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Low-grade inflammation, both hypothalamic and systemic, sensitizes the

neuroendocrine response to osmotic stimuli whose proximate cause is chronic

underhydration common in older adults due to diminished thirst perception.

These events drive persistent vasopressin (VP) release. VP exerts antidiuretic

effects via renal V2 receptors and functions as a stress hormone through widely

expressed V1a and V1b receptors. These latter actions are central to

inappropriate activation of the hypothalamic-pituitary-adrenal axis observed in

aging, as VP stimulates secretion of the adrenocorticotropic hormone. The

resulting sustained elevations in circulating VP and cortisol contribute to

metabolic, renal, and cardiovascular disorders that compromise health and

lifespan in older individuals. This review reconciles the concept of

microinflammation with recent molecular insights into hypothalamic

osmosensitivity, proposing a model for the maladaptive hypersecretion of

vasopressin in advanced age. This framework may inform the development of

targeted interventions to normalize VP secretion, thereby mitigating the

metabolic, cardiovascular, and renal diseases that disproportionately affect

older adults.
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inflammaging, microinflammation
Impact of vasopressin signaling on aging

Aging is associated with neuroendocrine dysregulation manifesting by increased levels

of circulating vasopressin (VP) in a significant proportion of older adults (1–8). Elevated

plasma VP levels measured by its stable surrogate marker copeptin have been associated

with enhanced risk of cardiovascular, metabolic, and renal diseases disproportionally

affecting older people (9–12). Chronic underhydration of older adults due to blunted

thirst perception or impaired renal water conservation constitutes an obvious trigger for

sustained VP secretion since antidiuresis is the principal function of VP, also referred to as

the antidiuretic hormone (8, 13). Exaggerated VP secretion in older adults may be also

related to the low-grade systemic or hypothalamic inflammation typically developing

during aging because the major pro-inflammatory cytokines including the interleukin 1b
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(IL-1b), IL-2, and IL-6 function as potent VP secretagogues (14–

24). Apart from the antidiuresis, VP acts as a stress hormone

contributing to activation of the hypothalamic-pituitary-adrenal

(HPA) axis and exerting peripheral vascular and metabolic effects

on the blood pressure and systemic glucose availability (25). While

the antidiuretic action of VP is mainly mediated via the renal

vasopressin V2 receptor (V2R), the stress-related hormone effects

depend on the V1b (V1b) and to a lesser extent on the V1a

receptor types (25, 26). Sustained HPA hyperactivity has been

closely associated with aging pathophysiology in human and

animals (27–31). VP-deficient Brattleboro rats and V1bR-

knockout mice exhibit attenuated baseline HPA activity and

blunted HPA response to various stressors suggesting a

significant role of VP in the HPA activation with potential

implications for aging (32–35). Peripheral effects of VP may

provoke insulin resistance, hyperglycemia, vasoconstriction,

hypertension, and renal damage at long term (9, 10, 25, 36, 37).

Therefore, sustained VP hypersecretion may compromise health at

multiple levels.

In further sections we will outline potential triggers for

exaggerated VP secretion with particular focus on the hypothalamic

microinflammation and the low-grade systemic inflammation

accompanying aging (14, 15) (Figure 1). We will consider a

crosstalk between the osmotic and pro-inflammatory stimuli for VP

release and integrate the recently identified molecular players in

hypothalamic osmosensitivity to offer an updated model for

maladaptive VP hypersecretion in advanced aging.
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Vasopressin biosynthesis and release
in aging

VP is a hypothalamic-neurohypophyseal peptide hormone

consisting of nine amino acids. Biosynthesis of the VP precursor

takes place in magnocellular neurosecretory cells (MNCs) located

within the supraoptic (SON), paraventricular (PVN), and accessory

nuclei (AC) of hypothalamus and projecting to the posterior

pituitary for hormone release into the peripheral blood (38). VP

is also produced in a subset of hypothalamic parvocellular neurons

which release the hormone into the hypophyseal portal circulation

to potentiate the secretion of adrenocorticotropic hormone

(ACTH) by the anterior pituitary (25, 39). The VP precursor

(pre-provasopressin) contains VP at its N-terminus, the carrier

protein neurophysin-2 in the middle, and a glycopeptide copeptin

at the C-terminus (40). Proteolytic cleavage of the precursor results

in secretion of VP and copeptin in equimolar amounts so that

copeptin can serve as a surrogate marker of plasma VP levels (9).

VP promotes antidiuresis thus preventing dehydration and playing

the key role in water homeostasis (26). Accordingly, VP is secreted

in response to increased plasma osmolality or reduced blood

volume that occur during dehydration (26). Furthermore,

secretion of VP increases in response to hyperthermia and certain

pro-inflammatory cytokines. The thermal stimuli may enhance the

osmosensitivity of MNCs thereby eliciting a greater VP release in

response to smaller increments in plasma osmolality (41). Heat

stress may further lead to activation of the hypothalamic-pituitary-

adrenal (HPA) axis involving VP as a modulating hormone (25, 42,

43). Induction of VP secretion by thermal or inflammatory stress is

at least in part mediated by pro-inflammatory cytokines such as IL-

1b or IL-6 (24, 44). Inflammatory stress has been generally

associated with stimulation of VP release (24). Thus, several non-

osmotic triggers such as low blood pressure, hyperthermia, and

inflammation contribute to the regulation of VP secretion in

addition to its osmotic stimulation.

The aging process has been associated with sustained increase of

baseline plasma VP levels in a significant proportion of older adults

(1–8). Hypothalamic nuclei retain largely intact morphology during

aging but the neuroendocrine functionality of VP-producing MNCs

is altered (45, 46). Post-mortem evaluation of hypothalamic regions

in human brains from younger vs. older individuals revealed similar

VP mRNA levels but increased VP-positive cell numbers and size in

aged brains (47–49). Enlarged size of the Golgi apparatus in PVN

and SON of older (over 70 years of age) compared to younger

individuals suggested enhanced activity of MNCs in the aged

human brain as well (50). Notably, nearly intact morphology

along with structural correlates of high MNCs activity were

observed even in brain samples derived from individuals with

Alzheimer’s disease history (49, 50). Therefore, unlike the most

other brain regions, hypothalamic nuclei are resistant to the aging-

dependent neurodegenerative alterations but exhibit signs of

increased activity instead. Chronic activation of MNCs in

advanced aging may be triggered by the pro-inflammatory

signaling arising from hypothalamic microinflammation (14).

Experimental studies in transgenic animals link the hypothalamic
FIGURE 1

Vicious circle of pathophysiological events aggravating aging with
focus on the role of vasopressin. Hypothalamic microinflammation
induces sustained hyperactivity of the hypothalamic-pituitary-
adrenal axis (HPA) enhancing central and peripheral secretion of
vasopressin (VP) with ensuing sustained stimulation of the anterior
pituitary producing the adrenocorticotropic hormone (ACTH) and
adrenal glands producing cortisol. The resulting elevated levels of
VP and cortisol provoke and aggravate systemic metabolic disorders
such as diabetes mellitus, atherosclerosis, and hypertension with the
ensuing renal and multiorgan damage. Impaired renal and
cardiovascular performance lead to accumulation of toxic
metabolites in the body and systemic inflammation. The latter
aggravates the hypothalamic microinflammation by proinflammatory
cytokines and toxic metabolites disrupting the brain-blood barrier.
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FIGURE 2 (Continued)

Putative effects of hypothalamic microinflammation on the
neuroendocrine hypothalamic-pituitary-adrenal axis in advanced
aging. Advanced aging is associated with enhanced hypothalamic
release of pro-inflammatory cytokines including the interleukin 1b
(IL-1b) and IL-6 by microglial cells. These interleukins enhance the
excitability of neighboring vasopressin (VP)-producing

Mutig et al. 10.3389/fendo.2025.1689787
microinflammation to neuroendocrine disbalance affecting health

and life span (14, 51). Pro-inflammatory cytokines including IL-1b,
IL-2, and IL-6 were established as potent HPA activators and

triggers of the VP secretion (16–22, 52, 53). Stimulation of MNCs

by these cytokines promotes sustained peripheral VP secretion via

the posterior pituitary leading to elevated plasma VP levels. Parallel

magnocellular (MNC) and parvocellular neurosecretory cells (PNC)
in the supraoptic (SON) and paraventricular hypothalamic nuclei
(PVN). MNCs deliver an enhanced VP amount to the systemic
circulation via the posterior pituitary, whereas PNCs release more
VP along with the corticotropin releasing hormone (CRH) into the
anterior pituitary. Activation of the corticotropin-producing cells
(CC) residing in the anterior pituitary mediated by the vasopressin
V1b receptor (V1bR) and CRH receptor type 1 (CRHR1) leads to
enhanced secretion of the adrenocorticotropic hormone (ACTH).
ACTH and VP synergistically stimulate cortisol secretion in the
adrenal cortex via the melanocortin receptor type 2 (MC2R) and the
vasopressin V1a receptor (V1aR), respectively.
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activation of vasopressinergic parvocellular neurons in PVN

enhances VP delivery to the anterior pituitary, where it

potentiates the effect of the corticotropin-releasing hormone

(CRH) in V1bR-expressing corticotrophs thereby co-stimulating

the adrenocorticotropic hormone (ACTH) secretion (35, 53, 54).

Effects of ACTH are further supported by the V1aR-mediated co-

stimulation of the adrenal cortex leading to enhanced cortisol

secretion in response to ACTH, as reported by studies ex vivo

and in vivo (42, 55–58). Thus, the exaggerated VP secretion driven

by hypothalamic microinflammation appears to play a role in HPA

hyperactivity during aging (Figure 2).

HPA activation alongside the VP hypersecretion may be also

provoked by pro-inflammatory cytokines derived from the systemic

circulation as reported for IL-1b or IL-6 in human and animals (21,

59). IL-6 plasma levels tend to increase during aging, and this

cytokine plays the key role in development of the low-grade

systemic inflammation in advanced aging also known as

“inflammaging” (15, 60, 61). The reasons for elevated IL-6 plasma

levels are likely multifactorial and may combine cellular senescence,

dysregulation of immune system, and chronic diseases or metabolic

conditions prevalent in older adults (15, 62). Although IL-6 or IL-

1b cannot easily cross the intact blood-brain barrier (BBB) under

normal conditions, the circulating cytokines may signal via

circumventricular organs (CVO) placed outside the BBB thus

affecting the neuroendocrine and behavioral functions such as

thirst and VP secretion (63–67). In addition, gradual BBB

disruption associated with aging may increase the exposure of

VP-producing hypothalamic nuclei to the pro-inflammatory

cytokines from systemic circulation (8, 15, 62, 68).
Thirst vs. vasopressin secretion in
aging

Adequate hydration of the body is critical to health.

Physiological losses of water with urine, breath, sweat, and stool

are balanced via behavioral adaptations driven by thirst sensation
FIGURE 2 (Continued)
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and ensuing water intake (69). The urine production by the kidneys

constitutes the major route of daily water loss, disregarding atypical

conditions such as fever or very high environmental temperatures

resulting in extreme sweating (70). Intensive filtration of blood

plasma in the kidneys is mandatory for rapid excretion of excessive

or toxic water-soluble substances with the urine, whereas the

ensuing tubular reabsorption of water prevents dehydration (71).

Renal handling of water and electrolytes is under tight

neuroendocrine control executed by VP (26). In advanced aging,

water homeostasis is compromised both at the central and renal

levels (72, 73). Blunted thirst sensation and impaired renal water

conservation commonly occur in older adults leading to chronic

underhydration and provoking sustained VP secretion (72).

Plasma hyperosmolality is the dominant stimulus for induction

of both thirst and VP release, as the resultant intracellular

dehydration is life-threatening and requires prompt normalization

of the water homeostasis (26, 69). The osmosensory neurons

triggering thirst reside in the forebrain regions known as the

subfornical organ (SFO) and organum vasculosum of the lamina

terminalis (OVLT), both regions belong to CVO placed outside of the

blood-brain barrier and therefore directly exposed to changes in

plasma osmolality (74). The osmotic stimulus for VP secretion

originates from osmosensory SFO/OVLT neurons and converges

with the intrinsic osmosensitivity of MNCs (75–77). The osmotic

thresholds for thirst induction and VP release operate within a

narrow range around 284–285 mOsmol/kg H2O in young healthy

adults, as defined by several studies (8, 78, 79). Increments in plasma

osmolality above that threshold range progressively trigger release of

VP (~1 pg/ml per 1% osmolality) along with growing thirst

perception (69, 80, 81). The close temporal association between VP

release and thirst induction in young healthy adults promotes rapid

rehydration with ensuing normalization of plasma osmolality and

suppression of VP secretion.

Aging has been associated with blunted thirst perception but

increased osmotic sensitivity towards VP release (8, 45, 82–84). The

reasons for impaired thirst perception in older individuals are

multifactorial including the low-grade systemic inflammation, since

SFO and OVLT lack the blood-brain barrier and are directly exposed

to the circulating pro-inflammatory cytokines and chemokines (8, 15,

62, 72, 85). In this context, administration of human IL-1b has been

shown to suppress osmotic thirst in rats (66). Likewise,

administration of the tumor necrosis factor (TNF) has been shown

to reduce fluid intake in mice (86). However, these results were

obtained with relatively high cytokine doses and thus model the acute

inflammatory response rather than the low-grade inflammation in

advanced aging. The available data on effects of pro-inflammatory

cytokines on thirst perception in aging is still scarce. A recent study in

aged individuals reported an inverse correlation between the skin

hydration status and plasma levels of several pro-inflammatory

cytokines including TNF, IL-1a, IL-1b, IL-6, and interferon g (87).
Although the topical water content in the skin partially reflects the

global water homeostasis, serum osmolality is a more precise

indicator of the body hydration status. Evaluation of serum

cytokine profiles in healthy young vs. older adults showed no
Frontiers in Endocrinology 04
correlations between serum osmolality and circulating levels of IL-

1b, IL-6, or TNF in one study (88). In view of the scarcity of data,

further studies are awaited to clarify links between inflammaging and

underhydration. Independently on the underlying mechanisms,

impaired thirst perception and resultant chronic underhydration

with moderately enhanced plasma osmolality persist in a significant

proportion of older adults constituting an osmotic trigger for VP

hypersecretion (2, 3, 5–8, 89–91).
Pro-inflammatory cytokines and
vasopressin secretion in aging

The physiological task of hypothalamic cytokine signaling is to

prime the response of MNCs to stress during temporary

perturbations of homeostasis (17, 92). In contrast, sustained

exposure of hypothalamic tissue to proinflammatory cytokines

such as IL-1b, IL-6, or TNF may provoke maladaptive

morphological and functional synaptic remodeling of MNCs

resulting in their enhanced sensitivity and exaggerated response

to osmotic stress in advanced aging (14, 45, 93). Such synaptic

reorganization may be aggravated by chronic underhydration

frequently occurring in aged individuals (94). IL-1b is the key

cytokine adjusting the MNCs excitability as its local release into

SON in response to osmotic stimuli accompanies VP secretion (92,

95). Both hypothalamic neuronal and microglia cells serve as IL-1b
sources, whereas the functional IL-1 receptor type 1 (IL-1R1) is

present in neuronal cells such as MNCs or vasopressinergic

parvocellular neurons but absent in microglia cells (52, 53, 92,

96). The major signaling pathways downstream of IL-1R1 include

the Nuclear Factor kappa B transcription factor (NF-kB) and

Mitogen Activated Protein Kinase (MAPK). Binding of IL-1b to

IL-1R1 triggers the canonical NF-kB signaling via inactivating

phosphorylation of the NF-kB inhibitor (IkB) provided by the

IkB kinase (also known as IKK) (97). The ensuing nuclear

translocation of NF-kB drives expression of target genes,

including interleukins and enzymes involved in prostaglandin

biosynthesis, which amplify the initial IL-1b effect on MNCs and

parvocellular VP neurons via autocrine and paracrine mechanisms

(52). Prostaglandins, in particular the prostaglandin E2 (PGE2),

affect several ion channel types via modulation of cytosolic cAMP or

Ca2+ levels with the net effect of increased MNCs excitability (98).

IL-1b-induced activation of MAPK signaling may amplify

intracellular Ca²+ signals critical for vesicular VP release (95, 99).

Stimulation of the p38-MAPK kinases may also promote the VP

mRNA expression via phosphorylation of the cAMP response

elements (CREB) and activator protein 1 (AP-1) (100).

Hypothalamic effects of IL-1b may be potentiated by induction of

the IL-6 production and release (101). IL-6 expression in PVN and

SON is induced by dehydration and the cytokine is secreted by the

posterior pituitary parallel to VP to support metabolic adaptations

to the dehydration stress (102). Administration of recombinant IL-6

to healthy volunteers or cancer patients has been shown to stimulate

VP, ACTH, and cortisol secretion suggesting that peripheral IL-6
frontiersin.o
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affects the HPA axis and VP secretion in human (21, 103).

Stimulation of the IL-6 receptor (IL-6R) in MNCs promotes VP

secretion via the Mitogen-Activated Protein Kinase/Extracellular

Signal Regulated Kinase (MAPK/ERK) kinase cascade (104).

Activation of the cyclooxygenase 2 (COX-2) and induction of

PGE2 synthesis is integrated in both IL-1b and IL-6 signaling

pathways and stimulates VP secretion via prostaglandin E2

receptors expressed in the hypothalamus (105, 106). TNF may

modulate VP secretion directly or via complex interactions with the

endocannabinoid system (ECS) (107–109).

Chronic overexposure of MNCs to the aforementioned pro-

inflammatory cytokines likely occurs in advanced aging due to

hypothalamic microinflammation and systemic inflammaging (14,

15). These cytokines have been reported to reduce the threshold for

MNCs depolarization via effects on several ion channel types. IL-1b
has been shown to stimulate osmosensitive non-selective cation

channels thus leading to influx of Ca2+, Na+, and K+ and increased

excitability of MNCs (52, 92, 110). Although the identity of these

channels remains to be clarified, members of the transient receptor

potential vanilloid family (TRPV) emerge as appropriate candidates

(77, 111–113). A functional N-terminal TRPV1 splice variant (DN-
TRPV1) expressed in MNCs has been identified as a stretch-

inactivated channel relevant for the intrinsic osmosensitivity of

MNCs (114). Mechanical forces occurring during hyperosmotic

stress and cell shrinkage are likely transduced on DN-TRPV1 via its
C-terminal interaction with tubulin (115) (Figure 3A). Activation of

DN-TRPV1 and the resulting Ca2+ influx induce the membrane

depolarization with ensuing exocytotic VP release (114). The

microtubular remodeling upon hyperosmotic stress further
Frontiers in Endocrinology 05
promotes the exocytotic membrane insertion of DN-TRPV1-

containing vesicles via activation of the phospholipase C delta 1

(PLCd1), as shown in mouse and rat MNCs (116). Thus, the initial

DN-TRPV1-mediated calcium influx appears to trigger a positive

feedback loop via PLCd1 to amplify the DN-TRPV1 activity and

MNC excitability upon sustained osmotic stress (117). According to

this mechanism, IL-1bmay sensitize the VP-producing MNCs thus

causing stronger VP secretion in response to smaller increments in

plasma osmolality, as has been reported in older adults (6, 8). The

excitability of MNCs may be further potentiated by IL-6 since its

increased hypothalamic expression in aged rat brains was linked to

exaggerated VP release in response to immune challenge (118). The

underlying molecular pathways and ion channels remain to be

specified but may involve TRPV members or paracrine modulation

of gap junction proteins in the surrounding astroglia (118–120). IL-

6 receptor (IL-6R) is expressed in astrocytes also expressing the

connexin 43 (Cx43), a gap junctional protein affecting the VP

release via astrocyte-dependent uptake of neurotransmitters and

neuropeptides and release of gliotransmitters (120–122).

In addition to the effects on MNCs excitability, the pro-

inflammatory cytokines may affect the upstream osmosensory SFO/

OVLT neurons projecting to vasopressin-secreting MNCs, as

excitatory effects of IL-1b and TNF were documented in rodent

CVO neurons (65, 123). Like in MNCs, studies in rats showed that

IL-1b promotes depolarization of SFO neurons by activation of non-

selective cation channels (64). The sensitivity of SFO/OVLT neurons

to hyperosmotic stress is at least partially mediated by the with-no-

lysine kinase 1 (WNK1), which detects molecular crowding during

cell shrinkage thus acting as an intracellular osmolality sensor (124).
FIGURE 3

Putative molecular mechanisms mediating osmosensitivity in vasopressin-producing magnocellular neurosecretory cells (A) and osmosensory
circumventricular neurons (B). (A): The response of vasopressin-producing magnocellular neurosecretory cells (MNCs) to hyperosmotic stress is
mediated by the N-terminal transient receptor potential vanilloid 1 splice variant (DN-TRPV1), which activated by microtubular (#) condensation
during cell shrinkage transmitting mechanical forces for the channel activation. (B): In osmosensory neurons located in the subfornical organ (SFO)
and organum vasculosum of the lamina terminalis (OVLT), hyperosmolality activates WNK1 in part by abrogating the inhibitory action of intracellular
chloride ([Cl-]i). WNK1 signals via intermediate kinases, Ste20/SPS1-related proline/alanine-rich protein kinase (SPAK) and serum/glucocorticoid
regulated kinase 1 (SGK1). The ensuing SPAK-mediated phosphorylation of the Na+-K+-2Cl- cotransporter type 1 (NKCC1) and K+-Cl- cotransporter
type 2 (KCC2) produces reciprocal effects on their activity resulting in increased [Cl-]i and neuronal excitability in response to GABA. SGK1-
mediated activation of the epithelial sodium channel (ENaC) promotes a depolarizing passive Na+ leak, whereas stimulation of voltage-gated
potassium channels (Kv3) enables fast and precise neuron firing. Arrows point to activation, whereas T-shaped bars indicate inhibition. Created with
BioRender.com.
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Recent studies in mice link WNK1 activation to the VP secretion in

response to plasma hyperosmolality (76, 125). WNK1 may affect

neuronal excitability by modulation of several ion channels and

transporters via intermediate kinases such as the STE20/SPS1-

related proline/alanine-rich kinase (SPAK), the oxidative stress

responsive kinase 1 (OSR1), or the serum- and glucocorticoid-

inducible kinase 1 (SGK1) (126, 127). SPAK and OSR1 are

homologous kinases targeting members of the electroneutral

cation-coupled chloride cotransporters (CCC) family (128).

Electrophysiological studies in rodent neurons showed that the

Na+-K+-2Cl- cotransporter type 1 (NKCC1) acts as a chloride

importer, whereas the K+-Cl- cotransporter type 2 (KCC2) is the

major chloride exporter in mature neurons (129). Their functional

interplay determines the intracellular Cl- concentration [Cl-]I,

neuronal excitability, and the type of response to the g-
aminobutyric acid (GABA)-induced signaling, i.e. inhibitory or

excitatory (130). Both NKCC1 and KCC2 are substrates for

phosphorylation by SPAK/OSR1 with opposing functional effects:

activating for NKCC1 but inhibitory for KCC2 (131, 132). Thus, the

WNK1-SPAK/OSR1 signaling may lead to intracellular chloride

accumulation (Figure 3B). Since GABAA receptor is a ligand-gated

chloride channel, high [Cl-]I suppress an inhibitory while provoking

an excitatory effect of the GABAergic signaling, depending on the

neuron type. A tonic inhibitory effect of GABA-signaling on the VP

secretion has been observed in vivo and in cell culture (133, 134). In

contrast, other animal studies report an excitatory effect of GABA on

the VP release especially under certain pathophysiological conditions

such as sustained hyperosmotic stress, diabetes, or hypertension

(135–140). This switch may be related to enhanced NKCC1

activity and suppressed KCC2 function in MNCs and/or

osmosensory SFO/OVLT neurons (137–140). Since diabetes,

hypertension, and enhanced plasma osmolality due to

underhydration are prevalent in older adults, these factors are likely

to contribute to VP hypersecretion in advanced aging. Notably, these

pathophysiological conditions are generally accompanied by

sustained increases in circulating IL-1b, IL-6, TNF levels (141–144).

Apart from SPAK/OSR1, WNK1 may affect VP secretion via

SGK1 (126). WNK1 activates SGK1 thus preventing ubiquitination

and degradation of the epithelial sodium channel (ENaC), whereas

ENaC activity has been shown to reduce the threshold for MCNs

depolarization in rodents (115, 126, 145). ENaC is further expressed

in the osmosensitive SFO/OVLT neurons and may be involved in

their activation upon hypernatremia (146). Studies in rodents and

observations in human suggest that ENaC activity may contribute

to enhanced VP secretion in response to high dietary salt intake

(115, 147–151). High-threshold voltage-gated potassium channels

(Kv3) belong to the downstream targets of the WNK1-SGK1

signaling as well (76, 125, 152, 153). Their WNK1-induced

activation has been shown to support the repetitive firing in

mouse osmosensory circumventricular neurons thus stimulating

VP release via respective projections to MNCs (Figure 3B). IL-1b
and IL-6 have been reported to stimulate ENaC in epithelial cells

but the respective effects in neurons have received only minor

attention so far (154, 155). Likewise, effects on these cytokines on
Frontiers in Endocrinology 06
Kv3 channels have not been extensively studied in the

neuronal context.
Circadian VP secretion in aging

Healthy young adults exhibit a diurnal VP secretion pattern

resulting in higher circulating VP levels at night and lower hormone

levels during the day (156). The normal circadian rhythm of VP

secretion is blunted in older people (157). Thus, insufficient rise of

plasma VP levels at night may be involved in nocturia frequently

reported by older people (157). Impaired renal response to the

hormone may contribute to nocturia as well (73). Furthermore, VP

is an established inducer of the ACTH secretion, which in turn

stimulates production and secretion of the cortisol and aldosterone

(158). The blunted circadian pattern of VP secretion may

secondarily affect the diurnal rhythm of aldosterone or cortisol

secretion in older individuals (159). Aldosterone secretion is also

controlled by the renin-angiotensin system (RAS) activity but this

regulatory pathway exhibits a gradual dissociation in advanced

aging (160). Intact circadian pattern of the HPA neuroendocrine

axis is crucial to global body metabolism, performance, and ability

to elicit adequate stress responses (29, 161). VP is critically involved

in maintaining the circadian rhythmic via its central and peripheral

effects (162). The age-related circadian rhythm flattening results in

decreased diurnal peaks but enhanced basal secretion of VP and

cort isol which have been increasingly recognized as

pathophysiological factors underlying diverse metabolic, renal,

and cardiovascular disorders such as diabetes mellitus,

atherosclerosis, or chronic kidney disease (163, 164). Notably, IL-

1b has been shown to disrupt the pancreatic circadian rhythm with

implications in the pathophysiology of diabetes mellitus (165). IL-

1b-induced deterioration of the circadian rhythm has been also

reported in articular cartilage during osteoarthritis (166).

Characterization of IL-6-deficient mice revealed a role of IL-6 in

the regulation of clock genes and behavioral rhythms of rest and

activity (167). IL-6 secretion follows a biphasic circadian pattern in

healthy young adults and is involved in the sleep/awake rhythm in

human (168). Chronically elevated plasma IL-6 levels in cancer

patients were associated with blunted diurnal variations in HPA

activity (169). Taken together, sustained overexposure of the

vasopressinergic system to pro-inflammatory cytokines because of

hypothalamic microinflammation of inflammaging may contribute

to flattening of the circadian VP secretion pattern but this

assumption needs further experimental verification.
Therapeutic prospects for targeting
VP signaling in aging

Elevated levels of circulating VP frequently occur in older adults

because of chronic underhydration and maladaptive alterations in

sensitivity and strength of the neuroendocrine response to

hyperosmotic stress, the latter may be related to hypothalamic
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microinflammation and systemic inflammaging (8, 14, 15, 62).

Excessive and prolonged VP signaling has been implicated in

cardiovascular, metabolic, and renal diseases (9, 37, 170, 171).

Lifestyle modifications such as regular physical activity, adequate

hydration, andmetabolic dietary therapies can prolong health and life

span in older adults. Pharmacological approaches retarding aging

processes have been actively investigated in the recent decades.
Water supplementation

Water supplementation to provide an adequate water intake is

the obvious step towards prevention of dehydration and its negative

consequences such as chronic stimulation of the VP system in older

people. Indeed, several studies documented reduction of circulating

VP levels in adults of different ages and health status receiving daily

water supplementation, as judged by evaluation of the surrogate VP

marker copeptin (172–175). Moreover, an adequate hydration and

reduction of plasma copeptin levels were associated with improved

glucose metabolism (172, 174, 175). However, excessive water intake

bears a risk of euvolemic hyponatremia in older individuals since the

aged kidney is limited in its capacity to excrete water (176). Therefore,

a balanced water and electrolyte intake and regular monitoring of

blood electrolytes is recommended in older individuals.
Physical exercise

Sedentary lifestyle during aging has been associated with

increased incidence of cardiovascular and metabolic diseases such

as hypertension, obesity, or diabetes, whereas regular physical

activity mitigates these risks in part by suppressing the

inflammaging (177, 178). Systematic aerobic training reduces the

baseline levels of circulating IL-1b, IL-6 and TNF, i.e. the pro-

inflammatory cytokines potentially contributing to sustained VP

hypersecretion in advanced aging (178, 179). With respect to VP,

physical exercise causes acute transient increases in plasma VP and

copeptin levels both in younger and older individuals (180–182).

These increases reflect the body response to acute physical stress

and serve to maintain the water homeostasis. Although elevated

VP/copeptin levels are typically accompanied by enhanced IL-1b
and IL-6 levels during physical exercise, the exercise-induced VP

release appears to be largely independent on these cytokines (181,

183). In contrast, resting VP levels remain unchanged during

periods of systematic physical activity, as has been demonstrated

in older men and women assigned to endurance exercise (184).

Since regular physical activity exerts beneficial effects on the

circadian rhythm in older individuals it is tempting to speculate

that physical training may stabilize the circadian VP secretion

pattern as well (185, 186). Taken together, regular, age-matched

physical activity of moderate intensity represents a valuable non-

pharmacological intervention promoting healthier aging (187).

Habitual aerobic exercise has been shown to ameliorate the HPA

hyperactivity in older individuals although the impact of VP herein

remains to be clarified (188, 189).
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Targeting inflammation

Derangement of VP signaling in advanced age is closely related

with microinflammation of the hypothalamic tissue and increased

production of pro-inflammatory cytokines such as IL-1b and IL-6

(14). Both cytokines are non-osmotic VP secretagogues (17, 18, 21,

190). Peripheral IL-1b or IL-6 induction in response to

inflammation affects VP release as well, since these cytokines are

able to disrupt the blood-brain barrier permeability and penetrate

into the hypothalamic region (17, 67). IL-6 plasma levels tend to

increase with aging independent on confounding factors such as

major inflammatory diseases, whereas the circadian pattern of IL-6

secretion is flattened in older adults (61, 168, 191). The low-grade

systemic inflammation promotes cellular senescence and metabolic

disorders in aging (61). A growing repertoire and increasing

availability of clinically approved IL-6 signaling inhibitors hold

promise for retardation of aging-associated systemic and

hypothalamic inflammatory processes triggering the inappropriate

VP secretion (192). The extending clinical data pool from older

individuals receiving IL-6 inhibiting drugs for treatment of

autoimmune and inflammatory disorders may shed light on the

utility of this strategy to manage age-related dysregulation in the VP

system. Apart from pharmacological interventions, regular physical

activity, especially aerobic exercise, has been established as a potent

anti-inflammatory strategy to retard inflammaging (187).
Selective V1a or V1b receptor antagonists

While the urinary concentration depends on the renal V2

receptors, the unfavorable metabolic and vascular effects of VP in

older adults are largely mediated by activation of the V1a and V1b

receptors (25, 26, 36). Thus, antagonizing either V1a or V1b

receptor could improve the body metabolism while preserving the

antidiuretic VP action critical to adequate hydration. The

therapeutic potential of V1a and V1b antagonists is burgeoning,

although none of them has been tested in the clinical settings of

aging and metabolic diseases (193). Conivaptan, a dual antagonist

to the V1a and V2 receptor types, has been approved for correction

of euvolemic and hypervolemic hyponatremia similar to the

selective V2 receptor antagonist tolvaptan (194, 195). A selective

V1a receptor antagonist balovaptan has been tested in patients with

autism spectrum disorders (196). Selective suppression of the V1b

receptor showed promising preclinical results in the field of

neurologic stress-related disorders (197). Nevertheless, the

available experimental data strongly suggests that targeting V1a

or V1b signaling bears therapeutic potential for improved

management of the aging-related pathophysiology (25, 36).
WNK-SPAK inhibitors

In view of the newly established role of the WNK1-SPAK/OSR1

signaling in hypothalamic osmosensitivity, selective pharmacological
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interventions in this pathway bear potential to blunt the excessive VP

secretion in advanced aging (125). Inhibitors of SPAK and WNK

kinases have been developed and showed therapeutic potential in

animal models of hypertension and cystic fibrosis, although their

utility in human requires further validation (198, 199). WNK1 fulfils

multiple functions in immune cell biology ranging from the cell

volume and motility to the regulation of cytokine production and

pyroptosis (200). WNK inhibitors have been shown to exert toxic

effects on the natural killer (NK) cells which may limit their

therapeutic potential due to increased risk of malignancy (201).

The cytotoxic effects of WNK inhibitors on the NK cells are likely

mediated by disruption of the WNK1-OSR1 signaling, whereas

selective inhibitors of SPAK downstream of WNK1 may have

milder toxicity (201). Interestingly, WNK-dependent immunologic

effects involve the mechanistic target of rapamycin (mTOR), whereas

mTOR inhibitors have been shown to promote health and longevity

in various animal models of aging (202). The mTOR signaling has

been further shown to mediate some cell biological effects of VP such

as autophagy inhibition (203). Therefore, beneficial effects of mTOR

inhibitors may be partially related to improved cell metabolism due to

disruption of the VP signaling.
Conclusions and perspectives

Increasing recognition of the hypothalamic microinflammation

and systemic inflammaging as significant factors driving

maladaptive neuroendocrine processes such as VP hypersecretion

in aging opens new perspectives for targeted lifestyle and

pharmacological interventions. Recent progress in identification

of molecular networks governing the physiological VP secretion

adds to the choice of potential candidates for pharmacological

targeting of the VP system. The emerging solutions include anti-

cytokine therapies, selective inhibitors of V1a or V1b receptors, and

suppression of the WNK1-SPAK signaling.
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