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Objective: To investigate the feasibility and clinical value of constructing a
predictive model for early detection of organ damage in hypertensive patients
based on catecholamine-related indicators (norepinephrine, normetanephrine,
and metanephrine), serum uric acid, and other clinical parameters.

Methods: A total of 421 hypertensive patients were enrolled and divided into a
training set (n = 295) and a validation set (n = 126) in a 7:3 ratio. Baseline data
were collected, including catecholamine-related indicators (norepinephrine,
epinephrine, normetanephrine, and metanephrine), serum uric acid, blood
pressure parameters, target organ structural markers (left ventricular posterior
wall thickness, carotid intima-media thickness, etc.), and clinical characteristics.
Organ damage (defined as left ventricular hypertrophy, carotid intima-media
thickness >1.0 mm, or elevated serum creatinine) was set as the outcome event.
Univariate and multivariate logistic regression analyses were performed to
identify independent predictors, followed by the construction of a nomogram
model for performance evaluation and validation.

Results: The incidence of organ damage was 44.07% (130/295) in the training set
and 42.06% (53/126) in the validation set. Multivariate regression revealed that
norepinephrine, normetanephrine, metanephrine, serum uric acid, serum
creatinine, duration of hypertension, and cystatin C were independent
predictors of organ damage (all P < 0.05). The nomogram model
demonstrated C-indices of 0.834 and 0.823 in the training and validation sets,
respectively, with AUCs of 0.834 (95% CI: 0.779-0.888) and 0.823 (95% CI:
0.732-0.914). Sensitivity and specificity were 0.717 and 0.819 in the training set
and 0.711 and 0.776 in the validation set. Calibration curves indicated good
agreement between predicted and observed values, with Hosmer-Lemeshow
test P-values of 0.617 and 0.472, respectively.

Conclusion: The predictive model constructed based on relevant indicators such
as catecholamines and serum uric acid in this study can effectively predict the risk
of organ damage in hypertensive patients, intervene early, and provide a
quantitative basis for clinical decision-making.
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Introduction

Hypertension is one of the most prevalent chronic diseases
worldwide, with an adult prevalence rate of 23.2% in China. The
resultant target organ damage (TOD) (e.g., cardiac hypertrophy,
renal impairment, carotid artery lesions) serves as a major driver of
cardiovascular events and mortality (1, 2). Studies indicate that
approximately 30%-50% of hypertensive patients develop at least
one organ injury within five years of diagnosis, whereas early
detection during the asymptomatic phase may reduce
cardiovascular risk by 20%-30% (3, 4). Conventional organ
damage detection relies on ultrasound and biochemical markers,
yet these methods suffer from insufficient sensitivity or delayed
detection (e.g., serum creatinine only shows significant elevation
after >50% renal function loss).

Catecholamines, as key biomarkers of sympathetic nervous
activity, contribute to target organ damage through mechanisms
such as sustained vasoconstriction and enhanced oxidative stress
due to metabolic dysregulation (e.g., elevated norepinephrine).
Concurrently, serum uric acid (SUA) participates in renal and
vascular injury via crystal deposition and inflammatory responses.
Both factors have been widely validated in association with
hypertensive organ damage (5-7). However, single biomarkers
exhibit limited predictive efficacy (e.g., SUA alone yields an AUC
of only 0.65-0.70 for renal impairment prediction) and lack
integrated quantitative tools incorporating multidimensional
indicators (8-10).

With the advancement of multimodal predictive frameworks,
the construction of combined models integrating biomarkers and
clinical parameters has emerged as a promising approach. This
study aims to analyze the interactions among catecholamine
derivatives, SUA, and clinical features to establish a visualized
nomogram model, thereby improving early detection efficiency
for hypertensive organ damage and supporting personalized risk
management decision-making.

Materials and methods
Study population

A total of 421 hypertensive patients admitted between January
2023 and March 2025 were enrolled. Inclusion criteria: (1)
Diagnosis per the Chinese Guidelines for Hypertension
Management (2024 Revision) (11) (systolic blood pressure [SBP]
>140 mmHg and/or diastolic blood pressure [DBP] 290 mmHg, or
current antihypertensive medication use). (2) Age 18-80 years. (3)
Complete clinical data. Exclusion criteria: (1) Secondary
hypertension. (2) Malignancy or severe hepatic/renal dysfunction
(serum creatinine > 442 pmol/L). (3) Congenital or valvular heart
disease. (4) Acute cardio-cerebrovascular events within the past 3
months. (5) Psychiatric or cognitive disorders hindering
compliance. Patients were randomly divided into training (n =
295) and validation (n = 126) sets at a 7:3 ratio (12). The study was
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approved by the hospital ethics committee, with written informed
consent obtained from all participants.

Data collection

Demographics (age, sex, hypertension duration, smoking status, and
diabetes history) were recorded. Biochemical and molecular markers
were assayed: (1) Catecholamines (norepinephrine [NE], epinephrine
[E], normetanephrine [NMN], metanephrine [MN]) via high-
performance liquid chromatography. (2) SUA, serum creatinine, total
cholesterol, LDL-C, and cystatin C via automated biochemical analyzer.
Blood pressure parameters: 24h ambulatory blood pressure monitoring-
derived mean SBP, SBP variability, and nocturnal mean DBP. Target
organ structural indices: left ventricular posterior wall thickness
(echocardiography); carotid intima-media thickness (ultrasound).

Definition of Organ Damage (21 of the following): (1) LV
posterior wall thickness 211 mm; (2) Carotid IMT > 1.0 mmy; (3)
Serum creatinine > 115 pmol/L (men) or > 107 umol/L (women);
(4) Cystatin C > 1.25 mg/L (13).

Statistical analysis

Data were analyzed using SPSS 26.0 and R 4.2.1. Continuous
variables were expressed as mean * standard deviation (X £ SD)
(independent t-test); categorical variables as n () test). Candidate
predictors (P < 0.05 in univariate analysis) were entered into
multivariate logistic regression (stepwise regression method) to
identify independent factors, and their odds ratios (OR) and 95%
confidence intervals (CI) were calculated. A nomogram was
constructed based on independent predictors. The receiver
operating characteristic (ROC) curve was plotted, and the area
under the curve (AUC) value was calculated. A model was
considered to have good accuracy when the AUC value was
between 0.7 and 0.9 and extremely high accuracy when >0.9. A
calibration curve was plotted and evaluated using the Hosmer-
Lemeshow goodness-of-fit test. The closer the calibration curve was
to the 45-degree diagonal and the P-value of the H-L test > 0.05, the
better the consistency between the predicted probability of the
model and the actual incidence. Decision curve analysis (DCA) was
used to evaluate the clinical application value of the nomogram by
calculating the net benefit at different threshold probabilities.

Results

Baseline characteristics comparison
between training and validation sets

No significant differences (P > 0.05) were observed in age,
catecholamines (NE, E, NMN, MN), SUA, BP parameters, target
organ indices, or comorbidities (diabetes, smoking history) between
training and validation sets, confirming comparability (Table 1).
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TABLE 1 Baseline characteristics of hypertensive patients in training and validation sets.

10.3389/fendo.2025.1687023

Indicator Training set (n = 295) Validation set (n = 126)

Age (years) 49.06 + 9.67 50.51 + 9.86 1.401 0.162
Norepinephrine (NE, ng/ml) 306.09 + 82.17 308.95 + 76.21 0.334 0.739
Epinephrine (E, ng/ml) 40.21 £ 14.37 4212 £1521 1.227 0.221
Normetanephrine (NMN, pg/ml) 181.72 £ 47.13 186.25 £ 45.21 0.914 0.361
Metanephrine (MN, pg/ml) 56.88 + 19.39 58.62 + 21.25 0.819 0.413
Serum Uric Acid (umol/L) 388.14 + 77.39 399.52 + 67.52 1.434 0.152
24-hour Mean SBP (mmHg) 140.29 + 13.89 143.22 + 15.85 1.898 0.058
24-hour SBP CV 0.14 £ 0.05 0.15 + 0.06 1.766 0.078
Nocturnal Mean DBP (mmHg) 80.54 + 8.88 81.53 + 8.95 1.045 0.297
LV Posterior Wall Thickness (mm) 9.95 + 1.68 9.98 £ 1.95 0.159 0.873
Carotid IMT (mm) 0.99 +0.19 1.01 £ 0.21 0.958 0.339
Serum Creatinine ((mol/L) 81.73 £ 19.49 82.35 + 18.61 0.302 0.763
Diabetes History (Yes/No) 105/190(35.59/64.41) 46/80(36.51/63.49) 0.032 0.858
Hypertension Duration (years) 10.43 + 4.54 11.21 £5.12 1.553 0.121
Smoking History (Yes/No) 98/197(33.22/66.78) 40/86(31.75/68.25) 0.087 0.768
Total Cholesterol (mmol/L) 525+ 1.12 542 +1.21 1.392 0.165
LDL-C (mmol/L) 3.56 +0.89 3.66 £ 0.95 1.035 0.302
Cystatin C (mg/L) 1.09 + 0.31 1.12 £ 0.35 0.874 0.383

t: t-statistic of the independent t-test (for continuous variables), % chi-square statistic of the chi-square test (for categorical variables), P < 0.05 indicates a statistically significant difference

between the two sets.

Univariate analysis of factors associated with target organ
damage in hypertensive patients in training set.

In training set, 130 (44.07%) hypertensive patients with TOD
were observed, and 165 (55.93%) without TOD were observed.
Univariate analysis showed statistically significant differences
between the two groups in the following parameters:
norepinephrine, normetanephrine, metanephrine, serum uric acid,
serum creatinine, duration of hypertension, and cystatin C (all P <
0.05) (Table 2).

Multivariate logistic regression analysis of organ damage in
hypertensive patients Organ damage (Yes = 1, No = 0) was set as the
dependent variable, and covariates with P < 0.05 in univariate
analysis were incorporated into the multivariate logistic regression
model. The results demonstrated that norepinephrine (OR = 1.003,
95% CI: 1.001-1.007), normetanephrine (OR = 1.009, 95% CI:
1.002-1.015), metanephrine (OR = 1.026, 95% CI: 1.010-1.042),
serum uric acid (OR = 1.003, 95% CI: 1.003-1.007), serum
creatinine (OR = 1.036, 95% CI: 1.020-1.053), duration of
hypertension (OR = 1.088, 95% CI: 1.021-1.160), and cystatin C
(OR =12.367, 95% CI: 4.136-39.977) were independent risk factors
for organ damage in hypertensive patients (all P < 0.05) (Table 3).

Frontiers in Endocrinology

03

Construction of the nomogram prediction
model

Based on the independent risk factors identified by multivariate
logistic regression, a nomogram model was constructed. Each
variable was assigned a corresponding score based on the
standardized regression coefficients from the multivariate logistic
regression analysis. The specific assignment method was as follows:
first, the regression coefficients of each independent risk factor
(norepinephrine, normetanephrine, metanephrine, serum uric acid,
serum creatinine, duration of hypertension, and cystatin C) were
standardized; then, a base score (0 points for the minimum value of
each factor within the normal clinical range) was set, and the score
for each factor level was calculated according to the standardized
coefficients. These scores carry clinical significance: they quantify
the contribution of each factor to hypertensive organ damage
(higher scores mean stronger predictive effects), and the total
score (sum of all factor scores) directly corresponds to the
predicted risk of organ damage (a total score of 392 may
correspond to 87.8% predicted risk). The total score was
associated with the predicted risk of organ damage of
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TABLE 2 Univariate analysis of factors associated with target organ damage in hypertensive patients in training set.

Indicator TOD group (n = 130) Non-TOD group (n = 165)  t/y? P

Age (years) 50.12 £ 9.81 48.23 £ 9.51 1.671 0.096
Norepinephrine (NE, ng/ml) 318.42 + 92.51 296.33 + 71.81 2.309 0.022
Epinephrine (E, ng/ml) 4121 +16.72 39.42 +12.19 1.063 0.289
Normetanephrine (NMN, pg/ml) 189.62 + 52.32 175.51 + 41.72 2.577 0.011
Metanephrine (MN, pg/ml) 61.51 + 21.42 53.23 £ 16.82 3.719 0.001
Serum Uric Acid (umol/L) 402.51 + 85.31 376.82 + 68.72 2.865 0.005
24-hour Mean SBP (mmHg) 141.61 £ 15.22 139.33 £ 12.71 1.402 0.162
24-hour SBP CV 0.15 + 0.04 0.14 + 0.05 1.859 0.064
Nocturnal Mean DBP (mmHg) 81.42 + 9.62 79.85 + 8.21 1.511 0.132
(L;:nl;; sterior Wall Thickness 10.12 + 1.85 9.82 % 151 1533 0.126
Carotid IMT (mm) 1.01 £ 0.23 0.97 £ 0.17 1.717 0.087
Serum Creatinine (Wmol/L) 88.61 + 21.52 76.31 + 15.81 5.657 0.001
Diabetes History (Yes/No) 50/80 (28.46/61.54) 55/110 (33.33/66.67) 0.834 0.361
Hypertension Duration (years) 11.21 +5.32 9.81 +3.73 2.653 0.008
Smoking History (Yes/No) 48/82 (36.92/63.08) 50/115 (30.31/69.69) 1.436 0.231
Total Cholesterol (mmol/L) 532+ 1.21 521 + 1.05 0.835 0.404
LDL-C (mmol/L) 3.62 +091 3.52 +£0.88 0.955 0.341
Cystatin C (mg/L) 1.25 £ 0.32 0.98 + 0.25 8.137 0.001

f: t-statistic of the independent t-test (for continuous variables), %> chi-square statistic of the chi-square test (for categorical variables), P < 0.05 indicates a statistically significant difference
between the two groups.

TABLE 3 Multivariate logistic regression analysis of organ damage in hypertensive patients.

Iltem B SE ELG P OR 95% CI
Norepinephrine 0.003 0.002 3.640 0.046 1.003 1.001-1.007
Normetanephrine 0.009 0.003 7.149 0.007 1.009 1.002-1.015
Metanephrine 0.025 0.008 10.182 0.001 1.026 1.010-1.042
Serum uric acid 0.003 0.002 2.139 0.044 1.003 1.003-1.007
Serum creatinine 0.035 0.008 18.801 0.001 1.036 1.020-1.053
Duration of hypertension = 0.084 0.033 6.673 0.010 1.088 1.021-1.160
Cystatin C 2.508 0.560 19.246 0.001 12.367 4.136-39.977

B: Regression coefficient; SE, Standard error of the regression coefficient; Wald, Wald statistic for testing the significance of regression coefficient; P < 0.05 indicates a statistically significant
difference; OR, Odds ratio, representing the relative risk of organ damage when the independent variable changes; 95% CI, 95% confidence interval of odds ratio.

0.819. In the validation set, the C-index was 0.823, the Hosmer-
Lemeshow test P = 0.472, and the AUC was 0.823 (95% CI: 0.732-
0.914), with a sensitivity of 0.711 and specificity of 0.776. The ROC
and calibration curves are displayed in Figures 2 and 3.

hypertensive patients; a higher total score indicated a greater
predicted risk of organ damage (Figure 1).

Evaluation and validation of the nomogram
model

Decision curve analysis

In the training set, the nomogram model exhibited a C-index of

0.834, and the Hosmer-Lemeshow test yielded P = 0.617, indicating

good model fit. The ROC curve analysis revealed an AUC of 0.834

(95% CI: 0.779-0.888), with a sensitivity of 0.717 and specificity of

The decision curve demonstrated that the net benefit of the
present nomogram model was significantly higher than the “predict
all damage” or “predict no damage” strategies when the threshold
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FIGURE 1
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(predicted probability = actual probability); The ‘Apparent’ line: the calibration of the original model; The ‘Bias-corrected’ line: the calibration after

bias correction).

probability ranged from 0.10 to 0.95, indicating its practical utility
in clinical decision-making (Figure 4).

Discussion

Hypertension, as a highly prevalent chronic disease worldwide,
leads to target organ damage (e.g., cardiac hypertrophy, renal
impairment, and carotid artery lesions), which serves as a core

driver of cardiovascular events and mortality. According to
statistics, the prevalence of hypertension among adults in China
reaches 23.2%, and approximately 30%-50% of patients develop at
least one organ injury within five years of diagnosis. Early
identification of subclinical organ damage can reduce
cardiovascular risk by 20%-30% (14, 15). However, conventional
diagnostic methods exhibit significant limitations: ultrasonography is
operator- and equipment-dependent, while biochemical markers
such as serum creatinine only exhibit significant elevation when
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Decision curves for predicting the risk of organ damage in hypertensive patients in the training set (A) and the validation set (B) (X-axis: the threshold
probability (minimum organ damage probability for clinical intervention), Y-axis: the net benefit (corrected difference between true positive and false
positive proportions), ‘'Nomogram'’ curve: The net benefit of the proposed model, ‘None' curve: The net benefit of the strategy of ‘predicting no
organ damage for all patients’, ‘All' curve: The net benefit of the strategy of ‘predicting organ damage for all patients’).
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renal function loss exceeds 50%, indicating insufficient sensitivity and
timeliness (16, 17). In this context, the present study aimed to
integrate catecholamine-related markers (indicators of sympathetic
nervous activity), serum uric acid (a marker of inflammation and
metabolic dysfunction), and clinical parameters to establish a
multimodal prediction model for improving the early detection of
hypertensive organ damage. The results demonstrated that the
nomogram model, incorporating norepinephrine, normetanephrine,
metanephrine, serum uric acid, serum creatinine, hypertension
duration, and cystatin C, achieved C-indices of 0.834 and 0.823 in
the training and validation sets, respectively, with AUC values
exceeding 0.8 and satisfactory sensitivity and specificity. Calibration
curves and the Hosmer-Lemeshow test confirmed high consistency
between predicted and observed values, while decision curve analysis
indicated significant clinical net benefit, suggesting robust potential
for clinical application.

The limited predictive efficacy of individual biomarkers in
assessing hypertensive organ damage has been a key motivation
for developing multimodal models. Previous studies reported that
serum uric acid alone yielded an AUC of only 0.65-0.70 for
predicting renal impairment, while catecholamines such as
norepinephrine achieved an AUC of approximately 0.72-0.75 in
predicting cardiac hypertrophy—neither of which meets clinical
demands for early detection. By integrating multidimensional
parameters, this study overcame the limitations of single-
biomarker approaches, with its advantages manifesting in three
aspects: first, the complementary nature of selected indicators.
Catecholamines (norepinephrine, normetanephrine, and
metanephrine) reflect sympathetic overactivation, promoting
target organ damage through sustained vasoconstriction and
enhanced oxidative stress. Serum uric acid contributes to renal
and vascular injury via crystal deposition and inflammatory
responses. Serum creatinine and cystatin C directly reflect renal
function, with the latter increasing during mild renal insufficiency,
compensating for the delayed elevation of creatinine. Hypertension
duration captures the cumulative effect of prolonged blood pressure
exposure on organ damage. These indicators collectively cover
neuroregulatory, metabolic, renal functional, and chronic
exposure mechanisms, forming a synergistic predictive framework.

Second, the robust performance of the model. The seven
independent predictors identified via multivariable logistic
regression demonstrated stable predictive value in both the
training and validation sets. The high C-index (0.834 vs. 0.823)
and AUC (0.834 vs. 0.823) (>0.8) indicated excellent discriminative
ability to distinguish patients with and without organ damage.
Balanced sensitivity (0.717, 0.711) and specificity (0.819, 0.776)
suggested reduced risks of both false negatives and false positives,
making the model suitable for clinical screening.

Third, clinical practicality. As a visual tool, the nomogram
transformed complex regression equations into an intuitive scoring
system, enabling clinicians to rapidly estimate the probability of organ
damage based on seven parameters without intricate calculations—an
advantage in primary care settings. Calibration curves confirmed
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minimal deviation between predicted and observed risks (Hosmer-
Lemeshow test: P > 0.05), while decision curve analysis demonstrated
significant net benefit at threshold probabilities of 0.10-0.95,
indicating that model-guided interventions could optimize resource
allocation while minimizing missed diagnoses.

Multivariable logistic regression confirmed norepinephrine,
normetanephrine, metanephrine, serum uric acid, serum creatinine,
hypertension duration, and cystatin C as independent predictors of
hypertensive organ damage. The primary catecholamine released by
sympathetic nerves, NE induces vasoconstriction via o-receptor
activation, increasing peripheral resistance and cardiac afterload,
thereby promoting left ventricular hypertrophy. Concurrently, NE-
mediated oxidative stress accelerates carotid intima-media thickening
(18). Each 1 ng/ml increase in NE elevated organ damage risk by 0.3%
(OR = 1.003), aligning with prior evidence that sympathetic
overactivation is a central mechanism of hypertensive organ injury
(19). As stable metabolites of NE and epinephrine, these markers
reflect long-term sympathetic activity (20). Each 1 pg/ml increase in
NMN and MN raised organ damage risk by 0.9% (OR = 1.009) and
2.6% (OR = 1.026), respectively, with MN’s higher OR suggesting its
greater predictive weight, possibly due to its association with renal
hemodynamic dysfunction (21). Hyperuricemia contributes to renal
inflammation, oxidative stress, and vascular smooth muscle
proliferation, exacerbating carotid and cardiac damage (22). Each
1 umol/L increase conferred a 0.3% higher risk (OR = 1.003),
consistent with its established role as an independent risk factor for
renal and cardiovascular events. Notably, catecholamines and uric
acid may synergistically exacerbate organ damage via a vicious cycle
(23, 24). Serum creatinine elevated creatinine indicates glomerular
filtration decline. Each 1 umol/L increase increased risk by 3.6% (OR
= 1.036, 95% CI: 1.020-1.053, P = 0.001), underscoring renal
impairment as both a manifestation and amplifier of organ
damage. Among the risk factors, serum creatinine was assigned a
score of >90. Although serum creatinine has insufficient sensitivity in
predicting early renal function loss (only significantly elevated when
renal function loss exceeds 50%), it was still included in the model
and given a relatively high score for the following reasons: first, it is a
classic, widely used, and standardized clinical indicator of renal
function, ensuring data reliability; second, it has high specificity for
moderate to severe renal function damage, and multivariate
regression confirmed it as an independent risk factor for organ
damage; third, it complements cystatin C (sensitive to early renal
impairment) to cover the detection of both early and moderate to
severe renal damage, improving the model’s comprehensive
predictive ability. Superior to creatinine, cystatin C detects early
renal dysfunction unaffected by muscle mass or diet (25). Its
exceptionally high OR (12.367) per 1 mg/L increase highlights its
sensitivity for early-stage injury (26). Each additional year of
hypertension raised risk by 8.8% (OR = 1.088), reflecting
cumulative vascular remodeling and fibrosis (27-29).

This study’s strengths include (1) the innovative integration of
catecholamines, uric acid, and clinical parameters, covering neuro-
metabolic-renal-chronic exposure mechanisms to achieve superior
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predictive performance (AUC > 0.8); and (2) high clinical
translatability, with a user-friendly nomogram suitable for broad
healthcare settings.

However, this study also has some limitations. Firstly, the model
is only validated internally, and it is crucial to use independent
queues for external validation in the future to confirm universality.
And the exclusion of inflammatory/oxidative stress markers. Future
multicenter prospective studies are warranted. This study is a cross-
sectional study, and caution should be exercised when
extrapolating conclusions.

In conclusion, this multimodal nomogram effectively predicts
hypertensive organ damage by integrating seven mechanistically
relevant indicators. Despite limitations, it offers a novel tool for
early detection and intervention.
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