of the MIMIC

database, discharge TyG data were not consistently available for all

patients. This limitation restricted our ability to examine variations

in the TyG index throughout the hospital stay and subsequent

follow-up. Consequently, this omission may affect the

comprehensiveness of the analysis. Fluctuations in the TyG index

during hospitalization might have offered significant understanding

of the evolving connection linking the TyG index and patient

outcomes. Lastly, due to the inherent constraints of the MIMIC

database, we could not perform a comparative analysis of the TyG

index versus other indices of IR, such as HOMA-IR and QUICKI.

Future studies should strive to encompass a wider array of IR

indicators to offer a more thorough evaluation of their prognostic

capabilities in individuals with CHF and DM.
Conclusion

Our investigation reveals that an augmented TyG index is

appreciably connected with heightened hospital and ICU fatality

rates in individuals with CHF and DM. The TyG index has the

capacity to predict malevolent outcomes. Importantly, the TyG

index is an inexpensive, readily available marker that may improve

risk stratification for patients with CHF and DM. Nonetheless,

Further multicenter trials with a forward-looking design are

necessary to substantiate these observations.
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