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Background: The cardiometabolic index, a composite indicator integrating central

obesity and lipid abnormalities, has demonstrated predictive value in several

cardiovascular diseases. However, its role in predicting major adverse

cardiovascular events among patients with atrial fibrillation remains underexplored.

Methods: In this single-center retrospective cohort study, 192 atrial fibrillation

(AF) patients under management at the Jinyang Community Health Service

Center in Pudong, Shanghai, from January 2022 to January 2024 were

enrolled. Patients were strat ified into tert i les based on baseline

cardiometabolic index (CMI). The primary endpoint was major adverse

cardiovascular events (MACE), comprising cardiovascular death, nonfatal

myocardial infarction, nonfatal stroke, hospitalization for worsening heart

failure, and coronary revascularization due to unstable angina or ischemic

events. Multivariable Cox proportional hazards models were used to assess the

independent association between CMI and MACE. Kaplan–Meier curves and

Log-rank tests were applied to compare event incidence across groups.

Restricted cubic spline analysis examined potential nonlinearity. An extreme

gradient boosting model was developed to evaluate predictive performance,

with SHapley Additive exPlanations used to assess variable importance. Subgroup

analyses were conducted to evaluate the consistency of CMI’s predictive value

across different clinical populations. The median follow-up duration was 664

days (interquartile range: 384–900 days), estimated using the reverse Kaplan–

Meier method.

Results:MACE incidence increased significantly with rising CMI levels. Compared

to the low CMI group, the high CMI group had a significantly higher risk of MACE

(HR = 5.56, 95% CI: 1.48 – 20.90, P = 0.011). Kaplan–Meier analysis showed

significant differences in cumulative incidence among the three groups (Log-

rank P < 0.001). restricted cubic spline (RCS) modeling revealed a nonlinear

positive association, with a sharp increase in MACE risk above a CMI threshold of

approximately 0.85 (P for nonlinearity < 0.001). The Extreme Gradient Boosting

(XGBoost) model achieved a C-index of 0.737 in the test set, with SHapley

Additive exPlanations (SHAP) analysis ranking CMI as the fourth most influential
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predictor, following age, left atrial diameter, and left ventricular ejection fraction.

Subgroup analyses suggested that the predictive value of CMI was particularly

evident in patients without chronic kidney disease and those without prior

catheter ablation.

Conclusion: Elevated CMI is independently associated with increased MACE risk

in patients with atrial fibrillation and demonstrates a nonlinear dose–response

relationship. As a simple, accessible metabolic indicator, CMI shows promise for

improving cardiovascular risk identification and guiding personalized

management—especia l ly in high-r isk AF pat ients without overt

metabolic dysfunction.
KEYWORDS

atrial fibrillation, cardiometabolic index, machine learning, major adverse
cardiovascular events, risk prediction
Introduction

Atrial fibrillation (AF) is one of the most prevalent persistent

cardiac arrhythmias worldwide, with its incidence rising rapidly

among the aging population and posing a significant threat to

cardiovascular health (1–3). AF not only elevates the risk of stroke,

heart failure, and all-cause mortality, but also imposes a considerable

burden on healthcare systems, making it a major global public health

concern (4). Community health service centers play a pivotal role in

the long-term management of patients with AF and serve as key

channels for referral and escalation of care. In this context, the timely

identification of high-risk individuals and the implementation of

personalized interventions have become essential responsibilities in

general practice to reduce AF-related complications.

In current clinical practice, the CHA2DS2-VASc score is

commonly used to assess thromboembolic and major adverse

cardiovascular event (MACE) risks in AF patients (5, 6).

However, this score is primarily based on clinical variables such

as age, hypertension, and diabetes, and does not adequately capture

metabolic disturbances or changes in body composition, limiting its

predictive performance in certain populations. Emerging evidence

suggests that metabolic abnormalities—particularly central obesity

and dyslipidemia—play a crucial role in the development and
tabolic index; MACE,
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progression of AF (7–10). This underscores the need for novel

metabolic markers to complement conventional risk models.

The cardiometabolic index (CMI)—a composite metric that

integrates waist-to-height ratio and the triglyceride-to-high-density

lipoprotein cholesterol ratio—reflects both central obesity and

dyslipidemia. CMI has demonstrated robust predictive value in

cardiovascular conditions such as coronary artery disease and heart

failure (11–14). Nonetheless, systematic investigations into its

association with MACE among patients with AF remain scarce,

and its independent prognostic value and mechanistic

underpinnings have yet to be clarified.

Accordingly, this study utilized a real-world, community-based

cohort to systematically examine the association between CMI and the

incidence of MACE in patients with AF. Specifically, we aimed to

determine whether CMI independently predicts MACE and to explore

potential non-linear associations. We further assessed the performance

of CMI across different clinical subgroups and its incremental value

when incorporated into traditional risk models. These findings are

expected to provide a more comprehensive approach to identifying

metabolic risk in AF patients and to support the advancement of

individualized risk management in clinical practice.

Methods

Study design and population

This single-center, retrospective cohort study included patients

with atrial fibrillation who received chronic disease management

follow-up at the Jinyang Community Health Service Center in

Shanghai from January 2022 to January 2024. The majority of

participants were referred from the Department of Cardiology at

Renji Hospital, Shanghai Jiao Tong University School of Medicine,

and enrolled in the community-based high-risk population

management platform of the regional medical consortium. These

patients underwent regular, standardized clinical evaluations and

laboratory tests.
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Inclusion criteria were: (1) age ≥18 years; and (2) a confirmed

diagnosis of AF according to the European Society of Cardiology

(European Society of Cardiology (ESC)) guidelines (15), with

enrollment in follow-up management. Exclusion criteria included:

(1) failure to meet the ESC diagnostic criteria for AF; (2)

interruption of follow-up or lack of at least one documented

follow-up visit; (3) concomitant moderate to severe valvular heart

disease, prior valve replacement surgery, or history of congenital

heart disease surgery; (4) presence of active malignancy; and (5)

missing key clinical or biochemical data, such as fasting blood

glucose or triglyceride levels.AF type was classified as paroxysmal or

persistent according to the 2024 ESC guideline definitions; the

classification recorded at baseline was used for analysis.

A total of 192 patients met the eligibility criteria and were

included in the final analysis. The study flowchart is presented in

Figure 1. The study protocol was approved by the Ethics Committee

of Renji Hospital, Shanghai Jiao Tong University School of

Medicine (Approval No.: KY2022-105-B) and adhered strictly to

the Declaration of Helsinki and relevant ethical standards. As a

retrospective study utilizing previously collected medical records,

written informed consent was not obtained. However, the ethics

committee granted a waiver of consent, considering the potential

scientific and clinical value of the study to outweigh the minimal

risk to individual privacy. All data were fully anonymized to protect

patient confidentiality and ensure data security.
Follow-up and outcome ascertainment

Follow-up and outcome data were obtained through scheduled

clinic visits, structured telephone interviews, and linkage to the

electronic health record system. The prespecified censoring date
Frontiers in Endocrinology 03
was January 31, 2024. The primary endpoint (MACE) comprised

cardiovascular death, nonfatal myocardial infarction, nonfatal

stroke, hospitalization for worsening heart failure, and coronary

revascularization for unstable angina or ischemic events; all events

were adjudicated by two cardiologists with a third reviewer

resolving discrepancies. Median follow-up was 664 days (IQR

384–900), estimated by the reverse Kaplan–Meier method.
Basic data collection

Basic clinical data for this study were sourced from the

electronic health record system of the Jinyang Community Health

Service Center. Demographic variables included age, sex, height,

weight, body mass index (BMI), waist circumference, and hip

circumference. Medical history variables included the presence of

hypertension, diabetes mellitus, coronary artery disease (CAD),

chronic kidney disease (CKD), heart failure, and stroke.

Treatment-related information encompassed anticoagulation

status and whether the patient had undergone radiofrequency

ablation. Laboratory parameters included fasting plasma glucose,

glycated hemoglobin, lipid profile components—triglycerides, high-

density lipoprotein cholesterol (HDL-C), low-density lipoprotein

cholesterol (LDL-C), and total cholesterol—as well as liver function

indicators (Alanine Aminotransferase, Aspartate Aminotransferase,

total bilirubin), renal function (serum creatinine), and complete

blood count variables including hemoglobin, red blood cell count,

hematocrit, and platelet count. Echocardiographic assessments

included the left atrial anteroposterior diameter (LAID) and left

ventricular ejection fraction (LVEF). Additionally, the following

validated clinical scores and classifications were recorded: atrial

fibrillation type, European Heart Rhythm Association (EHRA)
FIGURE 1

Flowchart of study population enrollment.
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symptom score, CHA2DS2-VASc score, and HAS-BLED score. The

primary study endpoint was the occurrence of MACE, defined as a

composite of cardiovascular death, nonfatal myocardial infarction,

nonfatal stroke, hospitalization for worsening heart failure, or

coronary revascularization prompted by unstable angina or other

ischemic events. Follow-up duration was calculated in days from

the date of enrollment to the first occurrence of a MACE or the end

of the observation period. All data were independently extracted by

two trained cardiologists. In cases of discrepancy, a third

investigator was involved to review and adjudicate the data,

ensuring accuracy and consistency.
Cardiometabolic index formula

The Cardiometabolic index was calculated using the

following formula:

CMI=WHtR * (triglycerides (TG) [mmol/L]/HDL-C [mmol/L]),

WHtR = Waist Circumference (cm)/height (cm).
Statistical analyses

All statistical analyses were conducted using R (v4.4.2) and

Python (v3.11.8) within a Jupyter Notebook environment,

leveraging packages including tidyverse, survival, rms, xgboost,

sklearn, and SHAP. All tests were two-tailed, with P < 0.05

considered statistically significant and P < 0.01 highly significant.

Preprocessing included variable selection, handling of missing

values, and normality testing. Variables with >10% missing data

were excluded. The Shapiro–Wilk test was used to assess normality.

Normally distributed variables were reported as mean ± SD and

compared via one-way ANOVA; non-normal variables as median

(IQR) using the Kruskal–Wallis H test. Categorical variables were

summarized as counts (%) and compared using the chi-square or

Fisher’s exact test, as appropriate.

To assess the association between CMI and MACE, patients

were grouped into CMI tertiles, with the lowest tertile as reference.

Cox proportional hazards models were used. Model 1: unadjusted;

Model 2: adjusted for age and sex; Model 3: further adjusted for

comorbidities (hypertension, CAD, CKD, heart failure, prior

stroke). Results were reported as HRs with 95% CIs. Trend

analysis treated CMI tertiles as a continuous variable. Model

discrimination was evaluated using Harrell’s C-index. Kaplan–

Meier curves with log-rank tests were used for cumulative

incidence comparison. Internal validation via 5,000 bootstrap

iterations provided bias-corrected C-index estimates.

Restricted cubic splines (RCS) with three knots modeled

potential non-linear associations between CMI and MACE, with

Wald test assessing non-linearity. A machine learning model using

XGBoost was developed with clinical and lab features as predictors

and MACE as the outcome. Data were split 8:2 for training/testing.

10-fo ld cross-va l idat ion opt imized hyperparameters .

Discrimination was evaluated via C-index. SHAP values

quantified each feature’s contribution. Subgroup analyses were
Frontiers in Endocrinology 04
conducted via multivariable Cox models across strata defined by

age (≥65 vs. <65), sex, hypertension, CAD, CKD, heart failure,

anticoagulation, and catheter ablation to assess consistency of

CMI’s prognostic value.
Results

Baseline characteristics

A total of 192 patients with AF were included in the analysis.

Based on baseline CMI levels, patients were divided into tertiles,

with the lowest tertile serving as the reference group in Cox

proportional hazards regression models. Baseline characteristics

across the three CMI groups are summarized in Table 1. There

were no statistically significant differences in age, height, weight,

BMI, fasting plasma glucose, or glycated hemoglobin among the

groups (all P > 0.05). However, waist circumference (P = 0.013) and

hip circumference (P = 0.022) increased significantly with higher

CMI levels, indicating a progressively stronger pattern of central

obesity. Significant differences were also observed in metabolic

parameters. Triglyceride levels were notably higher in the high

CMI group compared to the low and middle groups (1.02 [0.85–

1.20] mmol/L, 1.75 [1.57–1.88] mmol/L, and 2.31 [2.11–2.96]

mmol/L, respectively; P < 0.01). In contrast, HDL-C levels

declined markedly across tertiles (1.20 [1.16–1.26] mmol/L, 1.01

[0.96–1.06] mmol/L, and 0.82 [0.78–0.86] mmol/L, respectively; P <

0.01). Both total cholesterol and LDL-C also differed significantly

among groups (P < 0.01 and P = 0.014, respectively). No significant

intergroup differences were observed for hemoglobin levels or liver

and renal function markers (all P > 0.05). During follow-up, the

incidence of MACE varied significantly across CMI groups (P <

0.001). The MACE rates were 4.7% (3 cases), 7.8% (5 cases), and

30.2% (19 cases) in the low, medium, and high CMI groups,

respectively, indicating a substantially elevated cardiovascular risk

among patients with the highest CMI.
Association between CMI and MACE

To examine the relationship between CMI and the risk of

MACE, three Cox proportional hazards regression models were

constructed sequentially. The results are shown in Table 2 and

Figure 2. In the unadjusted model, patients in the high CMI tertile

had a significantly elevated risk of MACE compared to those in the

low CMI group (HR = 6.02, 95% CI: 1.78–20.35, P = 0.004), whereas

the medium CMI group showed no significant difference (P = 0.45).

After adjustment for demographic variables (age and sex), the high

CMI group continued to exhibit significantly increased MACE risk

(HR = 6.31, 95% CI: 1.85–21.52, P = 0.003), while age and sex

themselves were not statistically significant predictors (P > 0.05).

The medium CMI group remained non-significant (P = 0.42). In

the fully adjusted model, which incorporated additional covariates

including comorbid conditions (hypertension, CAD, CKD, heart

failure, prior stroke), the high CMI group retained a significantly
frontiersin.org
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elevated risk of MACE (HR = 5.56, 95% CI: 1.48–20.90, P = 0.011).

The medium CMI group demonstrated a non-significant upward

trend (P = 0.64), reinforcing high CMI as an independent risk factor

for adverse cardiovascular outcomes. Other variables identified as
Frontiers in Endocrinology 05
significant predictors of MACE in the final model included diabetes

(HR = 4.60, 95% CI: 1.74–12.13, P < 0.01), coronary artery disease

(HR = 4.16, 95% CI: 1.59–10.89, P < 0.01), heart failure (HR = 5.79,

95% CI: 2.06–16.30, P < 0.01). Regarding model performance, the
TABLE 1 Baseline characteristics of AF patients grouped by cardiometabolic index tertiles.

Characteristics Tertile 1 Tertile 2 Tertile 3 P-value

CMI 0.43 (0.32-0.53) 0.85 (0.72-0.98) 1.49 (1.22-1.99) < 0.01*

Age 74.00 (70.00-77.00) 73.50 (67.75-76.00) 72.00 (67.00-75.00) 0.32

Height(cm) 170.00 (162.00-172.00) 170.00 (161.00-172.00) 166.00 (160.00-172.00) 0.23

Weight(kg) 68.00 (62.75-72.00) 68.00 (60.00-70.00) 67.00 (62.00-70.50) 0.79

Waist(cm) 82.72 ± 5.38 83.47 ± 6.00 85.52 ± 5.06 0.013*

Hip(cm) 94.00 (91.75-95.00) 93.00 (90.75-95.00) 95.00 (92.00-96.50) 0.022*

BMI 23.90 (22.98-25.35) 23.66 (22.58-24.63) 24.31 (23.28-25.51) 0.07

FPG 5.60 (5.05-6.72) 5.70 (5.30-6.20) 6.00 (5.40-6.95) 0.09

Glycated hemoglobin 5.85 (5.40-6.50) 5.75 (5.50-6.38) 6.00 (5.60-6.65) 0.31

TC 4.59 (4.21-5.01) 4.95 (4.64-5.23) 5.13 (4.58-5.33) < 0.01*

TG 1.02 (0.85-1.20) 1.75 (1.57-1.88) 2.31 (2.11-2.96) < 0.01*

LDL-C 2.67 (2.33-3.09) 3.01 (2.45-3.22) 3.02 (2.52-3.44) 0.014*

HDL-C 1.20 (1.16-1.26) 1.01 (0.96-1.06) 0.82 (0.78-0.86) < 0.01*

Hemoglobin 136.50 (131.00-150.00) 136.50 (125.00-143.25) 138.00 (129.00-151.00) 0.33

RBC 4.62 (4.24-4.93) 4.60 (4.27-4.84) 4.62 (4.47-4.90) 0.56

Hematocrit 41.95 (38.00-44.57) 41.00 (37.70-43.00) 41.00 (37.50-44.00) 0.46

Platelets 162.00 (147.00-204.50) 182.50 (152.50-213.50) 201.00 (162.50-234.50) < 0.01*

Alanine Aminotransferase 20.00 (16.75-27.50) 22.00 (18.00-27.25) 23.00 (19.00-29.50) 0.17

Aspartate Aminotransferase 25.00 (20.00-29.50) 24.00 (20.75-31.00) 24.00 (20.50-31.50) 0.77

TotalBilirubin 17.80 (14.00-21.12) 17.20 (13.15-19.20) 16.90 (13.00-20.00) 0.27

SerumCreatinine 78.00 (68.00-89.00) 72.50 (67.00-82.25) 74.00 (63.00-88.00) 0.28

Ejection Fraction 60.00 (57.00-62.25) 61.00 (59.00-63.00) 61.00 (56.50-63.00) 0.46

Left Atrial Internal Diameter 43.00 (40.00-44.00) 42.00 (39.00-45.00) 42.00 (41.00-45.00) 0.67

Follow-up Duration (days) 711.00(394.50-904.00) 588.00 (330.00-818.75) 741.00 (482.00-944.50) 0.41

Gender (female) 39 (60.9%) 36 (56.2%) 37 (58.7%) 0.87

Radiofrequency Ablation 1 (1.6%) 2 (3.1%) 4 (6.3%) 0.31

Anticoagulant Use 46 (71.9%) 44 (68.8%) 38 (60.3%) 0.36

AF Type (Paroxysmal) 34 (53.1%) 30 (46.9%) 29 (46.0%) 0.68

CAD 14 (21.9%) 22 (34.4%) 18 (28.6%) 0.29

Diabetes 18 (28.1%) 14 (21.9%) 22 (34.9%) 0.26

Hypertension 28 (43.8%) 36 (56.2%) 34 (54.0%) 0.32

CKD 10 (15.6%) 9 (14.1%) 9 (14.3%) 0.96

Heart Failure 7 (10.9%) 7 (10.9%) 7 (11.1%) 0.99

Stroke 1 (1.6%) 2 (3.1%) 5 (7.9%) 0.18

MACE 3 (4.7%) 5 (7.8%) 19 (30.2%) < 0.01*
* indicates statistical significance.
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C-index—a measure of discrimination—was 0.648 ± 0.053 for

Model 1, 0.659 ± 0.056 for Model 2, and increased substantially

to 0.882 ± 0.029 for the fully adjusted Model 3 (Figure 3), indicating

excellent accuracy in differentiating high- and low-risk patients.
Kaplan–Meier analysis and restricted cubic
spline

To further explore the association between CMI levels and

MACE risk, Kaplan–Meier survival curves were plotted, and

differences in event rates among the three groups were assessed

using the Log-rank test (Figure 4). Over the follow-up period, the

cumulative incidence of MACE increased progressively across the

CMI tertiles. The high CMI group exhibited the highest cumulative

incidence, followed by the medium and low groups. The Log-rank

test confirmed that the differences among the survival curves were

statistically significant (P < 0.001). Throughout the observation

period, the low CMI group consistently showed the lowest risk of
Frontiers in Endocrinology 06
events, the medium group displayed an intermediate risk, and the

high CMI group experienced the greatest concentration of events.

These findings suggest a positive correlation between higher CMI

levels and increased MACE risk. To investigate the potential

nonlinear relationship between CMI and MACE, a RCS model

was constructed (Figure 5). The analysis revealed a nonlinear

positive association between CMI and MACE risk (P for

nonlinearity < 0.001). An inflection point was identified at

approximately CMI = 0.85. Below this threshold, the risk

increased gradually; beyond 0.85, the risk rose sharply and

continued to escalate with increasing CMI levels. This nonlinear

dose-response relationship highlights the potential threshold effect

of CMI in predicting cardiovascular risk.
XGBoost model and SHAP interpretation in
machine learning

To further enhance the predictive accuracy for MACE

outcomes and investigate the relative importance of input

features, an XGBoost model was developed. The entire dataset

was randomly divided into a training set and a testing set at a

ratio of 8:2. Model hyperparameters were optimized using ten-fold

cross-validation within the training set. In terms of predictive

performance, the XGBoost model achieved a C-index of 0.737 on

the testing set. While this performance exceeded that of the

unadjusted and demographic-only Cox regression models, it

remained lower than that of the fully adjusted Cox model. To

improve model interpretability, SHAP were applied to quantify the

marginal contribution of each variable to the model’s output

(Figure 6). Based on mean SHAP values, the top four predictors

were age (mean SHAP: 0.415), LAID (0.373), LVEF (0.317), and

high CMI category (0.302), indicating that both structural cardiac

parameters and metabolic status significantly influenced model

predictions. Other key contributors included hypertension,

diabetes, anticoagulation therapy, and coronary artery disease.
Subgroup analysis

To further assess the prognostic value of CMI for MACE across

different clinical populations, multivariable Cox proportional

hazards subgroup analyses were conducted based on key

variables, including age, sex, hypertension, CAD, CKD, heart

failure, anticoagulation therapy status, and receipt of catheter

ablation (Figure 7). The analysis identified two subgroups in

which elevated CMI was significantly associated with increased

MACE risk. Among patients without CKD, those in the high CMI

group had a significantly higher risk of MACE (HR = 5.42, 95% CI:

1.03–28.65, P = 0.047). Similarly, among patients who had not

undergone radiofrequency ablation, high CMI was also significantly

associated with MACE risk (HR = 10.8, 95% CI: 1.41–82.64, P =

0.022). No statistically significant associations between CMI and

MACE were observed in the remaining subgroups (all P > 0.05).
TABLE 2 Three Cox regression models for the association between CMI
and MACE.

Characteristics HR 95% CI P-value

Model 1

CMI Tertile 1 Reference

CMI Tertile 2 1.73 0.41 - 7.26 0.45

CMI Tertile 3 6.02 1.78 - 20.35 < 0.01*

Model 2

CMI Tertile 1 Reference

CMI Tertile 2 1.80 0.43 - 7.62 0.42

CMI Tertile 3 6.31 1.85 - 21.53 < 0.01*

Age 1.01 0.95 - 1.06 0.98

Gender 1.50 0.68 - 3.35 0.32

Model 3

CMI Tertile 1 Reference

CMI Tertile 2 1.43 0.32 - 6.48 0.64

CMI Tertile 3 5.56 1.48 - 20.90 0.011*

Age 0.99 0.93 - 1.06 0.87

Gender 0.97 0.39 - 2.42 0.94

Diabetes 4.60 1.74 - 12.13 < 0.01*

Hypertension 1.28 0.44 - 3.40 0.71

CAD 4.16 1.59 - 10.89 < 0.01*

CKD 0.92 0.29 - 2.87 0.89

Heart Failure 5.79 2.06 - 16.30 < 0.01*

Stroke 1.01 0.14 - 7.39 0.99
* indicates statistical significance.
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Discussion

This study is the first, to our knowledge, to systematically assess

the relationship between CMI and MACE in a real-world,

community-based cohort of patients with AF. The results

demonstrated that elevated CMI levels were significantly

associated with a higher risk of MACE, and this association

remained robust after comprehensive multivariable adjustment.

Both Kaplan–Meier analysis and RCS modeling revealed a

nonlinear positive relationship, with a sharp increase in

cardiovascular risk observed once CMI exceeded approximately

0.85. Additionally, subgroup analyses showed that the predictive

value of CMI was particularly evident in patients without CKD and

those who had not undergone catheter ablation.
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While previous studies have established links between central

obesity, metabolic syndrome, and AF incidence—such as findings

from the Rotterdam cohort and research in patients with type 1

diabetes mellitus (T1DM)—most of these investigations have

focused on individual metabolic components like BMI, glycemia,

or dyslipidemia, or have relied on loosely defined metabolic

phenotypes (7–10, 16). In contrast, CMI, which integrates waist-

to-height ratio and triglyceride-to-HDL cholesterol ratio, represents

a more comprehensive metabolic marker. Its role in AF-related risk

prediction, however, has not been well explored. Although CMI has

shown predictive utility in patients with coronary artery disease and

diabetes, its independent contribution and added value in AF

populations have remained unclear (13, 17–19). Our findings

provide new evidence that incorporating CMI into MACE risk

prediction models significantly enhances model performance.

Specifically, the C-index increased from 0.659 in the demographic-

only model to 0.904 in the fully adjusted model—a substantial

improvement that underscores CMI’s potential as a powerful tool

for identifying high-risk AF patients. This enhancement is

particularly relevant in primary care or resource-constrained

settings, where efficient pre-screening tools are essential. Moreover,

by integrating nonlinear spline modeling and machine learning

techniques (XGBoost with SHAP interpretation), we demonstrated

the robustness and interpretability of CMI in complex clinical

scenarios. This multimethod approach addresses limitations of

traditional regression models, which often fail to capture intricate

variable interactions and nonlinear effects. Our results suggest that

the combined use of conventional and machine learning models can

offer more nuanced and reliable risk stratification strategies,

potentially informing future research and clinical practice.

We identified a significant nonlinear relationship between CMI

and the risk of MACE, suggesting that beyond a critical threshold,

metabolic disturbances may trigger a decompensated response in

the cardiovascular system. This nonlinearity likely arises from the

FIGURE 3

Comparison of C-index values for the three models.
FIGURE 2

Forest plot of three Cox regression models. *The P-value show statistical significance.
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synergistic interplay of multiple metabolic pathways. First, central

obesity, the core component of CMI, promotes the accumulation of

visceral and pericardial fat (20–22). These adipose tissues act as

active paracrine organs, secreting pro-inflammatory cytokines (e.g.,

IL-6, TNF-a) and reactive oxygen species, which contribute to

chronic low-grade inflammation and oxidative stress (20–23).

These processes jointly drive atrial remodeling—both structural

and electrical. Prior research has shown that each 1 SD increase in

pericardial fat thickness is associated with a 2.6-fold increased risk

of atrial fibrillation (23, 24), likely mediated by inflammation

spread, autonomic nervous system activation, and myocardial

fibrosis. Second, an elevated TG/HDL-C ratio reflects significant
Frontiers in Endocrinology 08
lipoprotein metabolic dysfunction, favoring the generation of small,

dense LDL particles that promote atherogenesis (25, 26).

Concurrently, impaired HDL function compromises endothelial

protection and enhances prothrombotic activity, significantly

increasing the risk of thrombus formation—a critical concern in

AF patients who are already predisposed to ischemic stroke and

related complications (27, 28). Third, our data revealed that when

CMI exceeds approximately 0.85, MACE risk rises steeply. This

threshold effect may indicate that the cumulative metabolic burden

surpasses the heart’s compensatory capacity, resulting in overt atrial

structural remodeling (e.g., atrial dilation, fibroblast activation) and

electrical abnormalities (e.g., P-wave prolongation, heightened

ectopic activity). These structural-electrical changes likely reflect a

transition from adaptive to maladaptive myocardial responses (29,

30). Supporting this interpretation, prior studies have demonstrated

that weight reduction can reverse atrial remodeling and reduce AF

burden, underscoring the potential reversibility of these changes

(31). Collectively, these findings suggest that CMI is more than a

composite marker of central obesity and dyslipidemia—it may serve

as a key “stress axis” integrating metabolic, inflammatory,

electrophysiologic, and thrombotic pathways. Moreover, given the

pathophysiological role of central obesity and lipid dysregulation in

AF progression and MACE development, our findings underscore

the potential value of lifestyle-based interventions in mitigating

cardiometabolic risk. For instance, adherence to the Mediterranean

diet—rich in anti-inflammatory and antioxidant components—has

been shown to improve metabolic profiles and reduce

cardiovascular events among AF patients (32). These dietary

patterns may help attenuate visceral adiposity, improve HDL

functionality, and suppress systemic inflammation, thereby
FIGURE 4

Kaplan–Meier analysis.
FIGURE 5

Restricted Cubic Spline.
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potentially modulating the CMI and its downstream consequences.

Integrating such non-pharmacological strategies into AF

management may offer a practical and effective approach to

lowering MACE risk, particularly in primary prevention settings.
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The results of this study suggest that the CMI, as a simple and

readily accessible composite metabolic indicator, may serve as a

practical tool for risk stratification in patients with AF. By capturing

both central obesity burden and lipid metabolic dysfunction, CMI
FIGURE 7

Association between CMI and impaired MACE by subgroup. *The P-value show statistical significance.
FIGURE 6

Feature importance based on SHAP values for the predictive model.
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provides additional prognostic information beyond traditional

scoring systems such as CHA2DS2-VASc. Its ease of calculation

and broad availability make it particularly well-suited for use in

primary care settings or resource-limited community health

platforms, where it could aid in the early identification of high-

risk individuals, guide anticoagulation decision-making, and inform

referral strategies. Furthermore, exploratory modeling using

machine learning techniques—specifically XGBoost combined

with SHAP interpretation—demonstrated that CMI ranked

among the most important predictors in complex, nonlinear

frameworks. These findings underscore CMI’s modeling stability

and interpretability, supporting its future integration into intelligent

risk prediction systems designed to enhance precision clinical

decision-making.

Nonetheless, this study has several limitations. First, it was a

single-center retrospective analysis with a modest sample size,

which may introduce selection bias and data incompleteness.

Second, the study did not include measurements of key

mechanistic biomarkers related to inflammation, oxidative

stress, or insulin resistance, limiting insight into the biological

pathways linking CMI to cardiovascular outcomes. Third, the

relatively short median follow-up period may not fully capture the

long-term dynamic relationship between CMI and MACE.

Therefore, future research should aim to validate these findings

in larger, multicenter, prospective cohorts with extended follow-

up durations to confirm their robustness and generalizability in

diverse clinical settings.

Future research may be expanded in the following three areas:

First, by integrating mechanistic biomarkers such as inflammatory

cytokines, adiponectin levels, and insulin sensitivity indices,

researchers can systematically elucidate the metabolic–

inflammatory–electrophysiological pathways underlying CMI and

clarify its biological foundation. Second, large-scale datasets can be

used to construct CMI-based risk scoring systems and compare

them with existing tools such as the CHA2DS2-VASc score to assess

reclassification capability and incremental predictive value. Third,

further exploration is needed to determine the clinical utility of CMI

in guiding AF management—particularly in selecting

anticoagulation strategies, timing catheter ablation, and

implementing lifestyle interventions—thus facilitating the

development of a closed-loop risk management model that

connects risk prediction with targeted intervention.
Conclusions

This study demonstrates that elevated CMI levels are

significantly associated with increased risk of MACE in patients

with atrial fibrillation, exhibiting a nonlinear trend. CMI remained

an independent predictor even after adjustment for multiple clinical

risk factors. As a simple and readily available composite metabolic

indicator, CMI may aid community healthcare providers in

stratifying cardiovascular risk and guiding early intervention

planning in the management of atrial fibrillation.
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