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Solid oxide fuel cells (SOFCs) can convert chemical energy from the fuel directly to elec-
trical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most
widely adopted anode for SOFCs. However, the conventional Ni-based anode has low toler-
ance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking) from
direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling.
Among these limitations, the redox instability of the anode is particularly important and
has been intensively studied since the SOFC anode may experience redox cycling during
fuel cell operations even with the ideal pure hydrogen as the fuel.This review aims to high-
light recent progresses on improving redox stability of the conventional Ni-based anode
through microstructure optimization and exploration of alternative ceramic-based anode
materials.
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INTRODUCTION
Solid oxide fuel cells (SOFCs) are promising energy conversion
devices. Elevated operating temperatures (typically in the range
of 400–1000°C) of SOFCs promote electrochemical reactions at
the electrodes, eliminating the need of precious metal catalysts.
Furthermore, they are capable of operating on hydrocarbon fuels
directly; they can function in electrolysis mode for energy stor-
age with excellent reversibility; they are modular, scalable, and
silent. These features make SOFCs ideal solution for a wide spec-
trum of power needs such as stationery power supplies, auxiliary
power units, and portable power devices (Singhal, 2003; Huang
and Goodenough, 2009).

Solid oxide fuel cells typically have three major components,
a dense electrolyte sandwiched between two porous electrodes:
anode and cathode. The conventional cell materials are yttria-
stabilized zirconia (YSZ) electrolyte, Ni–YSZ cermets anode, and
strontium-doped lanthanum manganite (LSM) cathode, respec-
tively (Zhu and Deevi, 2003b; Kharton et al., 2004; Sun and
Stimming, 2007; Jiang, 2008). In order to minimize high ohmic
loss from the YSZ electrolyte due to its limited oxide ion conduc-
tivity, thin electrolyte membranes are widely applied (de Souza
et al., 1997). Given the consideration of mechanical strength of the
cells, a supported structure is often required in these SOFCS with
thin electrolyte membranes. Ni–YSZ cermet anode, consisting of a
significant volume ratio of Ni metal phase to meet the requirement
for electronic conductivity and an YSZ phase for ionic conduction,
has excellent electrical conductivity, good mechanical strength,
and excellent electrochemical activity in H2 and even hydrocar-
bon fuels. Furthermore, Ni–YSZ cermet anode is cost effective
and easy to fabricate. Therefore, anode-supported cells are widely
adopted. However, the Ni metal phase in conventional Ni–YSZ
anodes causes several issues for SOFCs under practical conditions,
such as carbon deposition in hydrocarbon fuels and poisoning by
trace amount of impurities from the fuel such as sulfur-containing
species (Oudar,1980; Matsuzaki andYasuda,2000; Takeguchi et al.,
2002; Haga et al., 2008a,b). One of the most important limitations

for Ni-based cermet anode is the poor stability in redox cycling,
primarily due to the large volume change and coarsening of the
Ni-phase in the cermet anode (Klemensø et al., 2006; Klemenso
and Mogensen, 2007; Sarantaridis and Atkinson, 2007; Monzon
and Laguna-Bercero, 2012). Ni experiences 69.9% volume increase
upon oxidation to NiO. Such large volume change of Ni-phase will
produce considerable stress in the anode and electrolyte. When the
porosity in the Ni–YSZ anode cannot accommodate the volume
change, the rigid YSZ network can be broken and the whole cell
may even fail. Additionally, such redox cycles can be expected while
fuel cells are under long-term operation, mainly due to unexpected
fuel supply interruption, high fuel utilization under high current
load, or gas sealing failure. Although there have been several SOFC
system solutions proposed for preventing such circumstances, they
will add complexity and extra cost to the SOFC system, and the
accidental operation failure is still a concern. Therefore, it is more
desirable to avoid the potential cell failure by improving the redox
stability of anodes.

The reduction and oxidation processes for Ni and the impact
of redox cycling on mechanical properties, electrical conductivity,
and electrochemical performance of Ni-cermet anodes have been
intensively reviewed (Sarantaridis and Atkinson, 2007; Ettler et al.,
2010; Faes et al., 2012). This review intends to highlight recent
progresses on improving redox stability of SOFC anodes, includ-
ing modifications to Ni/YSZ cermet anodes and overview of some
newly proposed ceramic materials/ceramic composite materials as
potential redox capable SOFC anodes.

NI-CERMET ANODES
The impact of redox cycling on Ni-cermet anodes has been well
investigated. Reduction was found to have no significant dimen-
sional influence on NiO/YSZ bulk ceramic, indicating the support-
ing role of the YSZ network (Fouquet et al., 2003). The mechanical
strength of NiO (56 wt%)/YSZ substrate was measured by Grahl-
Madsen et al. (2006) via the four points bending tests. The mean
modulus of rupture only dropped slightly from 20.3 to 17.5 MPa,
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Xiao and Chen Redox stable anodes

suggesting that the strength of the reduced cermet relies on the
sinteredYSZ network. However, the electrical conductivity was sig-
nificantly affected by the reduction temperature (Grahl-Madsen
et al., 2006). An almost linear relationship between the electri-
cal conductivity and reduction temperature was reported. Higher
conductivity was obtained after the substrates were reduced at
higher temperature, but the low conductivity of the substrates
reduced at lower temperature could not be improved signifi-
cantly by additional treatment at higher temperature. This may be
attributed to simultaneous reduction and sintering of Ni (Saran-
taridis and Atkinson, 2007). On the other hand, significant volume
increase after re-oxidation was observed by Cassidy et al. (1996)
compared to the initial state. The authors explained that the large
volume change upon re-oxidation followed by the simultaneous
reduction and sintering for Ni might exceed the accommodation
provided by the porosity. Based on modeling study, Klemensø et al.
(2005) suggested that the reorganization of the Ni/NiO phase dur-
ing reduction and re-oxidation account for the redox instability
of the anode and that the oxide growth cause damage to the YSZ
network. The redox impact on microstructure of a Ni/YSZ anode-
supported cell has been intuitively demonstrated by a sequence of
SEM images which focus on exactly the same location during redox
cycling by Malzbender and Steinbrech (2007). Figure 1A shows
the initial dense NiO particles in the anode after sintering. Upon
reduction, the Ni particles shrank evidently and the porous anode

FIGURE 1 | SEM study of microstructural changes in anode and anode
substrate due to reduction/re-oxidation cycles. (A) Initial as co-fired
state, (B) reduced, (C) re-oxidized, (D) re-reduced, (E) re-re-oxidized,
(F) re-re-reduced with additional holding time of 100 h (Malzbender and
Steinbrech, 2007). Reprinted with permission from Elsevier.

was generated as shown in Figure 1B. However, the microstructure
of NiO cannot be restored after re-oxidation. Figure 1C shows that
sponge-like NiO particles were formed during re-oxidation, con-
sistent with the outward growth nature of NiO on Ni (Atkinson,
1987; Sarantaridis and Atkinson, 2007). The volume of the porous
NiO after re-oxidation was evidently larger than that in the ini-
tial state, which caused micro cracks in the anode and even the
fracture in the electrolyte. When the anode was reduced again,
dense NiO particles were formed as shown in Figure 1D, but
the particle size became larger and the structure became coarser
comparing with that shown in Figure 1B. Additional oxidation
aggravated the microstructure changes that the electrolyte crack
opened larger and the NiO particles appeared to be even more
fragmented (Figure 1E). However, additional reduction did not
cause further deteriorative changes in the microstructure of the
anode as shown in Figure 1F, in which the anode microstructure
after another reduction with an additional holding time of 100 h
looked similar to the re-reduced case (Figure 1D).

Since the cracks in the electrolyte are caused by volume expan-
sion of the Ni–YSZ anode support, there seems to be a critical
expansion limit for the support to prevent electrolyte failure. It has
been established by mechanical modeling that anode-supported
SOFCs can withstand about 0.1–0.2% expansion of the support-
ing composite during redox cycling without cracking (Laurencin
et al., 2008; Pihlatie et al., 2009). For electrolyte-supported cell con-
figuration, an oxidation strain of 0.5% for a 10 µm-thick anode
layer can be tolerated (Thouless, 1991). With this target, several
solutions have been proposed for improving redox tolerance of
Ni/YSZ supported cells.

MICROSTRUCTURAL OPTIMIZATION
The redox behavior of Ni-cermet anode seems to be affected sig-
nificantly by the microstructure of Ni/YSZ and improvements
can be made through optimization in the Ni/YSZ microstructure
and composition (Wood et al., 2006). Itoh et al. (1997) investi-
gated the impact of the particle distribution of YSZ powders on
microstructural stability of Ni/YSZ anodes. Coarse (~27.0 µm)
and fine (~0.6 µm) YSZ powders were mixed to fabricate Ni/YSZ
anodes. Comparing to uniform-sized YSZ in conventional Ni/YSZ
anodes, no significant dimension and microstructure changes of
the new anodes were detected during sintering in air and reduction
in a reducing atmosphere, which was attributed to the optimized
microstructure of YSZ frame. They also found that good long-
term stability cannot be achieved by making the anode with the
coarse YSZ particles alone, and additional fine YSZ particles could
help achieve more stable anodes without substantial decrease in
electrical conductivity and change in anode microstructure. The
function of the coarse YSZ particles is to form a porous and loose
frame work, which allows Ni agglomeration to form sufficient
electronic conducting path, and the fine YSZ particles function
as inhibitor to prevent Ni agglomeration and form connections
between coarse YSZ particles. The conductivity of the Ni-cermets
anode has been found to depend not only on the Ni content but
also on the particle size of YSZ and the mixture ratio between the
coarse and the fine YSZ.

Fouquet et al. (2003) studied the influence of NiO and YSZ
particle sizes and sintering temperatures on dimensional changes
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of NiO/YSZ bulk ceramics and found that smaller size of initial
NiO particles and lower sintering temperature were beneficial for
improving redox stability. The particle size distribution of NiO
was found to be a very effective factor. Lower length expansion of
the bar samples was observed with finer NiO particles. The benefit
from lower sintering temperatures was attributed to the less rigid
YSZ network and higher porosity to better compensate volume
changes of Ni upon redox cycling.

Kim et al. (2006) investigated thermal/redox cycling stabil-
ity of NiO/YSZ composite powder composed of nano-sized NiO
crystallized (20–30 nm, 40 wt%) on YSZ powder (0.3 and 10 µm,
60 wt%) prepared by decomposition of aqueous Ni-based solu-
tion. The anode made from NiO/YSZ composite powder, which
had a high homogeneity and plenty of contact sites between Ni and
YSZ, exhibited an excellent tolerance against thermal and redox
cycling. The electrical conductivity decreased by 10% from 1450
to 1250 S cm−1 over 20 redox cycles at 800°C, while the conduc-
tivity for the conventional NiO–YSZ mixing powder decreased by
47% from 1200 to 600 S cm−1 (Figure 2). They concluded that
the functional NiO/YSZ composite powder would suppress the
degradation of anodes and enhance the long-term redox stability
of the cells at elevated temperatures.

FIGURE 2 | Electrical conductivity variations of anodes depending on
thermal cycling (Kim et al., 2006). Reprinted with permission from
Elsevier.

Waldbillig et al. (2005) found that anode samples with coarse
microstructure experienced no volume change or cracking upon
redox cycling. Fine structured anode samples did not change in
volume after reduction, but expanded between 0.9 and 2.5% after
oxidation. The samples were significantly cracked after oxidation.
The amount of expansion and cracking could be reduced by low-
ering the Ni content of the anode (Ettler et al., 2010). However,
the Ni content in the substrate must be sufficient to meet the
requirement for electronic conductivity. Waldbillig et al. fabri-
cated graded anode functional layer to gradually decrease the Ni
content near the electrolyte membrane (Figure 3A). The redox
tolerance of the cells was evidently improved when the Ni con-
tent was lowered. They also added an oxidation barrier layer with
finer microstructure to the bottom of the cell to restrict the oxygen
flowing into the anode (Figure 3B). Both types of microstructural
modification effectively improved the cell redox tolerance com-
pared with standard baseline redox tests (Waldbillig et al., 2007).
Although the cell tolerance to a certain depth of oxidation was
enhanced, the stability of the cells in multiple redox cycles may be
problematic for these solutions.

By performing dilatometric measurements, Pihlatie et al.
(2009) found that highly porous samples were most stable in redox
cycling. The cumulative redox strain, dL/L0, increased significantly
when the as-sintered porosity decreased from 34 to 9% as shown
in Figure 4. The most stable cermets showed a maximum cumu-
lative redox strain not exceeding 0.1% during three redox cycles
at 850°C. Electrochemical testing on Ni–Sc YSZ symmetrical cells
showed that isothermal redox cycling at 850°C did not signifi-
cantly alter the electrode performance and improvement in the
electrochemical performance of the anode on low temperature
redox cycling was observed. Such improvement was attributed to
small Ni grains and an undamaged ceramic structure observed in
the sample redox-cycled at lower temperature.

NI-INFILTRATED YSZ ANODES
The investigations on microstructural modifications for Ni-based
cermet suggest that better redox stability can be achieved with a
robust YSZ network, which can tolerate the expansion of Ni dur-
ing oxidation to form fine NiO particles (Fouquet et al., 2003).
The conventional Ni-based cermet anodes have to go through
high-temperature sintering process which inevitably coarsens NiO
particles. Infiltration is considered an efficient method to achieve
this desired microstructure. To apply this fabrication technique,

FIGURE 3 | BSE SEM images of (A) a reduced fuel cell with a graded anode functional layer, (B) an as-prepared 57 wt% NiO oxidation barrier
(Waldbillig et al., 2007). Reprinted with permission from The Electrochemical Society.
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Xiao and Chen Redox stable anodes

FIGURE 4 | Maximum cumulative redox strain (CRSmax) values
obtained in isothermal redox cycling dilatometry comprising three
redox cycles, as a function of estimated total porosity of different
Ni–YSZ cermets (Pihlatie et al., 2009). Reprinted with permission from
Elsevier.

porous YSZ substrates are usually pre-sintered at high tempera-
tures to form rigid networks. Aqueous Ni-based salt solution is
subsequently infiltrated into the porous YSZ substrates and then
treated at a relatively low temperature to form NiO. Nano-sized Ni
particles coated on porous YSZ substrates can be obtained through
such low temperature decomposition and in situ reduction. Addi-
tionally, compared with the conventional cermet anodes, a less
amount of NiO is required for the infiltrated anode to meet the
electronic conductivity requirement (the Ni percolation threshold
of 30 vol%), since Ni network can be efficiently formed by nano-
sized particles on YSZ surface. Reducing Ni content may mitigate
the redox issues for Ni-based cermets. Based on these advantages,
Ni-infiltrated YSZ cermets were considered as a possible solution
for the redox problem.

Busawon et al. (2008) investigated Ni infiltration into porous
YSZ structures as a possible solution to the redox degradation of
Ni-based SOFC anodes and anode supports. The cermets contain-
ing 12–16 wt% Ni prepared by infiltration exhibited conductivity
above 300 S cm-1 at room temperature. Its conductivity dropped
by 20% after one redox cycle, but it was not accompanied by bulk
dimensional changes. The dimensional stability was also attributed
to the microstructure of the infiltrated anode.

Recently, redox stable SOFCs with Ni–YSZ cermet anodes
(30 vol% NiO) prepared by infiltration method were reported by
Buyukaksoy et al. (2012). They infiltrated polymeric NiO pre-
cursor into a porous YSZ layer (~10 µm thick) pre-sintered on
a 170 µm-thick electrolyte supporting membrane. A Ni–YSZ cer-
met consisted of porous YSZ coated by nano-sized Ni particles was
obtained. Furthermore, benefited from the low-temperature pro-
cessing, internal stress between the Ni/NiO and the YSZ substrate
was low during the redox cycling. The power density of the SOFCs
degraded less than 1% after 15 cycles as shown in Figure 5.

The Ni-cermet anodes prepared by infiltration methods exhibit
enhanced redox stability, but the long-term stability of small Ni

FIGURE 5 | Influence of redox cycles on the current density at short
circuit conditions at 800°C. The inset graph shows the change in short
circuit current density in time between 7th and 10th redox cycles at 800°C
(Buyukaksoy et al., 2012). Reprinted with permission from The
Electrochemical Society.

particles at SOFC operation temperatures is questionable since
coarsening of Ni particles may cause degradation in cell perfor-
mance and in turn weaken redox tolerance. Some low surface
energy oxides such as MgO, TiO2, Mn3O4, and Cr2O3 were added
to the anode cermet to suppress Ni coarsening (Tsoga et al., 1996;
Zhu and Deevi, 2003b). These additives were expected to retard the
coarsening of Ni particles during the high-temperature operation
of cells, improve the mechanical properties of anode by assisting in
the sintering of YSZ, and enhance the wettability of Ni particles by
acting as anchoring sites at the anode/electrolyte interface. Tikekar
et al. (2006) further investigated reduction and re-oxidation kinet-
ics of Ni–YSZ cermet with and without small amount of oxide
additives (4 mol% of CaO, MgO, and TiO2) and found that the
oxide additives were effective to suppress the kinetics of both
reduction and re-oxidation, although by different mechanisms,
thereby improving redox tolerance of Ni-cermet anodes.

Although the infiltration method has been demonstrated as
an effective way to improve redox stability of Ni-cermet anodes,
implementation of this method in large-scale cell production is
still problematic, since it typically requires special care to ensure
that infiltration solutions go into the anode substrate pores with-
out flooding and the process often needs to be repeated several
times to obtain proper Ni loading. In general, it is labor-intensive,
time-consuming, and costly for applications. Additionally, the
redox issues resulting from the Ni-phase is still unresolved. There-
fore, substitutions for Ni are widely investigated as an alternative
way to solve the redox issues for SOFCs.

CERAMIC ANODES
The Ni-phase in Ni-based cermets functions as the electronic
conducting phase in the SOFC anode and the substitution mate-
rials must meet the requirement for electronic conductivity at
the operation conditions. They also should have good chemical
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compatibility with other components used in SOFCs. Alternative
transition metals, such as Cu, Ni–Cu, and Ni–Fe, have been consid-
ered and some of them have demonstrated better coking resistance
than Ni-cermets (Gorte et al., 2002; Kim et al., 2002; Ishihara et al.,
2006). However, the redox issue still remains for these metals since
they can also be easily oxidized under the typical SOFC operating
conditions. Considering the tolerance to oxidation, precious met-
als should be a good choice. However, they are far more expensive
for practical use, especially when significant quantities are needed
to meet the electronic conductivity requirement. Some ceramic
materials which are stable in a wide range of oxygen partial pres-
sures under SOFC operating conditions may have much smaller
volume change, arising from oxygen non-stoichiometry, during
redox cycling when compared with the transition metals. They
also have considerably lower cost than precious metals. Therefore,
electronic conducting ceramic materials have drawn great research
interests as alternative SOFC anodes.

As potential SOFC anode materials, suitable ceramic candi-
dates need to meet the following requirements (Goodenough and
Huang, 2007; Fu and Tietz, 2008; Ruiz-Morales et al., 2011). (1)
Electronic conductivity. It is suggested that the electronic conduc-
tivity should be above 1 S cm−1 for the functional anode materials.
(2) Electrocatalytic activity. Fuels should be well electrochemically
oxidized on the materials. (3) Stability. They must be chemically
compatible with other contacted components, including elec-
trolytes and current collectors under fabrication and operating
conditions. Their electrochemical properties should not degrade
upon operation time due to reactions with fuels. (4) Thermal com-
patibility. The thermal expansion of the materials should match
other contacted components to insure good contact during ther-
mal cycling. Many ceramic materials with different structures,
including perovskite, fluorite, pyrochlore, and tungsten bronze,
have been studied as SOFC anode candidates (Sun and Stim-
ming, 2007). Among them, the ABO3 perovskite-type materials
exhibit good stability at high temperatures and tunable properties
by adjusting the types and amount of the cations. A lot of per-
ovskite ceramic materials have been studied as anode candidates
and some of them have demonstrated promising redox stability.

CHROMITES
LaCrO3-based perovskite materials are stable and conductive in
both reducing and oxidizing atmospheres. They are widely used
as interconnect materials and have also been demonstrated as
anode candidates (Tao and Irvine, 2003; Zhu and Deevi, 2003a).
Since LaCrO3 is a p-type conductor, divalent cations such as
Sr2+, Ca2+, Ni2+, and Mg2+ are often doped into its A or B
sites, according to their radii, to enhance its electrical conduc-
tivity (Primdahl et al., 2001; Ruiz-Morales et al., 2007a). Tao
et al. investigated (La,Sr)CrO3 with Mn, Fe, Co, Ni, and Cu as
B-site dopants, which accept lower coordination numbers and
may enhance oxide ion migration. They increased doping ratio
to 50%, expecting to increase oxide ionic conductivity by forming
a percolation passage for oxide ions (Tao and Irvine, 2003). Due
to the structural instability of Fe-, Co-, Ni-, and Cu-doped ones
under anode conditions, only La0.75Sr0.25Cr0.5Mn0.5O3 turned out
to be a promising redox stable electrode candidate. Its electri-
cal conductivity reached 38 S cm−1 in air and 3 S cm−1 in wet

H2 at 900oC. In wet H2, a relatively low polarization resistance
of 0.2 Ω cm−2 was also observed for this material. Compared
with other LaCrO3-based materials, the enhanced performance
for La0.75Sr0.25Cr0.5Mn0.5O3 was attributed to the potentially
enhanced mixed ionic and electronic conduction. Although oxide
ionic conductivity is not required for the ceramic anode materials,
it is known that the catalytic reaction in the anode can be pro-
moted by extending active sites from three phase boundaries to
the anode bulk (Zhang et al., 2013).

Symmetrical SOFC performance and redox stability of
La0.75Sr0.25Cr0.5Mn0.5O3 electrodes have been studied by
Bastidas et al. (2006). The polarization resistance of
La0.75Sr0.25Cr0.5Mn0.5O3 electrode was measured on YSZ elec-
trolyte membranes using three-electrode half-cell technique
at 900°C. The cells were stabilized sequentially in humidi-
fied hydrogen, reformate, and then humidified oxygen for 30–
60 min in each atmosphere and for four cycles. The polariza-
tion resistance exhibited slight degradation after the first cycle,
but then became stabilized, indicating remarkable redox sta-
bility of La0.75Sr0.25Cr0.5Mn0.5O3. The symmetrical cell with
La0.75Sr0.25Cr0.5Mn0.5O3–YSZ (70:30 wt%) as both anode and
cathode on a 200 µm-thick YSZ electrolyte exhibited maximum
power densities of 300 mW cm−2 in wet H2 and 230 mW cm−2

in wet CH4. Such cells were also demonstrated to function
in electrolyzer mode. In order to further improve electro-
catalytic activity, La0.75Sr0.25Cr0.5Mn0.5O3–YSZ–GDC composite
electrodes were also investigated in anode and cathode con-
ditions (Ruiz-Morales et al., 2007b). It was found that the
anode polarization resistance could be optimized by introduc-
ing a certain amount of GDC. The symmetrical SOFCs with an
180 µm-thick YSZ electrolyte achieved a maximum power den-
sity of 0.4 W cm−2 in H2 at 950°C. Microstructure optimization
has also been applied to La0.75Sr0.25Cr0.5Mn0.5O3-based elec-
trodes by using poly (methyl methacrylate) PMMA microspheres
as template. The peak power density of symmetrical cell with
La0.75Sr0.25Cr0.5Mn0.5O3–YSZ electrodes was improved to 0.5 and
0.3 W cm−2 in H2 and CH4, respectively at 950°C (Ruiz-Morales
et al., 2006a).

Y0.8Ca0.2Cr0.8Co0.2O3–SDC composite has been reported by
Yoon et al. (2011) recently as a high performance redox stable
ceramic anode for SOFC. The anode in YSZ electrolyte-supported
cells exhibited comparable performance in H2 as the Ni/YSZ
anode and showed good sulfur tolerance. The linear expansion
of Y0.8Ca0.2Cr0.8Co0.2O3 was less than 0.08% at 800°C when PO2

changing from 0.21 to 4.5× 10−19 atm and no performance degra-
dation for the cell with Y0.8Ca0.2Cr0.8Co0.2O3–SDC anode was
observed after four redox cycles.

TITANATES
Another interesting perovskite family is SrTiO3-based materials.
Reduced donor-doped SrTiO3 can exhibit very high electrical
conductivity which is close to or above 100 S cm−1 at 800°C in
reducing atmosphere (Moos and Hardtl, 1996). Due to the sup-
pressed oxygen vacancies and slow Sr diffusivity, the defect equili-
bration of donor-doped SrTiO3 materials under different oxygen
partial pressures is quite slow, resulting in a strong dependence
of electrical conductivity on material treatment history. Without
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equilibration in low PO2 at high temperature for a sufficiently long
time, the electrical conductivity is often quite low (Kolodiazhnyi
and Petric, 2005). However, such slow process of equilibration
improves tolerance to redox cycling that the high electrical con-
ductivity can be restored after a short period of exposure to
air. Consequently, this feature makes the donor-doped SrTiO3

materials potential redox stable anode candidates for SOFCs.
Hui and Petric (2002) reported rapid changes in conductivity

of Sr0.88Y0.08TiO3 (sintered in 7% H2 at 1400°C) after a sudden
oxygen partial pressure change at 800°C from 7% H2 to air or
vice versa. The changes reached a plateau after some time indi-
cating that the processes were diffusion-controlled and the surface
reaction at 800°C for both oxidation and reduction was fast for this
material. The electrical conductivity was found reversible on oxi-
dation and reduction, but the reduction took much longer time,
indicating that the incorporation of oxygen into lattice is much
easier than the release of oxygen from the lattice. Fu et al. reported
that the electrical conductivity change of a porous Sr0.93Y0.07TiO3

sample (sintered in 4% H2/Ar at 1300°C for 10 h and then annealed
in Ar at 1100°C for 3 h to simulate the cathode sintering condition,
porosity 15%) in five redox cycles at 800°C (Fu and Tietz, 2008).
Only slow degradations were observed. Considering the short
recovery time in reducing atmospheres, this material showed good
redox tolerance. Recently, Burnat et al. (2012) performed the redox
cycling of La0.2Sr0.704TiO3 at 800°C over a period of 120 h as shown
in Figure 6. Similar behaviors were found after exposing the anode
to oxidizing atmosphere for 30 min. One hundred percent of the
initial conductivity was restored after 12.5 h retreatment in reduc-
ing atmosphere. This recovery process of conductivity was found
fully reproducible under the given experimental conditions. After
six cycles, the initial conductivity could still be recovered. Redox
stability of SrNb0.01Ti0.99O3–YSZ composite was also reported by
Gross et al. (2009). After two redox cycles at 700 and 800°C, the
conductivity of the porous samples was almost recovered in a short
period of time. Interestingly, also due to the slow equilibration in

FIGURE 6 | Isothermal redox cycling at 980°C of air sintered
La0.2Sr0.704TiO3. Before the measurement, the reduction was lasting 24 h at
980°C. Note that each 30 min-long oxidation step has led to a complete loss
of conductivity (0.002 S cm-1). The nitrogen flux with 250 ml min-1 was
applied for 1 min before each oxidation and reduction cycle (Burnat et al.,
2012). Reprinted with permission from Elsevier.

different PO2 , the conductivity of dense Nb-doped SrTiO3 was
found almost independent of the oxygen partial pressure at 500–
800°C (Hashimoto et al., 2007). Similar tolerance to oxidation was
also reported for dense (La0.3Sr0.7)0.93TiO3 sintered in reducing
atmosphere by Li et al. (2010). The reason for such different con-
ductivity change on oxidation is not clear, but it may be ascribed
to the difference in the samples, such as composition, phase purity,
pretreating history, and density.

Another criterion for redox-stable electrode materials is that
their thermal expansion behavior must match electrolyte mate-
rials. The thermal expansion coefficients (TECs) for SrTiO3-
based materials in reducing atmospheres were reported to be
11.8× 10-6 K-1 for Sr0.7La0.3TiO3 (25–1000°C) (Hashimoto et al.,
2006), 12.4× 10-6 K-1 for Sr0.93Y0.07TiO3 (30–800°C) (Fu and
Tietz, 2008), and 12.1× 10−6 K−1 for Sr0.94Ti0.9Nb0.1O3 (100–
920°C) (Blennow et al., 2008) which are close to those for the
typical electrolyte materials (Kharton et al., 2004). The linear
expansion of these materials was also studied in redox cycling.
The chemical expansion on oxidation for Sr0.7La0.3TiO3 was
about dL/L0= 0.51% at 1000°C while a reversible value of 0.14%
was reported for Sr0.93Y0.07TiO3 at 830°C. The values could be
further lowered by forming ceramic composite with electrolyte
materials (Kharton et al., 2004). As shown in Figure 7 below,
the Sr0.93Y0.07TiO3–YSZ composite (65:35 vol%) only exhibited
about 0.045% linear dimension change upon redox cycling at
820°C (Fu et al., 2007). These properties indicate that the over-
all redox stability of the donor-doped SrTiO3 materials is very
good.

Blennow et al. (2009) reported the polarization resistance of the
composite electrode Sr0.94Ti0.9Nb0.1O3–YSZ (54:46 vol%) mea-
sured in a symmetrical cell configuration for 19 redox cycles at
850°C as shown in Figure 8. One redox cycle involved exposing
anode in oxidizing atmospheres for 0.5–2.5 h and maintaining in
wet H2 for 13 h after switching the gas. The polarization resistance

FIGURE 7 |Thermal and chemical expansion behaviors of
Sr0.93Y0.07TiO3/YSZ (65/35 vol%) ceramic composite. The sample was first
heated up to 1060°C and cooled down to 820°C in Ar, then subjected to
two redox cycles between wet Ar/4% H2 and Ar/20% O2 at 820°C, and
finally cooled down to room temperature (Fu et al., 2007). Reprinted with
permission from Elsevier.
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FIGURE 8 | Fitted parameters of the composite electrode
(Sr0.94Ti0.9Nb0.1O3–YSZ) symmetrical cell as a function of redox cycles at
850°C. Each point was measured ca 13 h after re-reduction. Rs is the
resistance determined from the high frequency offset. The polarization
resistance (RP) is the sum of R1, R2, and RG from equivalent circuit fitting
[LRS(Q1R1)G(Q2R2)] (Blennow et al., 2009). Reprinted with permission from
Elsevier.

increased dramatically from the initial value of 16.3–29 Ω cm2

after two redox cycles. The increased polarization resistance could
be attributed to the fast oxidation and slow reduction of the
titanates given that the sample was initially reduced at 980°C and
the reduction during redox cycling was only at 850°C. It was noted
that the polarization resistance only increased by 12% after the
19th redox cycle compared with the value after the second one.
Although lower polarization resistance could be expected when
testing in single cells, the value for the Sr0.94Ti0.9Nb0.1O3–YSZ
electrode is still quite large for SOFC anodes compared with
Ni–YSZ cermets, implying low electrocatalytic activity for this
material.

DOUBLE PEROVSKITES
Double perovskite Sr2MgMoO6 has been investigated as an SOFC
anode candidate by Huang et al. (2006). The electronic conductiv-
ity and catalytic activity of this material rely on the Mo6+/Mo5+

redox couple and can be improved by replacing Mg with other
mixed-valent cations. Sr2FeMoO6 exhibited much higher elec-
trical conductivity in reducing atmosphere (about 220 versus
9 S cm−1 for Sr2MgMoO6), which is attributed to the overlap of
Fe 3d, Mo 4d, and O 2p bands at Fermi level and delocalized elec-
trons from Mo 4d band (Itoh et al., 1996; Kobayashi et al., 1998;
Zhang et al., 2010). Zhang et al. measured anode performance
of Sr2FeMoO6 on LSGM electrolyte with SmBaCo2O5+x cathode,
which yielded a peak power density of 584 mW cm−2 at 800°C in
dry H2. One concern about Sr2FeMoO6 as an SOFC anode candi-
date is its narrow stable range at different oxygen partial pressures.
The composition is not stable in oxidizing atmospheres at high
temperatures due to that the total charge of the cations cannot be
balanced by the oxygen cations in the perovskite structure. There-
fore, high-temperature treatment of the anodes must be done in
protective atmospheres. Additionally, even at low PO2 , the oxide
ionic conductivity of Sr2FeMoO6 may be low due to lack of oxy-
gen vacancies, which limits the replenishment of O2− ions to the
anode surface and eventually causes anode surface decomposition
and performance degradation (Goodenough and Huang, 2007).
Therefore, improvements are needed to make this material more
feasible.

Recently, Liu et al. found that the phase stability of
Sr2Fe1+xMoxO6 (0≤ x ≤ 1) at high oxygen partial pressures
can be gradually improved when lowering the Mo content and
Sr2Fe1.5Mo0.5O6 was found stable in both anode and cath-
ode conditions (Liu et al., 2010a; Xiao et al., 2010). Further-
more, Sr2Fe1.5Mo0.5O6 exhibited good chemical compatibility
with LSGM, SDC, and BZCY electrolyte materials up to 1400°C.
Its electrical conductivity at 800°C was measured to be about
20 S cm−1 in air and 13 S cm−1 in wet H2, indicating potential
applications as both cathodes and anodes for SOFCs (Xiao et al.,
2012a,b).

By lowering the Mo content of Sr2Fe1+xMoxO6 (0≤ x ≤ 1),
some intrinsic oxygen vacancies were also introduced into the
materials. According to neutron powder diffraction refinement
results, the non-stoichiometry number δ was 0.10(2) for the as-
synthesized Sr2Fe1.5Mo0.5O6–δ, revealing the presence of oxygen
vacancies (Muñoz-García et al., 2011). Similar result was predicted
by Muñoz-García et al. with DFT+U theory (Mun oz-García
et al., 2012; Muñoz-García et al., 2013). Based on first principle
calculations, they found oxygen vacancies preferentially formed
along Fe–O–Fe bonds rather than along Mo–O–Fe and Mo–O–
Mo bonds, and Fe–O bond in Sr2Fe1.5Mo0.5O6 was relatively weak,
indicating that high oxide ionic conductivity can be expected for
this material. By fabricating a thin layer of LSGM electrolyte on
the sample as electronic blocking layer, the oxide ionic conduc-
tivity of Sr2Fe1.5Mo0.5O6 was measured by Xiao et al. (2011a).
The value reached 0.13 S cm−1 at 800°C in air, which is compa-
rable to those for SrCoO3-based cathode materials. The chemical
diffusion coefficient and surface exchange constant were also mea-
sured for Sr2Fe1.5Mo0.5O6, which are comparable to those of the
state-of-art cathode materials. Zhang et al. found that its surface
exchange kinetics can be further enhanced by surface modifica-
tion with ceria-based materials. The polarization resistance was
0.076 Ω cm2 and the exchange current density was 0.186 A cm−2

at 800°C measured on LSGM electrolytes, showing good cathode
activity of Sr2Fe1.5Mo0.5O6.

Liu et al. tested symmetrical fuel cells with Sr2Fe1.5Mo0.5O6 as
both anode and cathode on LSGM electrolyte (Liu et al., 2010a,
2011). The peak power density reached above 500 mW cm−2 at
800°C with H2 as the fuel, which is much higher than those
symmetrical fuel cells with LaCrO3-based electrode materials. As
shown in Figure 10, the symmetrical cells exhibited good redox
stability that the peak power density remained stable after five
redox cycles at 800°C. This feature allows the anode and cath-
ode of symmetrical fuel cells with Sr2Fe1.5Mo0.5O6 electrodes
to function reversely by switching the gases, making it possible
to in situ regenerate the cell performance from the contami-
nated anode. The feasibility of regenerating cell performance using
Sr2Fe1.5Mo0.5O6 anode upon redox cycling was demonstrated by
exposing the anode in air at 800°C after operating in sulfur or
hydrocarbon-containing fuels. As shown in Figure 9, the peak
power density of the symmetrical cells was efficiently recovered
after redox cycling. Due to the excellent stability and activity of
Sr2Fe1.5Mo0.5O6, the symmetrical cell was also demonstrated as
an efficient solid oxide electrolysis cell by Liu et al. (2010b). The
cell was operated at 1.2 V at 850°C under highly humidified condi-
tion for about 100 h. Only slight performance drop was observed in
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FIGURE 9 | Stability of symmetrical cells with Sr2Fe1.5Mo0.5O6 electrodes
at 800°C versus the time of stream (A). In the first five cycles which are
redox cycle test, the anode gas was switched between air and H2. In the last
five cycle tests, the anode gas was switched between H2 and H2 with

100 ppm H2S. The maximum power density was recorded after each cycle,
(B) the maximum power density of the cell when the anode gas was
switched between H2, air, and CH4 for 16 cycles (Liu et al., 2011). Reprinted
with permission from Elsevier.

the initial 10 h test and the current became stable in the following
90 h operation.

Sr2CoMoO6 and Sr2NiMoO6 were also studied as SOFC anode
materials and they showed remarkably high power density in
H2 and CH4 (Huang et al., 2009; Wei et al., 2012). Similar to
Sr2MgMoO6 and Sr2FeMoO6, high cation charge in these mate-
rials makes the phase stability questionable and the oxygen ionic
conductivity potentially low at high oxygen partial pressures. Wei
et al. (2012) lowered Mo content up to 20% in Sr2CoMoO6 and
evaluated the materials as electrode candidates for symmetrical
fuel cells. It is interesting that these Sr2Co1+xMo1−xO6 (x = 0.1,
0.15, 0.2) materials exhibited much lower TEC than other Co-
based perovskites (6–15× 10−6 versus 20–30× 10−6 K−1). Sym-
metrical cells with Sr2Co1.15Mo0.85O6 as both anode and cath-
ode exhibited a peak power density of 460 mW cm−2 at 800°C,
indicating its potential applications as redox stable electrodes.

CERAMIC ANODES WITH PROMOTED CATALYTIC ACTIVITY
Ceramic anode materials may exhibit better stability than conven-
tional Ni-based cermet materials but their overall cell performance
is still relatively low. The ceramic anode performance is limited by
the electrical conductivity and catalytic activity of the materials. In
some cases, the cell performance can be improved dramatically by
introducing a small amount of precious metal catalysts, indicating
the catalytic activity may be a dominant restraint (Kim et al., 2008;
Gross et al., 2009; Zhu et al., 2009; Bi and Zhu, 2011; Smith and
Gross, 2011; Xiao and Chen, 2011; Xiao et al., 2012c, 2014).

One strategy for promoting anode reactions on ceramic anode
materials is to increase the number of reaction sites. Infiltration
methods can be applied to extend three phase boundaries by
forming nano-sized ceramic anode phases on porous electrolyte
framework (Zhang and Xia, 2010; Zhang et al., 2013). As afore-
mentioned, this method can mitigate the expansion mismatch
between ceramic materials and electrolytes, potentially improving
redox stability of the ceramic anodes. Fuel oxidation on ceramic
materials may also be facilitated by enhancement of their oxide
ionic conductivity (Fu et al., 2006; Ruiz-Morales et al., 2006b;
Canales-Vázquez et al., 2007; Li et al., 2008a,b, 2009, 2010). This

has been quite effective for donor-doped SrTiO3 and may also
promote equilibration of SrTiO3 materials under different oxygen
partial pressures (Neagu and Irvine, 2011; Suthirakun et al., 2011,
2012, 2014; Xiao et al., 2011b, 2013). Moreover, some catalysts
can be directly introduced to the ceramic anodes for improving
the overall anode performance. Additionally, because of the mixed
conducting nature of the ceramic materials, the catalyst particles
can be highly dispersed and stabilized by the ceramic phase with-
out compromising stability (Zhu et al., 2009; Xiao and Chen, 2011;
Xiao et al., 2012c).

Ma et al. (2010) reported high performance and redox sta-
ble planar single cells with dimensions of 50 mm× 50 mm. The
cells were fabricated on a Sr0.895Y0.07TiO3 anode support and a
(Sr0.89Y0.07)0.91TiO2.91–YSZ (2:1 in volume) anode active layer,
both infiltrated with 3 wt% NiO. A power density of 0.85 W cm−2

was achieved for the cells at 0.7 V at 800°C with H2 as the fuel.
As shown in Figure 10, at 700°C the cells were subject to redox
cycling by exposing the anode in H2 for 10 min and in air for
another 10 min in a typical cycle for 200 cycles. The OCV only
decreased by 1.3% and the performance of the cell decreased by
35%. It was noted that cell performance almost reached stability
after 100 cycles. The degradation was attributed to the slow redox
kinetics of Sr0.895Y0.07TiO3 that the electrical conductivity cannot
fully recover in such a short time in H2. By prolonging the reduc-
ing time to 2 h, no evident degradation was observed for 50 redox
cycles at 800°C. The good redox stability of the cells in such scale
shows very promising prospect for commercial application.

Although ceramic anodes with infiltrated catalysts exhibit
promising stability and high performance, alternative approaches
to obtain such catalysts modified ceramic anodes are needed due
to the limitations of the infiltration method mentioned previ-
ously. Recently, in situ formation of metal catalysts on ceramic
materials has been considered as an attractive way. When multi-
valent transition metals were introduced to the B site of LaCrO3-
based materials to improve their catalytic activity, Ni-doping was
found more effective (Sfeir et al., 2001). Such catalytic improve-
ment was found to arise from Ni precipitation in fuel conditions
(Sauvet and Irvine, 2004). Madsen et al. (2007) observed Ru nano
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FIGURE 10 | OCV(open circles) and current density at 0.7V (closed
circles) as a function of the number of redox cycles (10 min in H2 and
10 min in air) at 750°C as well as current density at 0.7V (closed
squares) as a function of the number of redox cycles at 800°C applying
2 h in H2 and 10 min in air (Ma et al., 2010). Reprinted with permission
from Elsevier.

particles (≤5 nm) formed on La0.8Sr0.2Cr0.82Ru0.18O3 surfaces
after exposure to hydrogen at 800°C. Over 50 h initial reduction,
the formed catalysts improved peak power density of the cell from
200 to 400 mW cm−2. Similar observation was reported by Kob-
siriphat et al. (2010) in La0.8Sr0.2Cr1−xNixO3. Larger Ni particles
(>10 nm) were found extracted from the material upon reduc-
tion and agglomeration of the catalyst particles was also found
to cause performance degradation over 300 h operation. In the
similar material system, Bierschenk found that such performance
degradation for Pd-doped anode materials can be regenerated
upon redox cycling and the process of metal particle precipi-
tation was reversible (Bierschenk et al., 2011). Another material
NbTi0.5M0.5O4 which can generate metal particles after reduction
was reported by Boulfrad et al. (2011) and Li et al. (2013). Com-
pared with the infiltration approach, such method for generating
metal modified ceramic anode is much simpler and the distrib-
ution of catalyst particles may be more homogeneous. Consid-
ering the possible interaction between these nano-sized particles
and mixed ionic and electronic conducting substrates as well as
reversible generation process, enhanced performance and good
redox stability of these materials can be expected.

Yang et al. (2012) found that nano-sized Co–Fe alloy parti-
cles supported on a ceramic matrix can be achieved by exposing
Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3 to a reducing environment at 900°C
and such phase transition can be reversed by treating the compos-
ite in air at the same temperature as shown in Figure 11. When
the material was applied in LSGM electrolyte-supported cells as
both electrodes, the anode side turned into a composite electrode
with nano-sized Co–Fe alloy particles supported on a Ruddlesden–
Popper phase upon in situ reduction. The cell achieved a maximum
power density of 0.96 W cm−2 at 850°C in H2 and the values
were still 0.92 and 0.89 W cm-2 at 850°C in H2 containing 50
and 100 ppm H2S, respectively. Remarkably, the cell also showed

FIGURE 11 | (A) X-ray diffraction (XRD) patterns of (A1) R Pr0.4Sr0.6

Co0.2Fe0.7Nb0.1O3 sintered at 1050°C in air; (A2) Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3

annealed in 5% H2–95% N2 at 900°C; and (A3) Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3

re-oxidized in air at 900°C; (B,C) SEM images of Pr0.4Sr0.6Co0.2Fe0.7

Nb0.1O3 before and after being reduced in H2 at 900°C (Yang et al., 2012).
Reprinted with permission from John Wiley and Sons.

relatively high maximum power density of 0.6 W cm-2 in CH4

and 0.94 W cm-2 in C3H8 at 850°C. In contrast to the low per-
formance of the cell with only the Ruddlesden–Popper phase as
the anode, the dramatically improved performance was attributed
to the alloy catalysts generated during reduction. Benefiting from
formation of alloy and good stability of the ceramic substrates, the
cell performance was quite stable in both H2S-containing fuels
and hydrocarbon fuels for hundreds of hours. The maximum
power density remained stable during a total of 26 cyclic testing,
indicating excellent redox-reversibility of the anode material.

Recently, a strategy to manipulate perovskite ceramic materials
to precipitate catalytic particles by introducing A-site deficiency
was demonstrated in La(Sr)TiO3-based materials (Figure 12)
(Neagu et al., 2013) and Sr–Fe–Mo–O-based materials (Xiao et al.,
2014) possibly applicable to other material systems. Xiao et al.
investigated the anode performance of Sr1.9Fe1.4Ni0.1Mo0.5O6–
SDC on LSGM electrolyte with LSCF as the cathode. Besides the
improvement in cell performance, good redox stability of the com-
posite anode was also demonstrated. As shown in Figure 13, the
cell performance was not sensitive to the exposing time in air in
contrast to that reported for the cells with SrTiO3-based materi-
als (Ma et al., 2010) suggesting that the ceramic phase may have
an important role in determining the stability of the modified
ceramic anode materials. The impacts of the catalysts precipita-
tion during reduction on properties of the ceramic substrate phase
are not clear and may require further systematic studies in the
future.

CONCLUSION
Aiming at implementation of SOFCs under practical conditions,
the instability issue for conventional Ni-cermet-based anodes in
redox cycling has been intensively studied. The cell performance
degradation can be attributed to the dramatically volume change
of the Ni-phase, specifically during oxidation at high temperatures.
Recent research work has demonstrated that the redox instability
issues for Ni-cermet anode can be effectively mitigated by carefully
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FIGURE 12 | Ex-solutions from the initially A-site-deficient,
O-stoichiometric La0.52Sr0.28Ni0.06Ti0.94O3 after reduction at 930°C (20 h) in
5% H2/Ar (Neagu et al., 2013). Reprinted with permission from Nature
Publishing Group.

FIGURE 13 | Cell voltage and resistance of Sr1.9Fe1.4Ni0.1Mo0.5O6–δ–SDC
anode versus time during redox cycling (Xiao et al., 2014). Reprinted
with permission of The Electrochemical Society.

tailoring the microstructure of the composites, including decreas-
ing the initial Ni particle size, enhancing mechanical strength of
the ceramic frame, and increasing anode porosity. By using infil-
tration method, the electrical conductivity and electrochemical
performance of Ni-cermet anodes were preserved after a few redox
cycles. Meanwhile, developing novel ceramic anode materials has
been considered as an alternative strategy to mitigate redox insta-
bility limitations for Ni-cermet anode and has already drawn great
research interests. Several potential ceramic anode candidates have
been demonstrated. With judicious material design, remarkable
single cell performance and promising stability in redox cycling
have been demonstrated for some ceramic-based materials as
SOFC anodes. These findings indicate that it is feasible to solve the

redox instability issues of SOFC anodes by exploring new anode
materials and optimizing anode microstructures.
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