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Introduction:Continuous glucosemonitoring (CGM) offers a unique opportunity

to assess Q6 glucose patterns across the 24-hour day, including nighttime. In

individuals with pregnancy hyperglycemia, evidence suggests that optimizing

nocturnal glucose levels reduces the risk of large-for-gestational-age births and

future metabolic dysfunction. However, the behavioral correlates of nocturnal

glucose levels remain poorly understood. Continuous movement devices assess

physical activity (PA) and sedentary behavior (SED) across 24-hour days, and to

the best of our knowledge, have not been paired with CGM data in individuals

with pregnancy hyperglycemia. This secondary analysis of a feasibility trial

explored the association of day-time PA and SED with nighttime (i.e., 12–6 AM)

interstitial glucose levels in individuals with gestational diabetes mellitus (GDM) or

gestational glucose intolerance (GGI).

Methods: Participants (N = 13; ~31 weeks gestation) wore a Dexcom G6 CGM

and ActiGraph Insight Watch for 7 days. Mixed effects models examined

associations between daytime moderate-tovigorous physical activity (MVPA),

light physical activity (LPA), and sedentary behavior (SED) with nocturnal

glucose metrics, including mean glucose, time in range (TIR; 60–99 mg/dL),

and area under the curve (AUC).

Results: Adjusted models revealed that each 10-minute increase in MVPA was

associated with 0.86 mg/dL [95% confidence interval (CI) 0.002, 1.73] higher

mean glucose and 313mg/ dL*min (CI 0.98, 624.55) higher AUC. No associations

were observed for total activity, LPA, or SED.
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Discussion: These findings illustrate the feasibility and potential of combining

CGM with activity monitor data, and the need to further integrate dietary intake

data. Improvements in glucose and activity monitoring technology hold great

promise for improving scientific and clinical understanding and supporting the

development of personalized, data-driven glucose management tools

during pregnancy.
KEYWORDS

pregnancy hyperglycemia, physical activity, sedentary behavior, precision health,
continuous glucose monitoring, digital health, wearable devices
Introduction

Gestational diabetes mellitus (GDM) and gestational glucose

intolerance (GGI) are increasingly common complications of

pregnancy and are associated with heightened risk of fetal

overgrowth, birth complications, and long-term cardiometabolic

disease for both mother and child (1–14). Daytime glycemic control

has been a focal point in GDM management, partially due to the

lack of practical measurement tools for detecting nighttime glucose.

However, morning fasting glycemia, which can be seen as a

reflection of nighttime glucose, has been associated with large-for-

gestational-age (LGA) infants (15). Now with the addition of user-

friendly continuous glucose monitors (CGM) to measure nighttime

glucose, emerging evidence suggests that nocturnal hyperglycemia

(measured between 12–6 AM) is associated with LGA (16) and the

need for pharmacologic treatment in pregnancy (17).

Advances in continuous glucose monitoring (CGM) technology

have opened new avenues for monitoring glycemia across the 24-

hour cycle, allowing researchers and clinicians to identify patterns

of dysglycemia that occur overnight. In parallel, wearable activity

monitors provide detailed, real-time insights into daily movement

behaviors. Together, these technologies offer a powerful, scalable

means to assess the dynamic interplay between health behaviors

and glucose regulation, with the potential to inform personalized

diabetes management during pregnancy.

This secondary analysis of a feasibility trial explored

concurrently collected CGM and wrist-worn activity monitor data

to investigate associations between daily minutes of moderate-to-

vigorous physical activity (MVPA), light physical activity (LPA),

and sedentary behavior (SED) with nocturnal glucose metrics in

individuals with GDM or GGI.
Methods

Data

The present study is a secondary analysis of data collected from a

subsample of participants enrolled in a randomized controlled
02
feasibility trial of a behavioral PA intervention for GGI or GDM

(ClinicalTrials.gov Identifier NCT04209348). Individuals between the

ages of 18–40 with GGI had a 1-hr plasma glucose ≥130 mg/dL on the

50-g glucose challenge test (GCT), measured at 24+ weeks' gestation

[i.e., followed by an oral glucose tolerance test (OGTT) that did not

meet GDM criteria] (18). GDM could be diagnosed by either the one-

step procedure (a 75-g OGTT with plasma glucose: ≥ 92 mg/dL for

fasting, ≥180 mg/dL 1-hr post-glucose load, or ≥153 mg/dL 2-hr post-

glucose load) or the two-step strategy (a plasma glucose ≥130 mg/dL

on a GCT followed by a 100-g, 3-hr OGTT with two or more plasma

glucose measurements: ≥95 mg/dL for fasting, ≥180 mg/dL 1-hr post-

glucose load, ≥155 mg/dL 2-hr post-glucose load, ≥140 mg/dL 3-hr

post-glucose load). Participants were excluded from participating if

they were diagnosed with GDMbefore 24 weeks gestation, were taking

glucose loweringmedications (e.g., insulin, metformin, glyburide, etc.),

or had extenuating pregnancy complications precluding them from

PA (determined an obstetrician). Twenty patients were enrolled from

the University of Tennessee Medical Center Knoxville; twelve were

classified as GGI and eight were classified as GDM. Because of

COVID-19 protections, participants opted in to a CGM assessment.

The subset of participants who opted-in wore a Dexcom G6 CGM

(Dexcom, Inc, San Diego, CA), carried a masked receiver, which was

linked to the CGM sensor worn on the posterior upper arm. In order

for the CGM sensor to transmit glucose data to the receiver, it must be

within 20 feet of the sensor. Participants were given belt clips to help

them keep their receiver close. Participants concurrently wore an

activity monitoring device, the ActiGraph CentrePoint Insight Watch

(hereafter, Insight Watch), on the dominant wrist for seven days, 24-

hours each day.
Assessment of physical activity and
sedentary behavior

Insight Watch data was imported into ActiLife software and

converted into 1-second epoch and raw CSV files for each

participant. Epoch files were run through the Choi et al. wear

time algorithm (19) for wrist worn activity monitors in RStudio

version 2022.02.03 + 492 statistical software. Raw files were run
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through the dominant wrist-specific TwoRegressions algorithm

(20), which estimated min by min metabolic equivalents of task

(METs) for periods in which the devices were worn. Subsequent

output RDA files (for each participant epoch and raw file) were

merged, and summary results were generated, which included valid

wear mins, and mins per day at ≥ 3.0 METs indicative of MVPA,

1.6-2.9 METs indicative of LPA, mins per day ≥ 1.6 METs indicative

of total PA, and ≤ 1.5 METs indicative of SED. Days with less than

600 minutes of valid device (i.e., Insight Watch) wear time were

then excluded from the analysis.
Assessment of nocturnal glucose

Glucose was measured using the Dexcom G6 Pro CGM system,

which includes a small, wearable sensor and transmitter that

records interstitial glucose values every 5 minutes. Participants

and their providers were masked to the CGM data (i.e., blind

mode) to prevent values from influencing regular behavior. Data

from the nocturnal period, defined as 12AM - 6AM (21), were

isolated and the mean nocturnal glucose, the percent of time in

range (%TIR; 60–99 mg/dL (22)), and area under the curve (AUC)

calculated. AUC was calculated in RStudio, using 12AM glucose as

the starting point and the trapezoid method (23). All other glucose

calculations were performed in SAS Enterprise Guide 8.1 (24).
Covariates

Gestational age (GA) information was obtained from the

electronic medical records (EMR) at UTMCK. GA in days was

calculated for each day a participant wore the devices. Maternal age

and pre-pregnancy BMI were also abstracted from the EMR at the

time of eligibility screening. Data on race and ethnicity, education

level, marital status, employment, and number of prior pregnancies

were collected via survey administered at baseline.
Statistical analysis

Medians and interquartile ranges (IQR) were calculated for

continuous variables, and frequencies and percentages for categorical

variables (20). Mixed effects regression models were created using

PROC MIXED in in SAS Enterprise Guide 8.1, with an autoregressive

covariance structure, to estimate the association of 10 min blocks of

MVPA, LPA, and total activity with nocturnal mean glucose, TIR, and

AUC. Variables in the adjusted models were selected a priori based on

previous literature and further model fitting was performed using

backward selection (25), and comparison of AIC, AICC, and BIC

scores between models. Initial variables selected a priori included pre-

pregnancy BMI, GA, GDM vs GGI, maternal age, and number of valid

device wear minutes. There was a statistically significant increase in

mean nocturnal glucose and AUC by gestational day in participants (P

< 0.05) and minutes of valid device wear time also varied between days

and participants at baseline. Thus, the final model was adjusted for GA

in days and device wear minutes. Pre-pregnancy BMI, GDM vs GGI,
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and maternal age were not included in the models due to limited

degrees of freedom and little impact on the results in statistical models.

We provided preliminary mean differences and confidence

intervals, acknowledging the limited sample size from this feasibility

trial. Additionally, we provided feasibility results: adherence to the

device wear protocol measured by the percentage of wear-time out of

total potential wear time and any technical or practical issues that

occurred during the device-wear periods.

Results

Of the 20 participants enrolled in the study, 14 opted to wear

the Dexcom CGM device. Of those 14 participants, one participant

had an Insight Watch device failure. Of the 13 participants (4 GDM,

11 GGI) with valid data from both devices, there were 90 valid days

out of the 91 days of potential concurrent device observation time

(26–33 weeks gestation).

Descriptive characteristics of participants are presented in

Table 1. Most participants identified as White/Non-Hispanic

(77%), completed a postgraduate degree (61.5%), and were
TABLE 1 Characteristics of participants (N = 13).

Continuous Participant
Characteristics

Median (interquartile
range)

Gestational Age in Weeks 30.6 (30.1, 31.6)

Pre-pregnancy Body Mass Index 24.4 (23.4, 29.5)

Age in Years 36.0 (30.9, 37.8)

Minutes of Daily MVPA 61.0 (34.0, 95.0)

Minutes of Daily LPA 342 (252, 400)

Minutes of Daily SED 455.5 (377, 543)

Minutes of Wear Time 884 (757, 955)

Mean Nocturnal Glucose (mg/dL) 90.8 (81.0, 97.4)

Percent Nocturnal Time in Glucose Range
(%)

84.7 (58.3, 100.0)

Nocturnal AUC (mg/dL * min) 32,268.3 (28,740.0, 34,582.4)

Categorical Participant
Characteristics

n, %

GDM 4, 30.8%

White/Non-Hispanic 10, 77.0%

Postgraduate Degree 8, 61.5%

Employed Full Time 8, 61.5%

Married/Civil Union 13, 100%

Number of Previous Pregnancies Resulting in
Live Birth

0 6, 46.2%

1 3, 23.1%

2+ 4, 30.6%
MVPA, moderate to vigorous physical activity, LPA, light physical activity, SED, sedentary
behavior, GDM, gestational diabetes.
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employed full time (61.5%); all were married or in a civil union.

Participants engaged in a median of 61 minutes of MVPA (IQR:

34.0, 95.0) and 455.5 SED minutes (IQR: 377, 543). Median values

for mean nocturnal glucose and TIR were 91 (IQR: 81.0, 97.4) mg/

dL and 85% (IQR: 58.3, 100.0), respectively. Out-of-range values

were rarely below range (i.e., < 1% of values), and primarily reflect

values that fall above range (i.e., above 99 mg/dL).

Table 2 presents the unadjusted and adjusted results of the mixed

effects models of the association of PA and SED with nocturnal glucose

measures. MVPA was found to be positively associated with mean

glucose and AUC (P < 0.05) in the unadjusted model. For every

additional 10-minutes of daily MVPA there was a 1.1 mg/dL higher

mean nocturnal glucose and a 317.1mg/dL*min higher nocturnal

AUC. In addition, for every additional 10-minutes of total PA, there

was a 0.28 mg/dL higher mean nocturnal glucose (P = 0.016).

After adjusting for device wear time and gestational age in days,

the associations of MVPA with mean glucose (mean diff: 0.86, CI:

0.002, 1.73) and AUC (mean diff: 312.77, CI: 0.98, 624.55) were

slightly attenuated but remained statistically significant. Adjusted

analyses revealed no associations between LPA, total PA, and SED

with nocturnal glucose.
Discussion

This study uniquely combined CGM and wrist-worn device

data to explore behavior–glucose dynamics across the 24-hour day.
Frontiers in Endocrinology 04
The richness of continuous, timestamped data enabled temporally

precise modeling of daily associations using mixed effects models,

an approach not possible with traditional self-monitored blood

glucose and self-reported activity (21, 26). This method offers

improvements in scientific understanding of how lifestyle

behaviors influence glycemic control, which can lead to promising

avenues for behavioral phenotyping in pregnancy and tailoring

interventions based on individual response patterns.

This study shows that integrating CGM with device based,

timestamped movement data in pregnancy is both feasible and

informative. Participants adhered to wearing both devices 99% of

the time with minimal device failures. Moreover, these technologies

are rapidly evolving to meet participant and researcher needs. For

example, with the release of the new Dexcom G7 CGM, there is now

no receiver that must be carried around, and all data can be directly

accessed via smartphone.

In this exploratory study of pregnant individuals with GDM or

GGI, we found that greater daily MVPA and perhaps total PA were

associated with a higher nocturnal mean glucose and AUC. This

finding contrasts with existing evidence in nonpregnant and

daytime settings, where MVPA is generally associated with

improved glycemia (measured in the daytime) in hyperglycemic

populations (26–31), and raises important questions about how PA

interacts with physiological, behavioral, and hormonal factors in

pregnancy. Notably, in the adjusted models, no associations were

observed between nocturnal glucose metrics and light-intensity

activity, total PA, or sedentary time.
TABLE 2 Estimated associations of 10-minute increments of moderate to vigorous physical activity (MVPA), light physical activity (LPA), total PA, and
sedentary behavior (SED) with nocturnal glucose (12AM – 6AM) in individuals with gestational diabetes or gestational glucose intolerance (N = 13).

Model statistics Independent variable Mean glucose (mg/dL) TIR (%)
AUC

(mg/dL*min)

Unadjusted Mean Diff (CI) MVPA (units of 10 mins) 1.096 (0.29, 1.90)* -2.05 (-4.42, 0.3149) 317.15 (25.41, 608.9)*

Adjusteda Mean Diff (CI)

MVPA (units of 10 mins) 0.86 (0.002, 1.73)* -3.38 (-318.36, 311.59) 312.77 (0.98, 624.55)*

Insight Watch Wear Mins 0.001 (-0.014, 0.018) 0.05 (-87.94, 88.04) -2.31 (-21.45, 16.83)

Gestational Day 1.69 (0.59, 2.79)* -0.06 (-20,319, 20,319) 507.35 (-2689.97, 3704.68)

Unadjusted Mean Diff (CI) LPA (units of 10 mins) 0.27 (-0.002, 0.54) 0.23 (-0.54, 1.00) 63.34 (-30.14, 156.81)

Adjusteda Mean Diff (CI)

LPA (units of 10 mins) 0.111 (-0.23, 0.45) -0.10 (-1.17, 0.96) 46.97 (-74.16, 168.1)

Insight Watch Wear Mins 0.004 (-0.014, 0.024) 0.03 (-0.03, 0.09) –

Gestational Day 1.67 (0.54, 2.81)* -0.05 (-3.51, 3.41) –

Unadjusted Mean Diff (CI) Total PA (units of 10 mins) 0.28 (0.05, 0.51)* – 69.77 (-10.41, 149.95)

Adjusteda Mean Diff (CI)

Total PA (units of 10 mins) 0.19 (-0.11, 0.49) – 71.42(-22.84, 165.68)

Insight Watch Wear Mins 0.0002 (-0.02, 0.02) – 3.11 (-13.34, 7.11)

Gestational Day 1.67 (0.55, 2.79)* – –

Unadjusted Mean Diff (CI) SED (units of 10 mins) 0.099 (-0.11, 0.31) 0.46 (-0.13, 1.05) 3.62 (-70.73, 77.98)

Adjusteda Mean Diff (CI)

SED (units of 10 mins) -0.20 (-0.50, 0.11) 0.50 (-0.45, 1.45) -74.96 (-203.42, 53.49)

Insight Watch Wear Mins 0.02 (-0.003, 0.04) -0.004 (-0.07, 0.06) 4.18 (-18.91, 27.28)

Gestational Day 1.67 (0.55, 2.79)* -0.04 (-3.43, 3.36) 496.35 (-4273.47, 5266.17)
aAdjusted for Insight Watch wear mins and gestational age in days, and participant; *statistically significant P-Value < 0.05; CI = 95% confidence interval; "-" denotes that model could not
compute reliable estimates.
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One potential explanation for elevated nocturnal glucose on

days with higher MVPA is compensatory dietary intake, such as

increased carbohydrate consumption post-exercise. Though diet

was not assessed in this study, several studies demonstrate that meal

timing and macronutrient composition can significantly impact

glycemia (32–34). Similarly, we also did not have data on whether

participants were sleeping during the nocturnal period, and poor

sleep negatively impacts glucose metabolism in pregnancy (35–37).

Growing evidence suggests that nocturnal hyperglycemia is an

important marker of adverse outcomes in GDM. Law et al. (2019)

found that poor nocturnal control was associated with increased risk of

LGA (16). Similarly, Márquez-Pardo et al. (2020) reported that patterns

of elevated overnight glucose predicted pharmacologic treatment

needs, i.e., more severe hyperglycemia (17). Moreover, fasting glucose

levels, often reflective of nocturnal glycemia, is associated with LGA

(15) and postpartum type 2 diabetes risk (6, 38, 39).

This work also highlights the potential for real-time, technology-

enhanced diabetes care in pregnancy. As CGM and wearable devices

becomemore common in clinical and at-home settings, they open the

door to adaptive feedback systems that respond to individual glucose

patterns. Similar strategies have been employed in nonpregnant

populations, where CGM, PA, and dietary data are integrated to

provide personalized recommendations (40). Such systems could be

adapted for use in pregnancy to enhance self-management and

clinical decision-making.

This study has several notable strengths. First, it is one of the

few to simultaneously capture continuous glucose and PA data in

pregnant individuals with GDM or GGI, offering a high-resolution

view of real-world behavioral and physiological patterns. The

concurrent use of CGM and wrist-worn activity monitors allowed

for day-level temporal alignment, enabling more precise estimates

of associations between movement behaviors and nocturnal

glycemia than are possible with self-reported measures.

Additionally, by focusing on the nocturnal period - a time

previously missed in traditional glucose monitoring approaches -

this study contributes new insights into an understudied yet

clinically relevant window for glycemic dysregulation and its

potential links to adverse outcomes.

Some limitations must be acknowledged. The sample size was

small and drawn from a pilot feasibility trial, limiting generalizability

and statistical power. Importantly, while PA was captured objectively,

we do not know the context that the data was capturing, whether the

PA was intentional, occupational, related to domestic duties, etc.

Most importantly, we did not collect concurrent data on dietary

intake or sleep, both of which may confound or mediate the observed

associations with nocturnal glucose. The potential for compensatory

eating or disrupted sleep on higher-activity days remains an open

question and should be addressed in future studies incorporating 24-

hour time-use and dietary intake. Future technological advances in

dietary assessment stand to help move the field forward. Finally, the

classification of SED relied solely onMET values due to limitations in

postural detection with wrist-worn devices, which may have led to

some misclassification of low-intensity standing behavior as

sedentary time.
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Building on these preliminary findings, future research should aim

to disentangle the complex behavioral, physiological, and contextual

factors that influence nocturnal glycemia during pregnancy. High-

priority areas include the integration of timestamped dietary intake

and sleep measures with CGM and activity data, enabling a more

comprehensive 24-hour behavioral and metabolic profile. For

example, data from smartphone based ecological momentary

assessment tools that can capture images of meals, and daily

participant report can provide timestamped diet and sleep data that

can be used to capture diurnal and nocturnal relationships between

these lifestyle behaviors and continuous interstitial glucose assessment.

Such integration could identify whether dietary compensation, altered

sleep quality, or circadian misalignment mediates the relationship

between PA and sedentary behavior and nocturnal glucose.

Larger, more diverse cohorts will be essential to determine

whether these findings generalize across diabetes subtypes (e.g.,

GDM vs. GGI), racial and ethnic groups, and varying levels of

clinical management (e.g., diet-only vs. pharmacologically treated

pregnancies). These studies should also consider longitudinal

designs to assess whether day-to-day behavior–glucose

relationships predict clinical outcomes, such as insulin need, fetal

growth, or postpartum glucose dysregulation.

Finally, this line of research sets the stage for the development of

real-time, personalized interventions. For example, adaptive

interventions that respond to individual glucose or behavior

patterns could provide tailored prompts or recommendations for

activity, dietary intake, or rest. These technology-driven approaches

may enhance self-management support and clinical decision-

making, ultimately improving maternal and fetal outcomes in

pregnancies complicated by diabetes.
Conclusions

This work demonstrates the feasibility of combining real-time

behavioral and glycemic data to examine 24-hour glucose

regulation in pregnancy and serves as a proof-of-concept for the

integration of wearable technology into precision prenatal care and

highlights opportunities for real-world behavioral phenotyping in

the management of diabetes during pregnancy. To the best of our

knowledge, we are the first to explore associations between daily PA

and nocturnal glycemia using concurrent continuous glucose

monitoring and wearable activity tracking in individuals with

GDM or GGI. Our findings suggest that greater daily MVPA may

be associated with higher overnight glucose levels , a

counterintuitive result that may reflect compensatory behaviors or

complex physiological interactions during pregnancy.

These results underscore the need for integrated, multi-modal data

- including timestamped dietary intake, sleep patterns, and PA - to

understand and optimize glycemic trajectories in this population.

Future research should build on this foundation to develop

personalized, technology-supported interventions that can adapt to

individual glucose patterns and behavioral responses, with the goal of

improving maternal and fetal outcomes.
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