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Buildings are an important part of the energy consumption of cities. With recent
developments in integrated energy systems in buildings, the need for a smart
energy management system (EMS) has significantly increased. In this regard, AI-
EMS can help to enhance operational efficiency, occupant comfort, and
environmental sustainability in urban areas. However, a comprehensive
framework categorizing the tools and algorithms used in buildings and urban
EMS is still lacking, which limits the ability to evaluate the effectiveness of these
technologies. This paper addresses this gap by analyzing and comparing some of
the most widely used AI tools, algorithms, and simulation environments for
optimizing building energy systems, offering insights into the applications,
strengths, and limitations of each tool. We provide a structured overview of AI
control methods and available EMS tools, as well as a comparative analysis of their
capabilities for energy management in both individual buildings and district-level
systems. We aim to help researchers, policymakers, building designers, and
engineers to better understand the available simulation tools for making
informed decisions when selecting and using them.
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1 Introduction

Buildings account for approximately 55% of worldwide electricity demand
(International Energy Agency, 2019), making them a crucial focus for improving energy
efficiency and sustainability. Intelligent buildings (IBs) are buildings equipped with
advanced technologies, automation, and sophisticated control systems that enable more
efficient and productive environments by optimizing both functionality and energy
consumption (Bayasgalan et al., 2024). Modern IBs integrate various energy systems,
including heating, ventilation, and air conditioning (HVAC), domestic hot water (DHW),
lighting, energy storage, electric vehicles (EVs), and especially renewable energy sources
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(RES), making them “prosumers” in energy networks—capable of
both consuming and producing energy. In this context, the
importance of a robust energy management system (EMS) that
can effectively coordinate all energy flows to boost efficiency and
flexibility, support occupant comfort, and reduce environmental
impact is evident.

Recent advances in artificial intelligence (AI) applications for
EMS have explored a variety of methods, from reinforcement
learning (RL) to model predictive control (MPC). Current
literature emphasizes that AI applications are fundamental to
achieving intelligent energy management in urban environments
(Mischos et al., 2023). In this context, simulation tools and platforms
that replicate real-world building and district-level energy scenarios
are essential for developing, testing, and benchmarking these AI-
based control algorithms. Tools that model energy flow, predict
resident behavior, or evaluate network interactions provide
researchers with valuable insights into algorithm performance
under different scenarios. For example, environments such as
CityLearn facilitate RL simulations for Demand Response (DR)
in urban buildings, while BOPTEST provides standardized
scenarios for comparing control strategies in individual buildings.
Such platforms not only help researchers evaluate algorithmic
performance but also help bridge the gap between theoretical
development and practical application in urban energy systems.

In addition to the papers focusing on the performance of specific
algorithms to improve energy management in buildings, such as
those by Yu et al. (2020), Balakrishnan and Geetha (2021), Luusua
et al. (2023), Foruzan et al. (2018), Chowdhury et al. (2024), some
studies combine or compare the performance of two or three
algorithms and evaluate their respective benefits for EMS
applications, as seen in Michailidis et al. (2024), Wang et al.
(2023), Lu et al. (2019), Zhan et al. (2023), Brandi et al. (2022),
or some reviews that provide insights into different control methods,
their application types, and their efficiency in improving Building
Energy Management Systems (BEMS). For instance, a review paper
analyzed various simulation tools used in BEMS with a focus on
promoting sustainable buildings and energy-efficient systems
(Shahcheraghian et al., 2024). The review categorizes these tools
into white-box and black-box models based on their level of detail
and transparency. Another review paper highlights the need for
optimal energy management and proposes a comprehensive
methodology for developing improved energy models for smart
cities (Calvillo et al., 2016). The review encompasses a variety of
energy models and simulation tools used for urban energy
management. Another paper reviews the role of AI in improving
home EMS through advanced optimization techniques, comparing
traditional methods with AI-powered machine learning and deep
learning for more efficient demand-side management (Nutakki and
Mandava, 2023). The other paper analyzes the application of AI in
EMSs, renewable energy, and smart grids, and the potential of AI to
improve system optimization and renewable energy forecasting
(Chander and Gopalakrishnan, 2024). However, there is still a
need for interdisciplinary research that bridges the gap between
technological advancements and practical applications in EMS.

Despite the progress in EMS research, a comprehensive study
categorizing simulation tools for AI-based EMS is notably absent
from the literature. This gap creates challenges for researchers,
developers, and policymakers in selecting appropriate platforms

for testing and deploying AI-based control strategies. Therefore,
this paper aims to address this need by providing a structured review
of common tools and environments in this field, analyzing each one
in terms of its specific application, advantages and limitations, and
finally comparing them based on application. By presenting this
overview, we aim to support the development and effective
application of AI-based EMS technologies in urban and BEMSs.
The rest of the paper is organized as follows: Section 2 will introduce
three common AI control algorithms used in BEMS. In Section 3, we
will provide a brief overview of various AI tools that are available and
widely used in BEMS. Section 4 will compare these tools, and Section
5 will summarize the main goals and findings of our research as a
conclusion.

2 AI control strategies in BEMS

AI-based control algorithms are often used to enhance accuracy
and robustness in building energy management systems. Advanced
techniques such as machine learning, deep learning, and RL, that can
model complex energy patterns, predict demand fluctuations, and
optimize control actions more effectively than traditional rule-based
or mathematical methods. According to Blum et al. (2021), there are
generally three control strategies for BEMS; RBC, MPC, and RLC.

2.1 Rule-based control (RBC)

RBC is a straightforward and the most common used control
strategy in building energy management systems (Wang et al., 2023).
In RBC, control decisions are made based on a set of predefined rules
or conditions that dictate the system’s response to various inputs,
such as temperature, occupancy, time of day, or energy prices. These
rules are typically developed based on expert knowledge, historical
data, or regulatory requirements, and they are often expressed in
simple “if-then” logic.

2.1.1 RBC strategy
1. Initialize environment parameters
2. Define control rules based on domain knowledge
3. Monitor data (e.g., indoor conditions, outdoor

conditions, occupancy)
4. Apply control rules to determine control actions
5. Implement control actions by updating system setpoints
6. Monitor effects and adjust rules if necessary
7. Repeat the loop for continuous operation

While RBC is ideal for smaller systems or applications where
simplicity and low cost are priorities, it is often combined with more
advanced algorithms like MPC or RL in larger or more complex
energy management systems to improve adaptability and
optimization. Typically, baseline control is implemented using RBC.

2.2 Model predictive control (MPC)

MPC is another advanced control strategy used in building
energy management that optimizes system performance by
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predicting and planning future actions over a specific time horizon
(Wang et al., 2023). Unlike reactive control methods, MPC uses a
system model to anticipate future states and calculate the best
control actions based on these predictions. This approach allows
MPC to achieve highly efficient, predictive control by accounting for
changing conditions, constraints, and complex interactions within
the building’s energy systems.

2.2.1 MPC strategy
1. Initialize environment and system models [building thermal

model, prediction horizon (N), control interval (Δt)]
2. Define objectives, cost function (J), and constraints
3. Gather forecast data (e.g., weather, occupancy, prices)
4. For each control interval:

• Measure the current state (xt)
• Predict future states over the prediction horizon

• Solve the optimization problem (min J � ∑t+N−1
k�t c(xk, uk))

o Subject to:
• System dynamics xk+1 = f(xk, uk,dk)
■ Constraints on xk and uk

• Compute and apply optimal control actions u*t
5. Update time and iterate the process
6. End loop after the operation period

Compared to RBC, MPC offers more flexibility and
performance, particularly in complex or dynamic environments.
While RBC simply follows predefined rules, MPC adapts by
forecasting and optimizing in real-time. In comparison to RLC,
MPC typically provides more stable, predictable performance, as it
relies on a well-defined model rather than learning through trial and
error. However, RLC may be preferable in scenarios where building
models are difficult to define accurately, and computational learning
can identify effective strategies.

2.3 Reinforcement learning control (RLC)

RLC is an advanced machine learning approach that enables a
system, such as a building’s energy management system, to
autonomously learn and adapt their control strategies through
interaction with the environment (Michailidis et al., 2024).
Unlike traditional control methods that rely on predefined rules
or fixed models, RLC uses trial and error to identify the optimal
actions to achieve specific goals, like minimizing energy
consumption or reducing operating costs. This adaptability
makes it particularly powerful in complex, dynamic
environments where conditions change frequently.

2.3.1 RLC strategy

1. Initialize the environment: state space (S), action space (A),
dynamics (P(s′|s,a))

2. Initialize RL parameters: learning rate (α), discount factor (γ),
exploration policy (ϵ), etc.

3. Define the reward function (r(s,a))
4. For each training episode:

• Reset the environment to the starting state

• For each time step within the episode:

o Select an action using the epsilon-greedy policy:

at � randomaction with probability ϵ
arg maxQ st, a( ) with probability 1 − ϵ{

o Apply the action (at) and observe the next state (st+1)
and reward (rt)

o Update Q-values (Q(st, at)) or policy (π(a|s)) using the observed
experience

o Optionally update the exploration parameter
o Update the current state

• End of episode: Check for convergence or save results

5. After training, extract the optimal policy π* (a|s)
6. Deploy the learned policy for real-time control

RLC is particularly useful in environments where conditions are
unpredictable or dynamic and where complex, nonlinear
interactions. In scenarios where simpler rules suffice, or where
system behavior is more predictable, RBC or MPC might be
more appropriate. However, for maximizing efficiency in
dynamic, high-dimensional systems such as those in smart
buildings and microgrids, RLC offers distinct advantages by
continuously learning and improving its strategies.

3 Simulation tools and environment

Several simulation tools and environments support the
development, testing, and benchmarking of advanced control
algorithms, including RBC, RLC, and MPC, for building energy
management. These platforms are typically designed to model
building energy dynamics, HVAC systems, renewable energy
sources, energy storage, and grid interactions, making them ideal
for evaluating the performance of energy management strategies.
Here is an overview of some of the simulation tools and
environments as well as a summary in Table 1.

3.1 CityLearn

CityLearn’s Gym is an open-source Python environment and a
simulation framework for the implementation of multi-agent RL for
building energy coordination and DR in urban areas (Vázquez-
Canteli et al., 2020). This platform was designed as a standardized
tool to compare RL algorithms in the context of urban energy
systems and is available as an open-source project on GitHub.
CityLearn does not need any co-simulation since the buildings’
energy demands can be pre-simulated and provided as CSV files.
This also makes it easier for researchers to use this multi-agent RL
environment, as they only need to download it from the GitHub
repository, and run their RL agents as they would do with any other
environment.

The primary control strategy supported by CityLearn is RL, both
in single-agent and multi-agent configurations. The platform is
highly flexible in allowing for the customization of the reward
function, control modes (central-agent or multi-agent), and the
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interaction of various building systems such as batteries, EVs, heat
pumps, and electric heaters. These controls are aimed at achieving
objectives like load shedding, load shifting, and overall DR
optimization across the simulated city landscape.

3.2 BOPTEST

BOPTEST is a simulation framework for evaluating building
energy control strategies, focusing on the comparison of control
algorithms, particularly in the HVAC sector (Blum et al., 2021).
BOPTEST focuses primarily on single-building simulations, though
it can represent various types of buildings with differing HVAC
configurations and control needs. BOPTEST supports a variety of
control algorithms, with a particular emphasis on model-based
strategies such as MPC. Control algorithms can overwrite the
baseline supervisory and local-loop control signals to apply
advanced control strategies. Additionally, the platform’s modular
structure and Modelica-based emulators allow for the testing of
RBC, optimization-based methods, and data-driven algorithms. The
platform is particularly valuable for verifying the performance of
algorithms before deployment in real-world buildings, as it provides
a detailed simulation environment with realistic physical dynamics.

3.3 Energym

Energym is an open-source Python-based library developed for
energy management simulations and benchmarking environments
to evaluate various control strategies within standardized building

models (Scharnhorst et al., 2021). Energym focuses on single-
building energy systems, where the simulated buildings are
equipped with components and technical systems commonly
found in real-world structures. This allows users to control and
manage energy for individual buildings, making it ideal for testing
controllers that optimize HVAC systems, lighting, and other energy-
intensive building operations. Energym is specifically designed to
support RL algorithms, offering a set of pre-defined KPIs and
evaluation scenarios. The simulation’s pre-built scenarios provide
a consistent framework for evaluating controllers, enabling
researchers to test their algorithms in a realistic yet reproducible
setting. By including forecasts of uncertain variables, such as weather
or occupancy, Energym also facilitates robust testing under
conditions that reflect real-life unpredictability.

3.4 MPCPy

MPCPy is another open-source platform aimed at implementing
MPC for building energy systems (Blum and Wetter, 2019). The
platform offers a standardized structure for automating model setup,
parameter learning, and optimization problem formulation,
allowing users to implement complex MPC strategies without
requiring deep expertise in coding or building-specific modeling.
MPCPy operates at the building level, providing tools to model and
control individual building energy systems. Its scope encompasses
all essential building components such as HVAC, lighting, and other
systems that can impact a building’s energy profile and thermal
comfort levels. Its architecture allows users to automate the learning
of building parameters over time, enabling the platform to adjust to

TABLE 1 Summary of the analyzed EMS tools.

Tools Website Developer System boundary Control
Strategy

Presented in

CityLearn https://www.citylearn.net/ Researchers Urban districts with multiple
buildings and energy systems

RLC, SAC, RBC Vázquez-Canteli
et al. (2020)

BOPTEST https://ibpsa.github.io/
project1-boptest/

International Building Performance
Simulation Association (IBPSA)

Single building or collection of
building types

MPC
RBC

Blum et al. (2021)

Energym https://bsl546.github.io/
energym-pages/index.

html

Researchers Single-building or limited
building collections

RL, RBC Scharnhorst et al.
(2021)

MPCPy https://mpcpy.
readthedocs.io/en/latest/

Researchers Single-building energy systems MPC Blum and Wetter,
(2019)

PyCity https://github.com/
RWTH-EBC/pyCity

RWTH Aachen University Buildings and energy systems
within a city

Optimization-based
control, RBC

Schwarz et al. (2021)

eNeuron https://eneuron.eu/ Researchers, policymakers, and energy
companies

Energy hubs or neighborhoods Optimization-based
control

Morch et al. (2023)

GridLAB-D https://www.gridlabd.org/ U.S. Department of Energy’s Pacific
Northwest National Laboratory

(PNNL)

Distribution networks; grid-
interactive buildings

ER, DER control Chassin et al. (2008)
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changes in building usage or environmental conditions. This makes
it valuable for researchers and practitioners interested in
implementing MPC for building energy optimization, especially
in settings where environmental conditions and occupancy can
vary, impacting energy needs and system efficiency.

3.5 PyCity

PyCity is an open-source Python simulation framework that
models energy flows in urban districts, considering the interactions
between buildings and energy grids (Schwarz et al., 2021). The
framework is intended to help researchers and engineers address
power dispatch and grid stability challenges within smart cities.
PyCity supports optimization-based control strategies, with a
particular focus on power scheduling and dispatch for multi-
energy systems. It is designed for the development and testing of
coordination algorithms that optimize energy flows based on real-
time conditions and DR requirements across different buildings in a
district. PyCity can model multiple energy sources, including
electricity and heat, and is equipped to support flexibility in
urban energy systems by facilitating demand response strategies.

3.6 eNeuron

eNeuron is an EU-funded simulation environment focusing on
optimizing local energy systems and energy hubs (Morch et al.,
2023). The main goal of the eNeuron H2020 project is to develop
innovative tools for the optimal design and operation of local Energy
Communities (ECs), integrating DERs with energy hubs to optimize
resource flows across various energy carriers and consumer groups.
eNeuron supports various control strategies, with a particular
emphasis on the Energy Hub concept for managing multi-energy
systems. This approach allows for the coordinated control of
multiple energy carriers (e.g., electricity, gas, heating) and
resources. The platform prioritizes strategies that promote energy
optimization and flexibility, such as DR and storage coordination,
aiming to balance local supply and demand dynamically. eNeuron’s
tools are designed to support the transition to a decentralized, low-
carbon energy system by promoting energy-sharing models and
integrated energy management.

3.7 GridLAB-D

GridLAB-D is an open-source platform developed by the U.S.
Department of Energy for simulating distribution networks and
smart grid applications (Chassin et al., 2008). GridLAB-D has
evolved as a powerful tool for exploring how buildings,
distributed energy resources (DER), and other grid assets can
interact within the power grid. The platform supports various
control strategies, particularly those suited for real-time grid-
interactive applications. Key strategies include DR, distributed
generation control, renewable energy integration, and load
forecasting. Through its flexible modeling capabilities, GridLAB-
D can simulate the impacts of different demand-side management
strategies on grid performance, thus allowing users to explore

control algorithms like RBC and MPC within distribution grids.
Additionally, the platform is widely used to develop and test smart
grid technologies and strategies, including energy storage, electric
vehicle integration, and advanced metering infrastructure.

4 Comparative analysis

While all these platforms contribute to testing and optimizing
energy control policies, they are in different scales (from building-
level to district and grid-level), employ various control techniques,
and focus on specific aspects of urban energy management (e.g.,
occupant behavior, RL, or grid distribution). Therefore, a
comprehensive comparison can be useful for other researchers to
make informed decisions for selecting and using them.

MPCPy and BOPTEST are the best for single-building energy
management, typically focusing on HVAC and occupant behavior.
CityLearn and PyCity enable district-level simulations, suitable for
urban energy management scenarios. eNeuron and GridLAB-D
support neighborhood- and grid-scale simulations, integrating
DERs, demand response, and multiple energy carriers.

CityLearn and Energym specialize in RL environments for
demand response and energy management. MPCPy, PyCity, and
eNeuron focus on optimization and MPC approaches for energy
systems. GridLAB-D supports RBC, especially for demand response
and occupant-driven scenarios.

CityLearn and BOPTEST standardize and benchmark different
algorithms. eNeuron and GridLAB-D support simulations relevant
to energy hubs and grid-interactive buildings.

Tools like GridLAB-D and PyCity are highly flexible and
support complex multi-energy systems and grid interactions.
CityLearn and Energym are also user-friendly for RL research.
Most tools are focused on specific aspects (e.g., RL, occupant
behavior), so broader applications may require using multiple
tools. Complex platforms like GridLAB-D and PyCity require a
steeper learning curve, while tools like MPCPy may be limiting if the
user seeks multi-building applications.

This comparison highlights some pros and cons of each tool
based on their specific focus areas as summarized in Table 2.
Researchers and engineers can select the most suitable platform
based on their control strategy, system boundary, and application
requirements.

5 Conclusion

In this paper, we critically analyzed various AI tools, algorithms,
and simulation environments for building and urban energy
management systems (EMS), focusing on the capabilities, scope,
and unique contributions of each tool. Our comparative analysis
highlights that different simulation tools are specialized for specific
levels of application; single-building environments (e.g., MPCPy and
BOPTEST) are typically focused on HVAC control and occupant
behavior, while tools like CityLearn and PyCity facilitate district-level
simulations suitable for urban energy management. Additionally,
neighborhood and grid-scale simulations are supported by
platforms such as eNeuron and GridLAB-D, which integrate
distributed energy resources, demand response, and multiple
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energy carriers. We found that tools such as CityLearn and Energym
are well-suited for reinforcement learning (RL) applications in
demand response, whereas MPCPy, PyCity, and eNeuron excel in
optimization and model predictive control (MPC) approaches. Tools
such as GridLAB-D, on the other hand, offer more extensive support
for rule-based and behavior-driven controls, making them effective
for simulating demand response and occupant-centric scenarios. Our
findings offer guidance to researchers and engineersin selecting the
most appropriate simulation environment based on control strategy,
scope, and application needs. Ultimately, broader applications may
benefit from combining multiple tools to leverage complementary
features and achieve a holistic approach to energy management in
urban settings.
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