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Dendrobium officinale is a traditional Chinese medicinal herb that has been
extensively documented in classical medical texts for its effectiveness in treating
diabetes mellitus. Modern pharmacological studies have shown that it possesses
antitumor, antioxidant, immunomodulatory, and blood glucose- and lipid-
lowering effects. Dendrobium officinale polysaccharides (DOPs), the main
bioactive constituent of this herbal medicine, interact with the gut microbiota
to reshape microbial composition, restore intestinal barrier integrity, modulate
mucosal immunity, and ultimately ameliorate metabolic disorders. This review
highlights the structural characteristics and bioactivities of DOPs, as well as the
mechanisms by which gut microbiota are involved in the pathogenesis of
diabetes mellitus. In particular, we point out that DOPs have significantly
improved metabolic indicators related to diabetes by regulating intestinal
microbiota. It aims to clarify the benefits of DOPs in ameliorating diabetes
mellitus through gut microbiota modulation and provide new perspectives for
its potential development as a prebiotic and for future clinical applications.
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1 Introduction

Diabetes mellitus is a chronic metabolic disease featured by persistent hyperglycemia.
Diabetes mellitus is primarily categorized as type 1 diabetes mellitus (T1IDM), type 2
diabetes mellitus (T2DM), gestational diabetes mellitus(GDM), and other specific types (1,
2). In recent years, the incidence of diabetes mellitus has been increasing with a trend
towards affecting younger people (3). According to the International Diabetes Federation
(IDF), there will be approximately 589 million adult patients with diabetes mellitus (ages
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20-79) worldwide in 2024, and up to 853 million patients can be
expected by 2050 (4). Type 1 diabetes mellitus (T1IDM) develops
through an autoimmune attack on pancreatic B-cells, involving
autoreactive CD4" and CD8" T lymphocytes, as well as activated
macrophages (5). Genetic factors, such as HLA (DR3-DQ2/DR4-
DQ8) and non-HLA genes (e.g., CTLA-4, PTPN22, VNTR) trigger
autoimmunity and the formation of islet autoantibodies;
Environmental factors, like Coxsackie B virus and gut dysbiosis-
related decreased butyrate, contribute to B-cell stress and intestinal
barrier disruption, leading to the translocation of bacteria/
metabolites to pancreatic lymph nodes. Crossover antigens, such
as viral or microbiota proteins, activate autoreactive CD4+/CD8+ T
cells and macrophages through molecular mimicry, causing islet
inflammation, B-cell destruction and lack of endogenous insulin
secretion (5, 6).

The core mechanisms of T2DM involve insulin resistance and
impaired B-cell function. Genetic predisposition and unhealthy
lifestyle factors, such as chronic excess caloric intake and
sedentary behavior, work together to reduce insulin sensitivity,
downregulate GLP-1/GIP receptors, weaken the cAMP-PKA
signal, and block the IRS1-PI3K-AKT and FOXOI1 pathways.
Additionally, the secretion of TNF-o. and IL-6 increases,
activating the IKKB/JNK pathway, phosphorylating IRS1/2 (serine
site), and blocking insulin signaling (7, 8). Gestational diabetes
mellitus is the condition of abnormal glucose metabolism during
pregnancy, marked by increased insulin resistance and insufficient
relative insulin secretion (9). Gestational diabetes mellitus is
typically diagnosed in mid to late pregnancy but can also happen
in early pregnancy (10). Regardless of the subtype of diabetes
mellitus, the common pathological outcome is persistent
hyperglycemia and systemic metabolic dysregulation resulting
from absolute or relative insulin deficiency (11).

The gut microbiota is the microbial community within the
human intestinal tract and is the most extensive biological system
within the body (12). It is important in maintaining host
homeostasis (13). Increasing evidence suggests that gut dysbiosis
is closely associated with the progression of diabetes mellitus. This
association is mechanistically supported by microbiota-derived
metabolites, modulation of intestinal barrier integrity, activation
of inflammatory signaling networks, and coordination of immune
responses. These factors collectively perturb the balance between
insulin sensitivity and B-cell function (14, 15).

As a classical traditional Chinese medicinal herb, D. officinale
exhibits broad pharmacological activities and has long been
esteemed in traditional Chinese medicine for its capacity to
benefit the stomach and promote fluid production, nourish yin
and clear heat. Its principal bioactive constituent, DOP, is
composed of 1,4-B-D-mannose, 1,4-B-D-glucose, and O-acetyl
groups, conferring water solubility and non-starch characteristics
(16). DOPs not only exhibit immunomodulatory, antioxidant, and
antitumor activities but also possess hypoglycemic effects and can
improve intestinal homeostasis (17). The International Scientific
Association for Probiotics and Prebiotics (ISAPP) recently defined a
prebiotic as “a substrate that is selectively utilized by host
microorganisms conferring a health benefit” (18). DOPs exhibit
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resistance to digestion, thereby promoting the proliferation of
beneficial gut bacteria. These bacteria ferment DOPs to produce
short-chain fatty acids (SCFAs), which contribute to human health.
These characteristics align with the definition of prebiotics.
Therefore, elucidating the effects of DOPs on diabetes mellitus
may hold significant clinical relevance. This review summarizes
DOPs’ chemical structure, physicochemical properties, and
bioactivities, while evaluating recent advancements in their ability
to modulate gut microbiota and ameliorate diabetes. By elucidating
underlying mechanisms and delineating prospective applications,
we aim to provide novel insights and directions for the therapeutic
exploitation of DOPs, either as a pharmacological agent or as a
potential prebiotic, in the management of diabetes.

2 The structure and characteristics of
Dendrobium officinale
polysaccharides

D. officinale is an epiphytic herb of the genus Dendrobium in the
Orchid family, which is native to East Asia and is predominantly
distributed in the southern areas of China (19). In Traditional
Chinese Medicine, D. officinale is believed to benefit stomach and
promote fluid production while nourishing yin and clearing heat
and is therefore prescribed for fluid impairment caused by febrile
disease, dry mouth and polydipsia (20). The stems of D. officinale
represent the principal medicinal part, rich in polysaccharides,
phenanthrenes, flavonoids, alkaloids, and other bioactive
metabolites (21, 22). DOPs have received considerable attention
in recent years due to their multifaceted bioactivity, including
immunomodulatory, antitumor, hypoglycemic, anti-inflammatory,
and antioxidant effects (23, 24). DOPs are mainly composed of D-
mannose and D-glucose linked by B-1,4 glycosidic bonds, and
contain acetyl groups; the polysaccharide content is related to
factors such as species, light, humidity, and temperature (19).

At present, various protocols have been developed for extracting
DOPs, with the most used method being hot water extraction
(HWE), cold-pressing (CP), freeze-thawing cold-pressing (FTCP),
ultrasound-assisted hot water extraction (UHWE), microwave-
assisted hot water extraction (MHWE), and enzyme-assisted hot
water extraction (EHWE). Comparative studies have shown that
FTCP provides the highest extraction yield and the most potent
antioxidant activity, making it the preferred technique for DOPs
recovery (25). Due to the different extraction efficiencies of these
methods, the resulting polysaccharides vary in chemical
composition, molecular weight, and macromolecular structure, all
of which impact their bioactivities. The main structural features of
some DOPs are summarized in Table 1. The biological activities and
research methods of some DOPs are summarized in Table 2.

Sun et al. (26) isolated a 4.56-kDa low-molecular-weight
glucomannan (DOPs) from the 75% ethanol supernatant of D.
officinale. These DOPs had a mannose-to-glucose molar ratio of
5.78:1.00, an 0.-(1,3)-Glcp main chain and o-(1,4)-Glcp plus B-
(1,4)-Manp branches. It showed dose-dependent reversal of CTX-
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TABLE 1 Extraction methods and structural characteristics of some DOPs.
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Monosaccharide

extraction method o Backbone Branch Reference
composition
°C h , 75% ethanol
DOP 80°C hot water, 75% ethano 456 Man: Gle: =5.78: 1.00 0-(1,3)-Glep B-(1,4)-Manp, 0-(1,4)-Glep (26)
precipitation
80°C distilled water, 80% ethanol Man: Glc: Gal: Ara=3.13:
DOP-1 o 5337 — — (27)
precipitation 1.34: 0.02: 0.01
DOP-2 80°C- d‘isti‘lled water, 80% ethanol 1595 Man: Glc: Gal: Ara=3.13: - B @7)
precipitation 1.24: 0.12: 0.02
100°C deionized water extracti B-(1—4)-D-Manp, BG_I(I_:‘)-D'-Nllalg1 }B BG: 1_)4);:1]3_
ionized water extraction, , termin -D- , an
DOP-W3-b cronizec water extraction, 115 43 Man: Gle=4.5: 1.0 B-(1—4)-D-Glep, p- °p, termina P> 2 (28)
80% ethanol precipitation O-acetyl groups attached to O-
(1—3,6)-D-Manp
2 of B-(1—4)-D-Manp
0, isti 0 i -D-
100 C distilled .water and IA_) Man: Glc: Ara=40.2: 8.4: (1—4)-linked B D (1—3) -linked Manp, (1—3)
DOP-1-Al polyvinylpyrrolidone extraction, 130 1 Manp, (1—4)-linked linked Gl (29)
-l1nKe C]
60% alcohol precipitation B-D-Glcp P
90°C hot deionized water, 80% 1—4)-B-D-Manp,
DOP-1-1 ot delonized water, ST 179 Man: Gle=5.9: 1.0 (1-4)-B-D-Manp — (30)
ethanol precipitation (1—4)-B-D-Glcp
Extracted thrice with water and . 1,3,4-linked Manp, 1,2,4-linked
. . 1,4-linked Manp, .
DOPA-1 precipitated with anhydrous 394 Man: Glc=5.8: 1.0 . Manp, 1,4,6-linked Manp, (31)
1,4-linked Glcp i
ethanol 1,4,6-linked Glcp
1,3,4-linked Manp, 1,2,4-linked
Extracted thrice with water and 1,4-linked Manp, Manp, 1,4,6-linked Manp,
DOPA-2 2 Man: Glc=4.5: 1. 31
0 precipitated with 80% ethanol 36 an: Gle=4.5: 1.0 1,4-linked Glcp 1,4,6-linked Glep, 1,6-linked Gn
Manp, 1,3,4-linked Glcp
Ultrasound-assisted enzymatic Man: Gle: Gal:
! - 1
DOP . ym 2200 Ara=74.17: 47.80: 9.03: — — (32)
extraction
1.00
100°C deionized wat traction, -(1—4)-D-Manp,
DOPa C deionized water extraction, | ¢, Man: Gle=5.6: 1.0 B-(1—4)-D-Manp residues (33)
71.25% ethanol precipitation B-(1—4)-D-Glcp
100°C deionized wat traction, -(1—4)-D-Manp,
DOPb elomzed water extraction, - < Man: Gle=5.9: 1.0 B-(1—4)-D-Manp residues (33)
71.25% ethanol precipitation B-(1—4)-D-Glcp

induced immune suppression and oxidative damage in mice by
increasing immune organ indices, enhancing immune cell activity,
and up-regulating IL-2, IFN-y, TNF-0, SOD, and GSH-Px levels.
Wang et al. (38) obtained DOPS-1 (1,530 kDa) from D. officinale
stems using conventional hot-water extraction. This polysaccharide
had mannose, glucose, and galacturonic acid ratio of 3.2: 1.3: 1 and
contained (1—4)-B-D-Glcp, (1—4)-B-D-Manp, and 2-O-acetyl-
(1—4)-B-D-Manp residues, giving it both antioxidant and
antitumor properties. Studies have shown that the high mannose
content of DOPs is linked to its pancreatic lipase-inhibitory
activity, the degree of branching is associated with o-amylase
inhibition, and the branched structure contributes to intestinal
immunomodulatory effects (28, 39). Xie et al. (28) extracted D.
officinale stem powder with 80% ethanol, followed by sequential
elution with water and NaCl solution to yield the neutral fraction
DOP-W. The activity of DOP-W surpassed that of the acidic
fraction DOP-S. Subsequent precipitation and purification
identified the most potent subfraction as DOP-W3-b, which
exhibited a molecular weight of 1.543 x 10* Da, a mannose-to-
glucose molar ratio of 4.5:1.0, and a pronounced enhancement of
intestinal immune responses in mice. Its immunomodulatory
activity significantly exceeded that of W3-a (+18.9%) and W3-c
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(+53.5%). The drying protocol significantly affects the
polysaccharide content of D. officinale. Freeze-drying is optimal
for preserving the glucomannan-rich DOPs fraction (40).
Collectively, these diverse DOPs extraction methods may lead to
different compositions of DOPs and varied bioactivities.

3 Relationship between gut
microbiota and diabetes mellitus

3.1 Composition and functions of gut
microbiota

The human gastrointestinal tract houses most host-associated
microorganisms, whose combined biomass exceeds that of human
somatic cells by approximately one order of magnitude (41). The
gut microbiota is made up of distinct bacterial phyla dominated by
Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria, which
respectively make up 64%, 23%, 8%, and 3% of the community (42,
43). Different microbial taxa have specific functions and can be
categorized as beneficial, neutral, and harmful bacteria based on
their impact on human health. Early infancy is a critical period for
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TABLE 2 Biological activities and research methods of some DOPs.

10.3389/fendo.2025.1683752

Bioactivities Evaluation metric Health outcome Reference
bop Crude RAW?264.7 macrophages = OD490nm
Immuno-enhancing  DOP-1 Purified | In vitro BALB/c mouse spleen Splenocyte proliferative index | Induce macrophage aftivation @7
cells (SPI) Induced T cell activation
DOP-2 | Purified YAC-1cells TNF-0, IL-1B, IL-2, IL-4
Phagocytosis rate and
phagocytic index of Enhance macrophage
ICR mice induced b; h h i
Immuno-enhancing = DOP Purified | In vivo fmice uc'e ¥ macrophiages . phagocytosis . (32)
cyclophosphamide Blood routine examination Increased anti-inflammatory
IgA, IgG, IL-1, IL-6, IL-10 cytokines
CD4", CD8*
Enhance intestinal DOP- . . . INF-y, IL-4, sIgA Enhance intestinal immune
. . Purified | In vivo ICR mice ) . (28)
immune activity W3-b Ileal section activity
Digested by hi intestinal
Beneficial effects on In vitro f ati SCFA {gesl)e‘ ! Y g u,maI;:;]: esfma
vitro fermentation microbi rin,
intestinal DOP Crude In vitro  vitro fermentatio DNA extraction and 16S croblo .a uring © (34)
microbiota model rRNA gene sequencin fermentation
u
8 4 & SCFA production increases
WDOE Crude FBG, FINS, HOMA-IR,
STZ/HFD induced HbAlc, OGTT, IPITT,TC, Improve metabolism, regulate
Antidiabetic effects In vivo T2DM model in C57BL/ = TG, LDL-C, HDL-G blood lipids, and reverse (35)
WDOP1 | Purified 6] mice DNA extraction and 16S dysbiosis of the microbiota
rRNA gene sequencing
FBG, TC, TG, CK, LDH, 1IjoTA(;elringl blood glucose and
Attenuates diabeti STZ induced diabet MDA, T-50D Ilptlrb'?e ' idative st
n iabeti ing i nhibiting oxidative stress,
enuates QABEHC 1 pog Crude  Invivo cuced CIADELES 1 NE Kb, TNF-0, IL-1B fibIng oxicative stress (36)
cardiomyopathy model in Kunming mice lipid accumulation,
TGF-B1, Collagen I, R
: X inflammatory responses, and
Fibronectin . .
myocardial fibrosis
AOM/DSS induced Clinical s')fmptoms, intestinal ' ' N
colitis associated permeability Relief of chronic colitis
Anti-cancer DOPS Purified In vivo Inflammation score, number Inhibit tumor growth (37)
colorectal cancer model . . . s
in BALB/c mice and size of tumors Reduce intestinal permeability
! ! TNF-q, IL-1B, IL-10

establishing microbiota, during which microbial diversity increases
rapidly and later stabilizes due to the combined effects of host
genetics and environmental factors (12). Under normal conditions,
the gut microbiota maintains a relatively stable equilibrium which is
essential for human health; however, its dysbiosis can result in the
development of various diseases, including obesity, allergic diseases,
central nervous system disorders, and diabetes mellitus (44, 45).

3.2 Alterations of the gut microbiota in
diabetes mellitus

Accumulating evidence consistently demonstrates that the
composition of gut microbiota is significantly imbalanced in
individuals with diabetes mellitus (Figure 1). Larsen et al. (46) were
the first to show significant compositional differences between the
intestinal microbiota of diabetic patients and healthy people.
Specifically, the Bacteroidetes/Firmicutes ratio was significantly
higher in the diabetic cohort and correlated positively with plasma
glucose levels. Additionally, the relative abundance of the Clostridia
class was dramatically reduced, while the Betaproteobacteria class was
significantly enriched and also positively correlated with blood
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glucose levels (46). Qin et al. (47) identified around 60,000 markers
associated with type 2 diabetes mellitus (T2DM) by conducting deep
sequencing of gut microbial DNA from 345 Chinese individuals,
including T2DM patients and non-diabetic controls. They revealed a
decrease in beneficial bacteria and an increase in harmful bacteria in
the T2DM gut by comparing the prevalence of genetic and functional
markers between T2DM patients and non-diabetic controls. At the
functional level, genes involved in membrane transport, oxidative
stress resistance, and xenobiotic tolerance were enriched, while those
related to bacterial motility, cofactor and vitamin metabolism, and
butyrate biosynthesis were diminished (47). Murri et al. (48) provided
the first evidence linking T1DM to alterations in the gut microbiome.
Children with TIDM showed a significant reduction in
Actinobacteria and Firmicutes, along with a notable increase in
Bacteroidetes, resulting in a markedly decreased Firmicutes/
Bacteroidetes ratio compared to healthy peers. Gestational diabetes
mellitus (GDM) is also accompanied by distinct microbial shifts.
Bifidobacterium is less abundant in GDM patients than that in
normoglycemic pregnant women (49). In pregnant women with
gestational diabetes, the abundance of the Gammaproteobacteria
class and its associated genus Haemophilus is significantly
increased, which is correlated with elevated levels of C-Reactive
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FIGURE 1

Gut microbiota composition changes under different physiological conditions and its dysbiotic shifts in diabetes mellitus.

Protein (50). Interestingly, some studies suggest that despite the
significant alterations in gut microbiota and the increased inter-
individual variability observed during late pregnancy, with overall
increases in Proteobacteria and Actinobacteria that can induce
symptoms resembling metabolic syndrome, these changes are
beneficial in the context of pregnancy, as they help provide energy
for the fetus and prepare for lactation (51).

3.3 Gut microbiota metabolism and
diabetes mellitus: underlying mechanisms

The gut microbiota and its metabolites are crucial in the onset
and development of diabetes mellitus. These microbial communities
help the host acquire the nutrients and facilitate the breakdown and
fermentation of dietary substrates, which in turn affects carbohydrate
metabolism and produces short-chain fatty acids (SCFAs), secondary
bile acids, lipopolysaccharides, and other bioactive molecules (52).
These metabolites interact with various host physiological systems
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through different pathways, influencing metabolic, immunological,
and neurological functions (53-55). Hence, gut microbiota can be a
therapeutic target for metabolic disorders. Interventions such as
prebiotic or probiotic supplementation and fecal microbiota
transplantation are currently being studied (56, 57). While the
exact causal relationships and mechanisms linking specific
microbial taxa or metabolites to diabetes mellitus are not yet fully
understood, a significant amount of research indicates that gut
microbiome signatures can serve as reliable biomarkers strongly
linked to the development and progression of the disease.
Short-chain fatty acids (SCFAs)—primarily acetate, propionate,
and butyrate—constitute the predominant metabolic products of
the gut microbiota (58). Propionate enhances hepatic glycogen
storage, upregulates lipoprotein lipase (LPL) activity, and
attenuates the proinflammatory cytokine interleukin-8 (IL-8),
thereby preserving intestinal barrier integrity (59). Furthermore,
propionate exerts direct effects on pancreatic 3-cells by stimulating
insulin secretion and inhibiting B-cell apoptosis via the FFAR2-
Gq-PKC signaling axis (60). Butyrate is avidly absorbed by colonic
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epithelial cells and serves as their principal energetic substrate,
providing approximately 60-70% of their energy requirements (61).
Acetate, which is present at higher concentrations in the colon than
butyrate, is predominantly associated with de novo lipogenesis (61,
62). Beyond their role as metabolic fuels, SCFAs modulate host
physiology through two principal signaling mechanisms: activation
of G-protein-coupled receptors (GPCRs) and inhibition of histone
deacetylases (HDACs) (63, 64). SCFAs function as cognate ligands
for GPCRs—namely GPR41, GPR43, and GPR109A—expressed on
intestinal epithelial, adipose, lymphoid, and immune cells, thereby
initiating downstream signaling cascades (65, 66). Engagement of
GPCRs by SCFAs promotes glucagon-like peptide-1 (GLP-1)
secretion, enhances satiety and insulin sensitivity, and improves
glucose homeostasis while concurrently suppressing IL-6 and IL-8
production, thus exerting anti-inflammatory effects (63, 67).
HDAGC:s are a family of enzymes that remove acetyl moieties from
both histone and non-histone proteins, thereby compacting
chromatin structure and repressing gene transcription (68).
HDAC: are indispensable for hepatic glucose homeostasis; their
selective suppression lowers fasting glycaemia and ameliorates
glucose tolerance (69). SCFAs act as endogenous HDAC
inhibitors, and their inhibitory efficacy is concentration-
dependent. The underlying mechanisms appear to involve both
direct intracellular uptake via specific transporters and indirect
suppression mediated through GPCR activation (70).

Bile acids are steroid-derived acids synthesized from hepatic
cholesterol and serve as pivotal regulators of lipid digestion and
absorption. Their bidirectional interactions with the gut microbiota
have been causally linked to the risk of diabetes mellitus (71). Bile acids
contribute to metabolic dysregulation through three primary
mechanisms: (i) modulation of microbial community structure and
function, (ii) intracellular or organ-level accumulation of bile acids, and
(iii) perturbation of microbiota-dependent bile-acid signaling (72). The
impact of bile acids on microbial composition can be exerted either
directly through membrane-disrupting physicochemical eftects or
indirectly through activation of the nuclear receptor FXR (73).
Reciprocally, intestinal microbes enzymatically modify bile-acid pools
through deconjugation and dehydroxylation, thereby altering their
relative abundance and signaling capacity. For example, enhanced 70.-
dehydroxylation by specific bacterial taxa increases the proportion of
secondary bile acids, leading to their accumulation within the gut
lumen. Excessive luminal bile-acid concentrations can stimulate
intestinal immune cells to release proinflammatory cytokines (e.g.,
TNF-a, IL-6, IL-1B), thereby fostering chronic low-grade
inflammation implicated in type 2 diabetes mellitus (T2DM) (74, 75).
The principal receptors mediating bile-acid signaling are the farnesoid X
receptor (FXR) and the G-protein-coupled receptor TGR5. FXR
activation represses hepatic gluconeogenesis by down-regulating the
transcription of phosphoenolpyruvate carboxykinase (PEPCK) and
glucose-6-phosphatase (G6Pase), thereby ameliorating diet-induced
hyperinsulinemia and hyperglycemia (76). In contrast, TGR5
activation promotes GLP-1 secretion, enhances pancreatic [3-cell
function, augments insulin release, and improves glucose tolerance (77).

Endotoxin is a lipopolysaccharide (LPS) component of the cell
wall of Gram-negative bacteria, which is only released in small
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amounts in the normal gut microbiota. LPS is a key trigger for
metabolic diseases and is linked to obesity and insulin resistance
(78). A high-fat diet increases the number of intestinal Gram-
negative bacteria and the level of plasma LPS. Continuous
subcutaneous injections of LPS can cause the same effects as a
high-fat diet, including impaired fasting blood glucose,
hyperinsulinemia, and increased body weight. CD14 mutant mice
(LPS receptor inactivation) delay the onset of insulin resistance and
obesity under a high-fat diet and completely block hepatic steatosis
(78). Qin J et al. (47) found that the abundance of LPS produced by
gut microbiota was positively correlated with fasting blood glucose
and HOMA-IR (an assessment indicator of insulin resistance) when
performing metagenomic analysis on patients with T2DM. When
the number of Gram-negative bacteria in the intestine increases or
intestinal permeability changes, the concentration of LPS in serum
increases, which may induce endotoxemia and insulin resistance
(79). Toll-like receptors (TLRs) can recognize pathogen-associated
molecular patterns (PAMPs) from the microbiome and are mainly
present on the surface of immune cells (80). LPS binds to the TLR4
receptor, activates the NF-xB pathway, initiates the transcription of
proinflammatory genes such as IL-6, IL-1, and TNF-q,, causes an
inflammatory response, and leads to the occurrence of insulin
resistance (81).

Intestinal immune-metabolic homeostasis is orchestrated by
the tripartite interplay of SCFAs, BAs, and LPS. SCFAs reinforce
epithelial barrier integrity, suppress NF-kB-driven inflammation,
counteract LPS translocation and toxicity, and fine-tune bile-acid
metabolism via FXR signaling (82). Conversely, BAs sculpt the
microbial community through direct antimicrobial activity, thereby
modulating SCFAs production (72). LPS perturbs this equilibrium
by triggering TLR4-mediated pro-inflammatory cascades (83).
Precise spatiotemporal balance among these three metabolite
classes is therefore indispensable for maintaining gut microbiota
stability and host health.

4 The mechanism of Dendrobium
officinale polysaccharides regulating
gut microbiota to improve diabetes
mellitus

Imbalance in gut microbiota is closely correlated with the
occurrence and development of diabetes mellitus. Changes in the
gut microbiota of diabetic patients can worsen metabolic disorders
in the human body. As a traditional Chinese herbal medicine, D.
officinale has been used to regulate blood sugar and improve
metabolism for thousands of years. Modern pharmacological
studies have also shown that DOPs are effective in preventing and
treating diabetes mellitus (35). Due to its indigestible characteristics,
it is suggested that DOPs improve diabetes mellitus by regulating
gut microbiota. Chen et al. (84) established a conventional
type 2 diabetes mellitus (T2DM) mouse model via high-fat diet
feeding combined with streptozotocin injection, and subsequently
generated a pseudo-germ-free model by continuous administration
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of a broad-spectrum antibiotic cocktail in drinking water. The
authors demonstrated that the glucolipid-metabolic benefits,
suppression of LPS translocation, and anti-inflammatory effects
elicited by DOPs are strictly dependent on an intact gut microbiota.
As such, DOPs can ameliorate diabetes mellitus via modulation of
the gut microbiota (Figure 2).

4.1 Dendrobium officinale polysaccharides
regulate the relative abundance of gut
microbiota

The bioavailability of DOPs is poor, and their complex

polysaccharide structure makes them difficult to digest. It

10.3389/fendo.2025.1683752

interacts with the gut microbiota in the distal intestine to exert its
function (85). An in vitro fermentation study on DOPs showed that
after 48 hours of co-culture fermentation, 63.88% of the total
carbohydrates in the DOPs treatment group were consumed. The
concentrations of mannose, glucose and galactose were reduced,
and the total SCFA production was significantly increased,
indicating that DOPs can be degraded into monosaccharides and
utilized by the gut microbiota (34). DOPs have a regulatory effect on
the relative abundance of gut microbiota, can regulate the
proportion of various types of flora, reduce LPS-producing
bacteria (such as Helicobacter), enhance the production of short-
chain fatty acids, repair the intestinal barrier, and improve
metabolic diseases (84). Animal experiments have shown that
DOPs significantly increase the abundance of Firmicutes and
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Bacteroidetes, while inhibiting Proteobacteria, and selectively
amplify probiotics (such as Bifidobacterium, Lactobacillus, and
Allobaculum) by more than 94% (84). Another study established
a T2DM mouse model by high-fat diet combined with
streptozotocin and showed that the WDOPI1 treatment group and
the metformin treatment group showed similar effects. Both could
significantly reduce fasting blood glucose, serum insulin levels, and
HbAIc levels of T2DM mice, and improve glucose intolerance and
insulin resistance (35). In terms of gut microbiota, the WDOE/
WDOPI treatment group reversed the gut microbiota imbalance of
T2DM mice, normalized the ratio of Firmicutes/Bacteroidetes, and
reduced the abundance of harmful bacteria (such as Enterococcus
casseliflavus and Eubacterium plexicaudatum) (35).
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4.2 Dendrobium officinale polysaccharides
repair intestinal barrier damage

Intestinal barrier functions as the defense system which is
composed of the intestinal mucosal barrier and intestinal-associated
lymphoid tissue. The intestinal epithelium is the key barrier for the
body to resist endogenous and exogenous harmful substances. The
integrity of the barrier is vital in the stability of the intestinal
microenvironment (85, 86). It is well known that increased
intestinal permeability leads to bacterial translocation and
lipopolysaccharide penetration, causing metabolic endotoxemia.
This is associated with autoimmune reactions, chronic
inflammation, and promotes the occurrence and development of
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FIGURE 3

DOPs improve LPS leakage and inflammation levels through gut microbiota. LPS binds to CD14 and TLR4-MD2 complexes in the intestinal lumen,
activating downstream signaling molecules TAK1, TAB1, TAB2, and TAB3, which in turn activate IKKa, IKKB, IKKy, and further activate NF-«B,
exacerbating the inflammatory response. DOPs reduce inflammation by inhibiting Helicobacter pylori, decreasing the production and leakage of LPS,

and inhibiting the formation of the TLR4-MD2 complex.
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TI1DM and T2DM (87, 88). As shown in Figure 3, DOPs inhibit the
expression of TLR4 and its downstream signaling molecules TRAM
and TRIF by reducing LPS, thereby reducing the phosphorylation of
IKKB and NF-xB p65 and blocking the activation of the NF-kB
pathway (84). Importantly, DOPs have been shown to be able to repair
intestinal barrier damage. DOPs can reduce intestinal permeability by
upregulating the expression of intestinal tight junction proteins (ZO-1,
occludin) and Bcl-2 proteins. It also downregulates the expression of
Bax and caspase-3 proteins, enhancing the tight junctions between
intestinal cells, and reducing intestinal epithelial cell apoptosis (89). In
mice with T2DM induced by a high-fat diet combined with
streptozotocin, polysaccharides from D. officinale upregulated the
expression of tight junction proteins ZO-1, Occludin, and Claudin-
1. This reduced the levels of intestinal permeability indicators DAO
and D-LA, inhibited LPS leakage, inflammation, and oxidative stress,
and alleviated insulin resistance (90).

4.3 Immunomodulatory effects of
polysaccharides from Dendrobium
officinale

The three polysaccharides of D. officinale play a role in
immunomodulation, and their impact on immunomodulation may be
connected to gut microbiota. Inflammatory factors are related to the
advancement of diabetes mellitus and related metabolic disorders and
can hinder the function of the insulin signaling pathway, affecting
human metabolism. The NF-kB signaling pathway is linked to

DOP

l Glucagon

Adenylyl cyclase (AC)

(o)

G protein activation

)

Active

Protein
kinase A

/—\ ®
GS GS

GPb
>@@

®(;pa Glycogen synthesis T

Glycogen degradation

FIGURE 4

/\

10.3389/fendo.2025.1683752

metabolic diseases. As it disrupts insulin signaling by controlling the
expression of proinflammatory cytokines (such as TNF-o,, IL-10, and
IL-6), resulting in insulin resistance (91). Research indicates that
following DOW-5B treatment, there were significant changes in the
levels of IL-10 and TNEF-o levels in mouse serum, with a notable increase
in IgM levels (92). Polysaccharides DOPs, isolated from the leaves of D.
officinale, markedly downregulate the expression of IL-1f, IL-6, and
TNEF-o by inhibiting the TLR4/NF-kB/NLRP3 signaling axis (93).
Another animal study demonstrated that DOPs treatment can
decrease the levels of two inflammatory cytokines, IL-6 and TNF-o,, in
serum, and resulted in a decrease in the weight of mice in the DOPs
treatment group, possibly due to DOPs inhibiting the activation and
proliferation of CD4+ T cells (94). The immune regulatory pathway of
DOPs is associated with alterations in gut microbiota composition.
DOPs significantly increased the proportion of beneficial bacteria in the
intestine (such as Bifidobacterium, Lactobacillus, etc.), while reducing
harmful bacteria in the intestine, increasing anti-inflammatory
metabolites like butyrate in the intestine, thereby restraining the
overactivation of CD4+ Th cells, decreasing inflammatory factors such
as TNF-0/IL-6, and achieving a flora-immune synergistic
regulation (94).

4.4 Dendrobium officinale polysaccharide
improves the metabolic environment

Long-term high-fat, high-calorie diets inhibit the activity of
liver lipoprotein lipase (LPL), hinder lipoprotein catabolism,
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DOPs-mediated regulation of hepatic glucagon and insulin signaling pathways. The binding of glucagon to the glucagon receptor (GCGR) activates
adenylyl cyclase (AC), leading to increased cAMP levels and subsequent activation of protein kinase A (PKA). This cascade promotes glycogen
degradation by phosphorylating glycogen phosphorylase (GP) and inhibiting glycogen synthase (GS). Insulin and DOPs activate the PI3K/Akt pathway,
which phosphorylates and inactivates FoxO1, thereby reducing the expression of gluconeogenic enzymes PEPCK and G6Pase.
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increase blood triglyceride (TG) and low-density lipoprotein
cholesterol (LDL-C) levels, lead to metabolic disorders, and
increase the risk of diabetes mellitus (95, 96). Oral administration
of DOPs can increase serum insulin and reduce fasting blood
glucose (FBG) and glycosylated serum protein (GSP) levels in
alloxan-induced diabetic mice, which may be related to its ability
to repair damaged pancreatic tissue and improve insulin secretion
(97). In vitro experiments have also shown that DOPs can improve
obesity-related insulin resistance and abnormal lipid metabolism,
and its effects are closely related to PPAR-y (98). DOPs can lower
blood glucose by suppressing hepatic gluconeogenesis via inhibition
of the glucagon-cAMP-PKA and Akt/FoxOl pathways while
enhancing glycogen synthesis and stability (99). Furthermore,
concurrent activation of the PPAR-RXR axis increases fatty acid
oxidation and insulin sensitivity, resulting in a sustained reduction
of fasting glucose and improved glucose tolerance (100). Together,
these data suggest that DOPs can affect glucose metabolism
(Figure 4). DOPs can also significantly improve amino acid
metabolism disorders in diabetic rats. In animal experiments, it
was found that the ability of diabetic rats to metabolize branched-
chain amino acids (BCAA) weakened, but the content in their
blood was significantly increased. At the same time, the number of
genes related to BCAA synthesis in the gut microbiota increased.
DOPs treatment reduced the abundance of genes related to
BCAA biosynthesis and improved BCAA metabolism (101). The
gut microbiota participates in carbohydrate metabolism
and nutrient absorption, producing products such as short-
chain fatty acids SCFAs. Imbalance in the flora can interfere
with blood sugar metabolism and increase the risk of
diabetes. DOPs can significantly increase the content of total
SCFAs in the colon of mice, especially acetic acid and butyric
acid, and reduce the pH value of the colon environment, which is
conducive to the production of prebiotics and butyrate, thereby
regulating the balance of the flora and improving intestinal
health (102).

5 Conclusion

As a metabolic disease, diabetes mellitus is linked to human
metabolic disorders and gut microbiota imbalance. In recent years,
improving diabetes mellitus and its complications through gut
microbiota has become a research hotspot, and diabetes mellitus
therapy based on gut microbiota has become a new treatment idea
after traditional therapy. As a traditional Chinese medicine, the
effective active ingredient of DOPs has shown potential
pharmacological effects in the treatment of diabetes mellitus. By
regulating the relative abundance of gut microbiota, repairing
intestinal barrier damage, regulating immune function, and
improving the metabolic environment, it neutralizes the
imbalance of gut microbiota, weakens the inflammatory state,
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improves metabolic disorders, and is beneficial to the treatment
of diabetes mellitus. Natural compounds represented by DOPs are
expected to provide new intervention strategies for the treatment of
diabetes-related diseases. In the future, DOPs can be further studied
as a prebiotic and combined with probiotics in adjuvant therapy or
dietary intervention for diabetic patients, especially for patients with
prediabetes. In clinical practice, a new “bacteria-drug synergy”
intervention strategy is provided for diabetic patients, targeting
gut microbiota and performing compatibility quantification based
on the patient’s baseline flora characteristics. However, it is worth
noting that although the prebiotic potential of DOPs is supported
by animal studies and in vitro data, there are currently no registered
or published human clinical trials testing their effects on gut
microbiota or metabolic outcomes. Therefore, the optimal dose-
response relationship, intervention duration, and long-term
safety of DOPs as candidate prebiotics have not yet been
determined. In addition, the development of functional foods of
DOPs can be promoted to provide low-dose, long-term safety
solutions for people with sub-health and chronic diseases,
reducing drug dependence and medical expenses. However, some
problems still need to be solved to achieve its widespread
clinical application. The biological activities of DOPs are related
to their chemical structure and molecular weight. The relationship
between structure and function needs to be clarified. The
optimal extraction method and dosage need to correspond to its
applicable population and efficacy. In addition, the mechanism of
DOPs acting on gut microbiota is not yet completely clear. DOPs
lack large-scale double-blind clinical trials to verify the results of
animal experiments and in vitro experiments to ensure their safety
and effectiveness in humans. Efforts can also be put into the
combined application effect of DOPs and other anti-diabetic
drugs to provide a new perspective for the clinical treatment of
diabetes mellitus.
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